
KIT — The Research University in the Helmholtz Association www.kit.edu

Karlsruhe Institute of Technology

Figuring out How Automats Use AI to

Understand and Solve Physical Puzzles

Master’s Thesis
of

Xizhe Lian

KIT Department of Informatics
Institute for Anthropomatics and Robotics (IAR)

High Perfomance Humanoid Technologies Lab (H2T)

Referees: Prof. Dr. Rüdiger Dillmann
Prof. Dr. Christopher G. Atkeson

Advisors: Prof. Dr. Christopher G. Atkeson
Prof. Dr. Rüdiger Dillmann

Duration: January 1st, 2018 – July 1st, 2018

Statement of Authorship

I hereby declare that I have created and written the enclosed thesis completely by myself and have not
used any sources or means without identifying it in the text. I have followed the applicable KIT statutes
for safeguarding good scientific practice.

Karlsruhe, July 1st, 2018

Xizhe Lian

Aknowledgements:

Here, I would like to thank my advisor Prof. Dr. Christopher G. Atkeson and Prof. Dr. Rüdiger
Dillmann for their precious guidance and generous support on my master thesis. It is also highly appre-
ciated that the CLICS programm 1 gave me this valuable opportunity to write my thesis at the Carnegie
Mellon Univeristy in Pittsburgh, USA. Particularily, for the helps from Mrs Margit Rödder during the
application phase.

Thousand thanks to my colleagues and freinds at the CMU, especially on my labmates at CMU. Ak-
shara Rai, Amarjyoti Smruti, Leonid Keselman, Samuel Clarke and Seungmoon Song, I would not have
been able to finish my thesis without your precious help and advices. I would also like to thank my
friends, Bettina Weller, MengMeng Yan and Rebecca Seelos, I would not have been able to get this op-
portunity and finish the thesis without your support.

Last but not least, I would like to thank my parents in particular. Thank you for standing at my back
for all my life and respecting every decision I made.

1https://www.clics-network.org/index.php

https://www.clics-network.org/index.php

Abstract:

Within the scope of this work, we research how to use artificial intelligence (AI) to solve physical puz-
zles, for instance, how AlphaGO plays the Go game, and how children play with educational physical
toys. Physical puzzles are puzzles with essential physical properties, such as gravity or friction. We used
magnetic marble run as reference in reality. To achieve this, we used computer vision techniques to track
the marble ball. Then, we simulated the game in a simulator with Open Dynamics Engine (ODE) and
built a dynamic model using this simulator. We ran the optimization algorithms (both gradient-based
and non-gradient-based) to find successful solutions for the placement of the movable objects in the
simulation. Hence the robot can play such games with the space knowledge of the obstacles.

Kurzzusammenfassung:

Im Rahmen dieser Arbeit erforschen wir, wie künstliche Intelligenz physikalische Rätsel verstehen
und lösen kann. Beispiele hierfür wären, wie AlphaGO Go spielt oder wie Kinder mit physikalischen
Spielzeugen spielen. Mit phsikalischen Rätseln meinen wir Rätsel, die grundlegende physikalischen
Eigenschaften aufweisen, z.B. Gravitation und Reibung. Dabei werden Computer-Vision-Techniken zur
Datensammlung verwendet. Ein Video mit einem echten Marbel-Ball-Spielzeug wurde aufgenommen
und die Bewegungsbahn der Kugel wurde verfolgt. Mit dieser Bahn haben wir das Spiel in einer Simu-
lation nachgebildet und ein dynamisches Modell daraus erstellt. Mit dem dynamischen Modell und mit
Optimierungsalgorithmen wird die Platzierung der beweglichen Spielzeugteile generiert, damit der Mar-
ble Ball sein gegebenes Ziel erreichen kann. Ein Roboter kann mit den Informationen über den Raum
das Spiel lösen.

Contents Page 11

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Overview . 3
1.4 Approaches . 3
1.5 Contribution . 4

2 Background 5
2.1 Reinforcement Learning . 5
2.2 Optimization Algorithms . 5

2.2.1 Gradient-based . 5
2.2.2 Black-box Optimization . 9

2.3 Separating Axis Theorem . 14
2.4 Data analysis . 15

2.4.1 Principle Component Analysis (PCA) . 15
2.4.2 Linear Discriminant Analysis (LDA) . 17

3 Related Work 19
3.1 Open Dynamics Engine (ODE), dynamic model . 19
3.2 Object Detection . 19
3.3 Optimization Algorithms . 21
3.4 Learning from scratch . 21

4 The Approach 23
4.1 Preparation . 23
4.2 Implementation . 23

4.2.1 The clean-up step . 26
4.2.2 Cost Function . 28

5 Experiments 32
5.1 Computing one valid solution . 32

5.1.1 Conjugate Gradient (CG) . 32
5.1.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 33
5.1.3 Differential Evolution (DE) . 33
5.1.4 Random Search (RS) . 35
5.1.5 SLSQP . 35

5.2 For a robust result : computing ten valid solutions . 35
5.2.1 Conjugate Gradient (CG) . 37
5.2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 37
5.2.3 Differential Evolution (DE) . 40
5.2.4 Random Search (RS) . 40
5.2.5 Sequential Least SQuares Programming (SLSQP) 40

5.3 The longer the computational time the better the results ? Computing twenty valid solutions 42
5.3.1 Conjugate Gradient (CG) . 42
5.3.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 42
5.3.3 Differential Evolution (DE) . 45

KIT

Contents Page 1

5.3.4 Random Search (RS) . 45
5.3.5 Sequential Least SQuares Programming (SLSQP) 45

6 Evaluation 48
6.1 Run time and robustness . 51

6.1.1 Conjugate Gradient (CG) . 51
6.1.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 51
6.1.3 Differential Evolution (DE) . 52
6.1.4 The random method . 52
6.1.5 Sequential Least SQuares Programming (SLSQP) 52

6.2 The path to valid solutions . 53
6.2.1 Conjugate Gradient (CG) . 53
6.2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES) 54
6.2.3 Differential Evolution (DE) . 54
6.2.4 Random Search (RS) . 54
6.2.5 Sequential Least SQuares Programming (SLSQP) 54

7 Summary and future work 76
7.1 Summary . 76
7.2 Future work . 76

7.2.1 3D Object Detection . 76
7.2.2 Deep neuronal networks and optimization algorithms 77

KIT

Page 2 Chapter 1. Introduction

1 Introduction

In 2015, a human professional Go player was defeated by the computer program AlphaGo for the first
time that was developed by Google DeepMind. Shortly after that, in March 2016, AlphaGo defeated
18-times world champion Lee Sedol, who is considered to be the greatest player of the past decade. For
a long time, the game of GO has been considered as the most challenging games for artificial intelli-
gence (AI) due to its complexity in huge search space and evaluation of board positions and moves, see
David Silver1 et al. (2016). The success of AlphaGo has brought back the term artificial intelligence
(AI) to researchers’ attention.

Numerous AI reseachers investigate their effort in AI gaming, for instance, teaching a computer pro-
gram to play GO or video games such as Atari 2600 games - a collection of arcade games developed
by the company Atari, see Mnih et al. (2013), Guo et al. (2014). The popularity does not stand for no
reason. Some researcher use games as training ground for the real world. Let’s take autonomous mobil
for example, the programm has to recongnize signs under all circumstances (rainy, foggy, sunny, etc) and
under all kinds of lightings. To gather all these training data in the real world is a tedious task, it is hard
to obtain them online as well. Some researchers obtain the wishing data from car driven video games,
where realistic signs are featured in games, see Artur Filipowicz and Kornhauser (2017). Further, to play
games it needs various cognitive skills. The procedure to solve games can help researchers to understand
how the whole task involving intelligence to be resolved into smaller, more manageable subtasks, hence
they can resemble AI.

Nowadays, AI has surpassed human-level performance in Atari games. The company OpenAI has trans-
ferred the games into Arcade Learning Environments which can be directly used for neural network
research1. If we train an agent with neural networks for a single Atari game, the agent can beat human
performance Mnih et al. (2013). However when we look into the field of AI with common sense, or
at artificial general intelligence (AGI), we will find out that there is still a long way to go. Common
sense means things or facts that we, as humans, take for granted, learn, and predict from scientifc laws -
covering everything from universal physical laws such as ("if the ball drops, it will fall to the ground")
to complex social laws. So far, there is no deployed AI system that can answer a broad range of simple
common sense questions such as "if I put my socks in the drawer, will they still be there tomorrow ?"
Metz (2018).

Hence we want to explore how AI can understand physical phenomena such as gravity or friction, and
can solve general physical puzzles by itself . Marble run, a.k.a rolling ball sculpture, or ball run, is
a perfect tool for the intellectual development of children. When humans design the trajectory of the
marble ball, they use their knowledge and understanding of gravity, friction and velocity. It is interesting
to see how AI interacts with the real world and plays physical puzzles.

1.1 Motivation

With AI being extremely successful with Go and Atari 2600 games, the question of whether AI can
achieve more in games with physical principles has arisen. In the year of 2014, a fourteen-year-old
school boy, Robert Nay, released a physical puzzle game application, the bubble ball, that has beaten
Angry Birds, and hit number one of Apple’s App charts that year, as reported by BBC2. Meanwhile, in

1http://gym.openai.com/envs/#atari
2http://www.bbc.co.uk/news/technology-12241564

KIT

http://gym.openai.com/envs/#atari
http://www.bbc.co.uk/news/technology-12241564

Section 1.2: Problem Statement Page 3

the market of marble run as educational toys there are adequate variations. Inspired by the application
of Bubble Ball, we chose marble run as the starting point for our research on how AI solves physical
puzzles. Our ultimate goal is to see how AI understands such puzzles.

1.2 Problem Statement

Our main focus is on investigating how a robot plays magnetic marble run automatically. Magnetic
marble run can be clipped on a whiteboard thus the objects can be viewed as two-dimensional regular
geometries, which does not have huge requirement on object recognition. Precisely, the robot is given
some marble balls, some obstacles and a goal object. The start position is marked and fixed, as well as
the goal object. The robot should be able to place the obstacles and free the marble ball.

1.3 Overview

In this thesis, first the background knowledge on current artificial technology in field robotics (Rein-
forcement Learning (RL)) will be introduced. Then an alternative to classic Reinforcement Learning
(RL), optimization algorithms, will be loosely introduced. At the same time, brief introductions on each
algorithm deployed in our experiement are presented, which should be helpful for fruther discussion on
various algortihms in later chapters. A quick overview on the library of dynamic simulation, the Open
Dynamics Engine (ODE), is given. Following, the library on computer vision, the OpenCV, is introduced.
OpenCV is an open source library, which covers a large range on topics of computer vision. The part for
object detection is presented with details. Subsequently, a pseudo-code of random optimization is shown,
that other algorithms have existing implementations. The following chapter describe our approach com-
prehensively. Pseudo codes of the optimizer and the collision detection are explained, and how to get
the best output is depicted as well. Then results in simulation of experiments with diverse optimation
algorithms are displayed. An evaluation of run time and output quality of various algorithms is carried
out. Meanwhile, data analysis techniques are deployed on the sampling data from each algortihm, which
reveals an insight into the optimization landscape of our problem. Last but not least, a summary on this
thesis and future work are presented.

1.4 Approaches

In our approach to implement the project, the first step would be that the robot needs to "see" or "rec-
ognize" the parts of the game, e.g., object detection or object recognition. The next step would be to
build a simulation environment, where the agent or computer program can play the physical puzzles. For
an accurate simulation environment, a real marble run is built and the ball is run. The ball trajectory is
recorded and is compared with the simulated ball run. The parameters of the simulation environment are
tuned so that the two ball trajectories resemble each other.

We use the word "layout" to refer to the placement of the parts (and later we will call them obstacles)
in the game. Letting the robot play the game is equivalent to letting it generate a layout. To compute a
layout, the Optimization Algorithms are applied, which are inspired by the lecture of Atkeson (2018), and
the implementation is based on the assignments from the course 3. Last but not least, after completion of
the calibration process to align the simulation environment and the real playing environment, the robot
is ready to play the physical puzzle game. I.e, the robot will locate the initial position of the ball and the
position of the target object. It will place the available obstacles in the real world according to the output
of the optimizer, and then free the ball.

3https://github.com/leonidk/Box2D/

KIT

https://github.com/leonidk/Box2D/

Page 4 Chapter 1. Introduction

1.5 Contribution

In this thesis, we figured out a framework for a robot to play basic marble run. Figure 1.1 illustrates the
flow of the framework. Roughly speaking, the optimizer is designed for finding a valid solution, where
the solution can be extended to be directly deployed in the real world. The robot just needs to move the
obstacles to the desired positions according to the output of the optimizer.

Figure 1.1: A sketch about the framwork for a robot to play basic marble run

KIT

Page 5

2 Background

This chapter gives a basic overview of Reinforcement Learning (RL) in the gaming area. Followed by
some brief introductions on optimization algorithms, and a theorem in geometry - the separating axis
theorem- that was used for implementation is explained. At the end a precise explaination on data
analysis tools - the Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) - is
presented.

2.1 Reinforcement Learning

The classic approach of RL algorithms is based on the Markov Decision Process (MDP) formalism
and the concept of value functions and reward systems. The agent, which is an autonomous or semi-
autonomous AI-driven system, is trained to select the best action, where the expectation value of taking
a particular action is represented by a Q-network. A Q-network is nothing else than a lookup table for
rewards of every state-action pair. Successful representations of this approach include systems that learn
to play Atari from pixels Mnih et al. (2013), or the impressive AlphaGo, David Silver1 et al. (2016)

The use of optimization algorithms, on the other hand, has been considered an alternative to solve
RL problems. More than a decade ago, this approach was already known as the direct policy search,
Schmidhuber and Zhao (1998). If the neuronal network is trained by evolutionary algorithms, a subset of
black-box optimization, then this approach is called neuro-evolution by Risi and Togelius (2015). These
optimization algorithms have come back to researchers’ attention as they have attractive advantages - for
example they are highly parallelizable and data efficient - as compared to deep RL networks.

2.2 Optimization Algorithms

Optimization algorithms solve problems with the formula:

min
x∈S

f (x)

i.e, with a given a set and an objective function or cost function, to find an element x0 out of it so
that the function value of x0 is smaller or equal than all other elements’ function values. When we say
optimization problems we refer to find the minimum, because the maximization problem can be calcu-
lated based on the minimization problem. A mathematical expression would be:

f ind x0 ∈ S s.t. ∀ x ∈ S : f (x0) ≤ f (x)

Patryk Chrabaszcz (2018) found out that with a simple variation of the Evolution Strategies (ES) the
agent will be able to play Atari games as well. Some researches find out that Genetic Algorithm (GA)
has been doing well on finding weights for large Deep artificial Neuronal Networks (DNNs), Such et al.
(2018).

2.2.1 Gradient-based

Gradient-based method follows the gradient of the given objective function at the current point to find
the optimum of the function. In this section two gradient-based methods, the Conjugate Gradient (CG)
and the Sequential Least SQuares Programming (SLSQP), are briefly introduced.

KIT

Page 6 Chapter 2. Background

Conjugate Gradient (CG)

A solid acknowledgment of linear algera is a precondition to understand the CG algorithm. More details
can be found in literature that provides some good explanations, for example Shewchuk (1994). The
method is originally proposed by Hestenes and Stiefel (1952) to solve linear systems using the formula
of n linear equations:

Ax = b (2.1)

An important mathematical term that needs to be clarified is conjugate. Two vectors di and d j are
conjugate to some semi-definite matrix A , if

dT
i Ad j = 0 (2.2)

This is a.k.a.A-orthogonal, as shown in subfigure (a) of figure 2.1, and the pairs of vectors are A-
orthogonal, because they are orthogonal in subfigure (b). The space in the subgraph 2.1 (b) is spanned
by elementary vectors {e1, e2, ... en}, denoted as En. The matrix A transforms the standard circle form
of subgraph 2.1 (b) into an ellipse in subgraph 2.1 (a), the space of (a) can be written as AEn, which is
basically A. So, if the two vectors di and d j are orthogonal in elementary space, it will be :

dT
i d j = 0 (2.3)

Analogously, in the transformed space from A, we will have the equation (2.2) for those orthogonal pairs
in the standard space that is spanned by elementary vectors.

Figure 2.1: A-orthogonal and orthogonal, figure credicts to Shewchuk (1994)

Like every other gradient-based algorithm, at each step, CG will take a direction di with a step size
βi to update the current value of x :

xi+1 = xi +βi di, i = 0 , ... , n−1 (2.4)

The equation 2.4 also implies that the algorithm will terminate in n steps, where n is the dimension of
the problem, i.e., the dimension of the matrix A and the target vector b. The reader who wants to know
the details about the termination and the correctness of the algorithm in more detail is referred to the
literature Shewchuk (1994).

KIT

Section 2.2: Optimization Algorithms Page 7

Moreover, what differs CG from other gradient-based algorithms is that the directions {d1, ...,dn} are
well selected so that they are pairwise orthogonal. They are constructed by the conjugation of the current
residual, where the residual is the distance from the current point (which is in vector form) to the vector
b :

ri = b−Axi (2.5)

Here we introduce the error term e to denote the difference between the current estimate of x to the
minimum point x∗, where with point x∗ the function derivative is 0 :

ei = xi−x∗ (2.6)

The correlation between the error term ei and the residual ri is simple but important :

ri =−Aei (2.7)

This can be roughly inferred from the meanings of these two terms. ei indicates how far we are from the
solution, where ri presents how far we are from the correct value of b.

A brief explaination for using the conjugation of the current residual is that the current risidual is
orthogonal to the previous search directions. To see this, first recall that in n steps, we will have the result
x∗. If we do the substitution of equation 2.4 backwards, we will get :

x∗ = x0 +
n−1

∑
i=0

βi di (2.8)

And

e0 =−
n−1

∑
i=0

βi di f or a k ≤ n (2.9)

Similarly, ek is the e0 plus some corrections (walked through some search directions):

ek = e0 +
k−1

∑
i=0

βi di (2.10)

Replace the e0 with equation 2.9, then :

ek =−
n−1

∑
i=0

βi di +
k−1

∑
i=0

βi di

=−
n−1

∑
i=k

βi di f or k = 0, ...n − 1

(2.11)

Here we need to apply a little trick that replace -βi with αi. Then recall the correlation between error e
and residual r and the conjugation property, we multiple equation 2.11 with -dT

j A from the left on both
sides to get :

−dT
j Aek = −

n−1

∑
i=k

αi dT
j Adi

d j rk = 0 f or j < k

(2.12)

This shows the beautiful property of the residual that it is orthogonal to the previous search directions,
which provides the guarantee of the existence of a new, linearly independent search direction unless the
residual is zero. Till then the problem is already solved, that a zero residual shows the function value of
the current point is already the target function value. Above all is how the CG works in linear systems,
furthermore, it is extended to solve non-linear problems.

KIT

Page 8 Chapter 2. Background

Sequential Least SQuares Programming (SLSQP)

Sequential Least SQuares Programming (SLSQP) follows the schema of solving nonlinear programming
problem that it iteratively fits the search directionKraft (1988). Which means at k+1-th step, the estimated
xk+1 will be obtained from xk :

xk+1 = xk + α
kdk (2.13)

where dk is the k-th search direction and αk is the step size.

Special in SLSQP is that the search direction is assumed by a qudatric funtion, which is approximated
by the second-order Taylor series approximation. Note that minimizing over the difference between the
new x and the current x is equivalent to minimizing over the current x, that the current x is fixed. The
original problem of nonlinear programming problem (NLP) is discribed as followed:

(NLP) : min
x∈Rn

f (x) (2.14)

subject to:
g j(x) = 0, j = 1, ... ,me , (2.15)

g j(x) ≥ 0, j = me +1, ... ,m , (2.16)

xlower bound ≤ x ≤ xupper bound (2.17)

Where the value function f and the constrain function g are assumed to be continously differentiable and
have no specific structure.

So the problem is substituted by the standard quadratic programming minimizing over the difference
of the x. Denoting the difference of x as d, the problem now can be expressed as below :

(QP) : min
d∈Rn

1
2

dT Bk d +5 f (xk)d (2.18)

subject to
5g j(xk)d + g j(xk) = 0, j = 1, ..., me, (2.19)

5g j(xk)d + g j(xk) ≥ 0, j = me +1, ..., m. (2.20)

Moreover, the original problem can be approximated by a quadratic form of the LAGRANGE function
of nonlinear programming, where the approximation of the constrains g are linear:

L(x, λ) = f (x) −
m

∑
j=1

λ jg j(x) (2.21)

Now putting these together, the choice of the search direction is :

B := 52
xx L(x, λ) (2.22)

Which has already been proposed by Robinson (1963) in 1963. As other gradient-based algortihms, the
SLSQP suffers from early exit during our experiments as well.

There are further fine techniques on how to control the step size and how to update the B-matrix compu-
tational efficiently, readers are referred to Kraft (1988).

KIT

Section 2.2: Optimization Algorithms Page 9

Step size epsilon

This thesis uses a version of Scipy 1 for optimization algortihms. In the implementation of gradient-based
methods, the gradients are approximated by the forward finite difference formula:

f ′(i) =
f (x[i] + epsilon) − f (x[i])

epsilon
(2.23)

where :

f : the f unction f

x : the current point

Generally speaking, tuning the parameter step size epsilon may lead to different results. In our ex-
periments, 0.01 and 0.1 are applied on CG, and 1e-8 and 0.1 are chosen for SLSQP. For CG we have to
use large step sizes otherwise the algorithm will suffer from early exit. At the beginning of our experi-
ments with the naive cost function from chapter 6.1, neither of those step sizes helped to prevent an early
exit; this is discussed in more detail in the Chapter Evaluation 6.

2.2.2 Black-box Optimization

Unlike gradient-based methods, "black-box" optimization does neither require a clearly defined objec-
tive function nor a cost function. Instead of computing gradients of the objective function, the algorithm
samples in the parameter space and the search process are optimized by fitness evaluation. Hence, it
can be a compensate for gradient-based optimization. Additionally, an important type of black-box opti-
mization is gradient-free population-based Genetic Algorithm (GA) a.k.a Evolution Strategies (ES). The
idea of Genetic Algorithm (GA) draws on biological evolution, that repeatedly modifies a population of
individual solutions. At each evolution step, the genetic algorithm selects individuals with some criterion
(for example top two individuals) from the current population to be parents and produces the offsprings
for the next generation (mutation). Over several successive generations, the population "evolves" toward
an optimal solution. Such method is also called Evolution Strategies (ES).

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

As the name indicates, CMA-ES adapts a covariance matrix of a multivariate normal search distribution,
as a derivation from self-adaptation in ES. A multivariate normal distribution is a generalization of the
one-dimensional (univariate) normal distribution to higher dimensions, whereas a normal distribution is
a uni-modal (which means one highest number) continuous probability distribution. Any normal distri-
bution, N(m, C) can be uniquely represented by its mean m ∈ Rn and its symmetric, positive definite
covariance matrix C ∈ Rn×n .

The covariance matrix has an appealing geometric interpretation that it can be uniquely identified by
the (hyper-)ellipsoid {x ∈ Rn |xT Cx = 1}, as shown in figure 2.2. As mentioned in the section of CG
2.2.1, the covariance matrix can be uniquely written by an orthogonal matrix B and a diagonal matrix D,
which is formed by the eigenvalues (eigenvalue decomposition) :

C = BD2BT (2.24)

where:

1https://www.scipy.org/

KIT

https://www.scipy.org/

Page 10 Chapter 2. Background

B is an orthogonal matrix, BT B = BBT = I. Columns o f B f orm an orthonormal basis o f eigenvectors.

D2 = DD = diag(d12, ...dn
2) is a diagonal matrix with eigenvalues o f C as diagonal elements.

I.e., ei = di
2, f or i ∈ {1, ...n}

D = diag(d1, ..., dn) is a diagonal matrix with square roots o f eigenvalues o f C as diagonal elements.

Naturally, derived from equation 2.24, we can define the square root of C as :

C
1
2 = BDBT (2.25)

Figure 2.2: Three different normal distributions and their convariance matrix, where the solid line el-
lipsoids are the geometric interpretation of the covariance matrix, figure credicts to Hansen
(2007)

Now, assuming that we have a normal distribution N(m, C), with the matrix decomposition from
equation 2.24, the normal distribution can be written as :

N(m, C)∼ m + N(0, C)

∼ m + C
1
2 N(0, I)

∼ m + BDBT N(0, I)︸ ︷︷ ︸
∼N(0,I)

∼ m + BDN(0, I)︸ ︷︷ ︸
∼N(0,D2)

(2.26)

Where "∼" denotes equality in distributions, and C
1
2 = BDBT Hansen (2016) .

Together with figure 2.2, the equation 2.26 reveals how the the orthogonal matrix B and the diagonal
matrix D influence the ellipsoid.

N(0, I) produces a spherical distribution as illustrated in the f irst subgraph o f f igure 2.2
D scales the spherical distribution within the coordinate axes as in the middle subgragh o f f igure 2.2.
B rotates the ellipsoid, and a f ter the rotation the ellipsoid looks like the one on the rightside o f f igure2.2.

It is not hard to see that matrix D scales the ellipsoid, that multiplying with a diagonal matrix is multiple
the diagonal entries to its corresponding columns. I.e., each column i will be scaled by the i-th entry of
the diagonal matrix. Morover, recall that D represents the eigenvalues of C, where eigenvalues indicates
the variances of corresponding eigenvectors (also called principle components), that is the elementary

KIT

Section 2.2: Optimization Algorithms Page 11

normal distribution(the spherical one) is reformed by the variances of the covariance matrix C. More
will be discussed in section Principle Component Analysis (PCA) 2.4.1.

Analogously, the matrix B rotates the formed spheral in figure 2.2 and B represents the eigenvectors
of C. Vectors indicate directions, so, together, B is a rotation of the spheral.

Now with this background knowledge of the covariance matrix, it is not difficult to understand the funda-
mental idea of CMA-ES. In CMA-ES, the update step, where new generation is developed, is sampling
a multivariate normal distribution. The basic equation for sampling the search points, for generation
number g = 0, 1, 2, . . . , maximum iterations is :

x(g+1)
k ∼ m(g) + σ

(g)N(0, C(g)) f or k = 1, ... , λ (2.27)

where :

∼ : denotes the equivalent o f the distributions on the both sides.

N(0, C(g)) : a multivariate normal distribution with zero mean and convaraince matrix C(g),

as mentioned previously, it is equivalent to N(m(g), C(g))

x(g+1)
k : k− th individual o f generation g+1, x(g+1)

k ∈ Rn

m(g) : mean value o f the search distribution at generation g, m(g) ∈ Rn.

σ
(g) : ”overall” standard deviation, step− size, at generation g, σ

(g) > 0 .

C(g) : covariance matrix at generation g. U p to scalar f actor σ
(g)2

,

C(g) is the covariance matrix o f the search direction.

λ : population size, λ ≥ 2.

So now with the update equation 2.27, what remains to be done for a complete iteration is to define
how to calculate m(g+1), σ (g+1) and C(g+1) for the next generation g+1 Hansen (2007).

Choosing the new mean

The new mean m(g+1) consists of a weighted average of µ best individuals of the new generation g+1 :

m(g+1) =
µ

∑
i=1

wi x(g+1)
i:λ (2.28)

where :
µ : µ ≤ λ (the population size), is the parent population size.

wi : with the sum
µ

∑
i=1

wi = 1, wi > 0, f or i ∈ {1, , , , µ}

Moreover, w1 ≥ w2 ≥ ... ,wµ ≥ 0. T here f ore with the sum in equation 2.28
calculates the average o f the individuals.

x(g+1)
i :λ

: i− th best individuals o f genertation g+1, evaluated by the ob jective f unction

that needs to be minimized.

When the new mean is chosen using this method of selection and recombination, the estimated pop-
ulation mean remains in the area of the µ-best individuals of the next generation.

Estimating the covariance matrix

KIT

Page 12 Chapter 2. Background

Similar to calculating the new mean, the covariance matrix is updated in the manner of weighted se-
lection as well. First the covariance of the best-µ individuals is calculated :

C(g+1)
µ =

µ

∑
i=1

wi (x
(g+1)
i:λ − m(g))(x(g+1)

i:λ − m(g))T (2.29)

Sampling within the best-µ individuals tends to reproduce "selected", i.e. successful generation. To
ensure that m(g+1)

µ is a reliable estimator, the µ must be sufficiently large. For a fast search, the population
size λ has to be small, hence, the µ must be small as well. Thus, the idea of rank-µ-update is deployed
:

C(g+1) = (1 − ccov)C(g) + ccov
1

σ (g)2 C(g+1)
µ (2.30)

where:
ccov : ccov ≤ 1, learning rate f or updating the covariance matrix

σ
(g) : the step size.

With the factor 1
σ (g)2

in equation 2.30, the recent generation is assigned to a higher weight, see Hansen
(2007). One more concept needs to be introduced, the evolution path. The evolution path reveals the
mean movement irrespective of the step-size in the search space. The evolution path of generation g+1
is defined as :

P(g+1)
c = (1 − cc)P

(g)
c + k

m(g+1) −m(g)

σ (g)
(2.31)

where :
P(g)

c : evolution path at generation g.

cc : cc ≤ 1, similar to the learning rate in equation 2.29.
k : a constance constructed by cc and µ f or normalization.

The final update of the covariance matrix of CMA-ES combines the rank-µ-update, see equation 2.30,
and the evolution path, see equation 2.31, which has a complicated form that is not necessary to be ex-
plained here, for detailed information refer to Hansen (2007).

Step size control

The step-size σ is modified through a method called cumulative path length control, cumulative step
size control, or cumulative step size adaptation, see Alexandre Chotard and Hansen (2012). The step
size is adapted according to the measurement of the length of a so-called cumulative path. The cumu-
lative path is a weighted sum of the previous steps realized by the algorithm, where the weights of each
step decreases with time. Different strategies are exploited regarding the length of the cumulative path.

1. If the evolution path is long, it means that the steps are similar, hence correlated. That means the
same distance can be summed up to longer steps in the same direction, consequently there are
fewer steps. The step-size should be increased.

2. If the evolution path is short, it means that the samples are moving back and forth. Roughly
speaking, the steps are anti-correlated that they cancel each other out. In this case, the step size
should be decreased.

3. In the ideal case, the steps are approximately perpendicular and therefore uncorrelated.

To approximate the ideal case, we want to construct the distribution mean of consecutive steps so that
they are approximately C(g)−1

-conjugate. Recall that C(g)−1
-conjugate is also called C(g)−1

-orthogonal,
which leads to the equation that :

(m(g) −m(g−1))
T

C(g)−1
(m(g+1) −m(g)) ≈ 0 (2.32)

KIT

Section 2.2: Optimization Algorithms Page 13

The update of the step-size is derived from equation 2.32.

Figure 2.3: Illustration of an actual optimization run with CMA-ES on a simple two-dimensional prob-
lem. The spherical optimization landscape is depicted with solid lines of equal values. On
this simple problem, the population (the dots) concentrates over the global optimum within a
few generations. Figure credicts to Wikipedia (2018)

Illustration 2.3 shows the path of the population to the global optimum, where the orange dotted line
is the contour of the covariance matrix of that generation.

Differential Evolution

The Differential Evolution (DE) is a member of the population-based Evolution Strategies (ES), which
belongs to the category of random search algorithms. As the name suggests, randomness or probability is
involved in the definition of this kind of algorithm. In literature, it is also be called Monte Carlo method
or stochastic algorithm, see Zabinsky (2009).

The idea of DE is simple, yet it works robustly and efficiently, see Storn and Price (1997). Here the
vectors that represent the parameters to be optimized are denoted as parameter vector or population vec-
tor. For every generation, it mutates every population vector from the current set. The term mutation it
means that the algorithm generates a new vector by adding some weighted differences to some chosen
vectors as described in equation 2.33.

vi,G+1 = xr1,G +F× (xr2,G− xr3,G) (2.33)

Where :
r1, r2, r3 ∈ {1, 2, ... , population size}, arbitrarily chosen, mutually di f f erent

G+1 denotes the next generation o f G
F : the scale f actor, > 0

KIT

Page 14 Chapter 2. Background

Then, the parameter vectors might be mixed up, this process is also referred to as crossover in the
ES community for the purpose of increasing the diversity of the parameter set. This will happen if the
generated random number is smaller than the crossover threshold (CR), which is determined by the user.
Figure 2.2.2 illustrates the crossover process and the selected vector to be mixed is denoted as target
vector. The vector after mixing is called trial vector.

The newly generated vector, a.k.a. the trial vector, will replace the target vector, which is the original
vector before crossed over, that is being added to the new generation when it has a better cost function
value. This process is referred to as a selection.

Figure 2.4: Illustration of the crossover process for 7 parameters, figure credits to Storn and Price (1997)

Note that in this selection and crossover process, DE does not involve any probability distribution
which makes this scheme completely self-organizing (self-adaption), and hence gradient-free. The cru-
cial idea behind DE is the perturbation process (mutation and crossover) that ensures the exploration of
the search space.

2.3 Separating Axis Theorem

The separating axis theorem (SAT) says that:
Two convex objects do not overlap if there exists a line (called axis) onto which the two objects’ projec-
tions do not overlap.
This is used in our object collision detection to avoid overlappings in the simulation. It is a diversion of
the hyperplane separation theorem in convex geometry.

The hyperplane separation theorem states that:
Suppose C and D are non-empty disjoint convex sets, i.e., C ∩ D = /0, C 6= /0, D 6= /0. Then there exist a
6= 0 and b such that aT x 6 b for all x ∈ C and aT x > b for all x ∈ D.

Figure 2.3 suggests that the affine function aT x - b is less or equal than 0 on C and greater or equal
than 0 on D.

KIT

Section 2.4: Data analysis Page 15

Figure 2.5: Illustration of two disjoint convex sets C and D, where the hyperplane {x | aT x = b} seperates
them. Illustration credits to Boyd and Vandenberghe (2004)

2.4 Data analysis

In this section two basic data analysis techniques will be introduced: Principle Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). Both of them are aimed for dimension reduction by
finding a meaningful re-expression of the data.

2.4.1 Principle Component Analysis (PCA)

PCA is a mainstay of data analysis, revealing the underlying data with a lower dimension expression
through a simple, non-parametric manner. The PCA can be considered as a rotation on axes, from the
original coordinate system to orthogonal axes, which are called principle axes. Rotating the axes is
analogous to seeing the data from a different angles, which is realised through the changing of the basis
in linear algebra, which implies the assumption of linearity that PCA makes. The new axes coincide with
maximally varied directions to the original observations, see Campbell and Atchley (1982). Imaging that
feature points are distributed in the ellipse from figure 2.4.1, the center of the ellipse (x̄1, x̄2) is the
average of the points within the ellipse. The cosine of the angle θ between Y1 and X1 gives the first
component u11 of the eigenvector corresponding to Y1. This will be explained in this section below.

In practice, PCA iteratively finds the eigenvalues ei and eigenvectors ui of the covariance matrix or
the correlation matrix of the original data, because the covariance matrix or the correlation matrix are
symmetric and the eigenvalues are orthogonal(which is breifly mentioned in 2.2.1). A covariance matrix
is a matrix whose element in the position (i , j) is the covariance between the i-th and j-th elements of a
random vector. According to the definition, the positions (i , j) and (j , i) should have the same value, hence
the symmetricity. The correlation matrix is the standardrized version of its corresponding covariance
matrix, that is divided by the standard deviation. To see that the eigenvalues are orthogonal, we first need
to recall the knowledge of the scalar product or dot product. The dot product of two vectors a and b is
defined as:

a ·b =
n

∑
i=1

aibi (2.34)

A dot product in cartean coordinates (as is this case here) is a scalar product < · , ·>. For any matrix A

KIT

Page 16 Chapter 2. Background

Figure 2.6: The long axis Y1 of the ellipse is the 1. principle axe. Then the perpendicular one, Y2, is the
2. principle axe. Illustration credits to Campbell and Atchley (1982).

who has its transpose, the following applies :

< Ax , y >=< x , AT y > (2.35)

And now we have a symmetric matrix A and x, y are the eigenvectors of A coresponding to distinct
eigenvalues λ and µ (that is λ 6= µ). We have :

λ < x , y >=< λx , y >=< Ax , y >=< x , AT y >=< x , Ay >=< x , µy >= µ < x , y > (2.36)

Then, if we put the head and tail of equation 2.36 together, we will get :

(λ − µ)< x , y > = 0 (2.37)

Since λ , µ are distinct, that means λ − µ 6= 0; thus, <x ,y> = 0, i.e., x is orthogonal to y. Furthermore,
eigenvectors form an orthogonal basis for the matrix A space. A further property of a symmetric matrix
is its diagonalizability. Let’s put the eigenvalues ei of A on the diagonal to form a diagonal matrix E,
i.e., E = diag(e1, ..., en) and put the eigenvectors together to get a matrix U, where U = (u1, ..., un). The
covariance matrix of the original data is denoted as V. Then the eigen-equation becomes :

V = UEUT

=
n

∑
i=1

eiuiui
T (2.38)

KIT

Section 2.4: Data analysis Page 17

The equation 2.38 reveals an important property, i.e. that the sum of the variances of the original vari-
ables is equal to the sum of the eigenvalues. This also shows the correctness of the implementation of
PCA.

The PCA ranks the eigenvalues in a descending order, that is, e1 > e2 > ... > en. Recall that an eigenvec-
tor corresponds to a direction. The corresponding eigenvalue of it reveals the variance of the data along
that eigenvector (or principal component), see Hamilton (2014). Now, we have a better understanding of
figure 2.4.1, i.e. that the cosine of the angle θ is a direction and it corresponds to the first eigenvector u1.
And the perpendicular axe to Y1, denoted as Y2 in the figure, is the second principal component, that the
variance of Y2 is smaller than that of Y1.

2.4.2 Linear Discriminant Analysis (LDA)

The crucial idea behind LDA is to find a lower dimensional space, where the between-class variance
is maximized and within-class variance is minimized. The between-class variance (SB) is the distance
between the means of different classes, a.k.a. the separability between different classes. The within-class
variance (SW) is the distance between the mean and the samples of each class.

After calculating the between-class variance (SB) and the within-class variance (SW), the transforma-
tion matrix (W) of the LDA technique can be calculated according to Fisher’s criterion, as described in
equation 2.39, which is basically to find a matrix W that maximize the difference between SB and SW
after transformation.

argmax
W

W T SB W
W T SW W

(2.39)

The above equation 2.39 is equivalent to the one below (equation 2.40):

SW W = λ SB W (2.40)

where :
λ : the eigenvalues of the transformation matrix W.

If the matrix SW has its own inverse S−1
W , i.e. SW is non-singular, then the matrix W can be obtained

by the following equation 2.41 :
W = S−1

W SB (2.41)

Recall that eigenvalues are scalar values and eigenvectors are directions(non-zero vectors), which provide
the information of the LDA space. The eigenvalues of W will be calculated, as well as their correspond-
ing eigenvectors. Similar to PCA, each eigenvector represents an axis in LDA space. The eigenvalues
reflect the discriminant between different classes, i.e. a high eigenvalue increases the between-class vari-
ance, and decreases the within-class variance of each class. Thus, the k eigenvectors with their k highest
eigenvalues form a lower dimensional space Vk, where the rest are neglected.

In the visualization 2.7 we can see that the first eigenvector v1 shows a better separability of the classes.
The distances between-classes are greater than those projected on the second eigenvector v2. Moreover
the within-class variances of the projections on v1 is smaller than those on v2. So in this case, v1 is
selected to construct a lower dimension representation.

KIT

Page 18 Chapter 2. Background

Figure 2.7: A visualization of LDA for three classes in two lower dimensions. The illustration credits to
Alaa Tharwat and Hassanien (2017).

KIT

Page 19

3 Related Work

3.1 Open Dynamics Engine (ODE), dynamic model

Our simulation is built with ODE, an open source library for simulating rigid body dynamics 1. The
implementation is written in C++, extended from the script of the course, see Atkeson (2018). In ODE,
a rigid body is effected by the physical environment, that is it will fall to the ground due to the gravity.
ODE provides a possibility to create an immovable body (such as the obstacles in our case) that yet
interacts with other bodies, that it has a body type referred to geometry (body), which is designed for
collision, see Smith (2006) .

In our real world experiment, a small initial force is added to the ball so that the ball can start to run.
Otherwise, we need to remove the supporting magnet under the ball so that its fall is initiated by gravity,
which is more complicated and will affect the result of color detection. Thereby, an initial velocity in the
horizontal direction is applied on the ball.

Our intention is that with the output of the optimizer, which provides for a successful run in the sim-
ulation, it can be applied to the real world straight by the robot. To ensure that the result can be trans-
formed seamlessly into the real world, the measurements of obstacles and the gird are proportionately
correspond to the real world. Some paramters for the physical properties, for example bounciness factor
or friction factor, are tuned as well. We tuned the parameters so that the plot of the simulated trajectory
is approximating the real world one, as illustrated in figure 4.3.

3.2 Object Detection

To detect the given goal position and obstacles, the robot has to resolve the perception problem. In our
approach, this is solved by color detection. Our implementation is based on OpenCV, an open source
computer vision library2. OpenCV is developed in C++ and has a python wrapper. Our code is written
in python, inspired by online tutorials3.

To distinguish the function of the objects, each object has its own color in our real world experiments.
The ball is red, movable obstacles are blue, fixed obstacles (for instance, the goal object) are lilac. Each
color has its own range in the HSV map. The HSV (hue, saturation, value) is an alternative color
representation of the RBG (red, blue, green) color model. A common technique of color detection is
that the image is converted into a HSV representation first, then the color mask is applied on the image,
which is principally thresholding on the HSV values. Figure 3.1 depicts the layout used in our real world
experiment, the two magnets on the top of the grid are for defining the grid area in color detection. The
two figures from 3.2 reveal that color detection is sensitive to lighting. Though the value range for red in
HSV remains the same all the time, and with different lighting, the color detector allows other objects to
pass the mask; for instance, are some parts of the hand recognized as red in the graph 3.2(b). To over-
come the disturbance from the environment, the recognition area is restricted, that is the grid between
the two magnets in figure 3.1. The contour area of detected objects also serve as a constraint. If the pixel
number in the contour area is too small or too large, the detector will regard the contour as noise.

1http://www.ode.org/
2http://opencv.org/
3https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/

KIT

http://www.ode.org/
http://opencv.org/
https://www.pyimagesearch.com/2015/09/14/ball-tracking-with-opencv/

Page 20 Chapter 3. Related Work

Figure 3.1: The layout for color detection

(a) The layout applied with a red mask before a hand
at the ball

(b) The layout applied with a red mask when a hand
is at the ball

Figure 3.2: The layout applied with a red mask

KIT

Section 3.3: Optimization Algorithms Page 21

3.3 Optimization Algorithms

Most of the algorithms deployed in this thesis have an implementation in Scipy, a scientific computing
tool for python4. An exception is the Random Search (RS), which we implemented by ourselves. The
implementation of RS is straight forward, as shown in algorithm 3.3. It does nothing else than random
sampling and comparing the cost function values.

1: function RANDOM METHOD
2: best = 1e20
3: best_x = None

4: for i in range(20000) do:
5: x0 = GET_RANDOM_X0

6: . the function f is the function to be optimized
7: cost = f(x0)

8: if cost < best then
9: best = cost

10: best_x = x0
11: end if
12: end for

13: return best, best_x
14: end function

15: function GET_RANDOM_X0
16: . bounds is a two dimensional array, with each elements lower bound and upper bound as tuple
17: randn = numpy.random.random_sample(bounds.size)
18: return numpy.array([x[0] + a × (x[1]-x[0]) for x, a in zip(bounds, randn)])
19: end function

3.4 Learning from scratch

This section is rather related to future work, that one of the long-term goal of AI research is to bypass
human knowledge, which is sometimes too expensive, too unreliable or simply unavailable. I.e., AI
researchers have the ambition to create algorithms that have superhuman performance without human
input. As mentioned before, in chapter 2, RL uses a lookup table called Q-network to decide which
action should be picked according to the current state. There are multiple ways to gain such Q-networks,
one possiblity is to train a supervised network for move probabilities. For example, the early version of
AlphaGo, the one which beated the human world champion Lee Sedol, used two deep neural networks, a
policy network and a value network, see David Silver and Hassabis (2017). The policy network was first
trained to approximate human experts moves, and then refined by policy-gradient reinforcement learn-
ing. The value network is designed to predict the winner of games, where games played by the policy
network against itself. In 2007, the new version of AlphaGo, the AlphaGo Zero is released, which is
trained completely by self-play reinforcement learning, without any supervision or use of human data. It
surpassed the performance of previous versions of AlphaGo. The training of AlphaGo Zero started with
random play, and the input is merely the black and white stones from the board. We can say that the
program AlphaGo Zero figured out how to play the game of Go by itself.

4https://www.scipy.org/about.html

KIT

https://www.scipy.org/about.html

Page 22 Chapter 3. Related Work

Nonetheless, Martin Riedmiller and Springenberg (2018) trained the robot arms to pick up objects with
reinforcement learning without human input. We can see that AI researchers are investigating to find a
way to achieve autonomous systems.

KIT

Page 23

4 The Approach

In the field of robotics, simulation allows multiple runs at low cost and with the flexibility to change
parameters. It is common to run experiments in simulations and then transfer the results that can be
directly applied on the robots. As a real world reference, a video was recorded with the magnet marble
run. Afterwards, we reproduced it with the Open Dynamics Engine (ODE) 1 simulator. In our case, there
are three movable obstacles in cuboid shape, and a goal object in a "cup" shape that consists of three
fixed obstacles. To enhance the variability, another fixed cuboid obstacle may be added in the simulation.
Therefore the problem is reduced to compute the positions and angles of the three movable obstacles,
so that with such layout, the marble ball, whose initial position is in the top-left corner of the wall, will
reach the goal object and stay in the goal object, we defined such a layout as a successful layout. The
goal object is located at the bottom of the wall, the x-axis position of the goal object may vary within
the right half of the wall. To solve this problem the optimization algorithm is applied to compute the
positions and rotation angles of the movable obstacles.

4.1 Preparation

As described in detail in the previous chapter 3.2, the ball, in a real world video (available online in
normal speed 2 and in slow-motion as well 3) is tracked with OpenCV 4. First, the objects are detected
based on the colors and then, with the background subtraction function from OpenCV, the ball trajectory
is subtracted. The video is recorded with a Logitech webcam with a frame-rate of 30 frames per second
(fps). In order to avoid losing frames, this analyzing process is run offline. Figure 4.1 shows the trajec-
tory of the magnet ball run in the real world.

We built a dynamic model with Open Dynamics Engine (ODE), which simulates the physical environ-
ment of the game. Figure 4.2 shows the layout as a simulation.

To minimize the gap between simulation and reality, first the dimensions of the obstacles were mea-
sured and transformed from the pixel space of the video into the simulation environment space. Then
we manually adjusted the parameters of the simulation environment from ODE which are described in
Chapter 3, so that the simulated trajectory approximates the real trajectory, which is shown in figure 4.3.

4.2 Implementation

Our implementation to compute a successful layout consists of basically three parts:

• The optimizer

• Clean up the solution

• Select the best from a set of successful layouts

1http://www.ode.org/
2https://youtu.be/_zpa1WufInU
3 https://youtu.be/wfrcggF0Yus
4https://opencv.org/

KIT

http://www.ode.org/
https://youtu.be/_zpa1WufInU
https://youtu.be/wfrcggF0Yus
https://opencv.org/

Page 24 Chapter 4. The Approach

Figure 4.1: Ball trajectory

Figure 4.2: The reproduction in our simulator

KIT

Section 4.2: Implementation Page 25

1: procedure OPTIMIZING(x)
Input: x is a 9-dimensional float array, with space information about three movable obstacles
global: hit, best_obst, best_score

2: . f is the function to be optimized
3: function F(x)
4: obstacles← get_params(x) . convert position information into obstacles

5: . Result is a list of different features counted by the dynamic model,
6: . such as velocities, positions, bounce count etc...
7: result← run_prog_process(obstacles) . pass the obstacles to the dynamic model

8: cost← COST FUNCTION(result, obstacles)

9: return cost
10: end function

11: function COST FUNCTION(result, obstacles)

12:

j Input: result : a list of velocities when the ball enters the goal
plane, positions, bounce count of the ball during
the current run

obstacles : current obstacles with space information of the
current run

13: overlap_count ← get_overlap_count(obstacles)

14: penalty← 0 if run succeeded else 1

15: cost← cost equation 4.1

16: if run succeeded ∧ overlap_count == 0 then
17: score← score equation 4.2
18: if score ≤ best_score then
19: best_score← score
20: best_obst = obstacles
21: end if

22: if len(hit) ≥ 10 then
23: write_result_to_file(best_obst)
24: sys.exit(0)
25: end if
26: end if
27: end function

28: function RUN
29: for v in range(10) do:
30: if ¬ overtime ∧ hit oversize then
31: DIFFERENTIAL EVOLUTION
32: end if
33: end for
34: end function

35: function DIFFERENTIAL EVOLUTION
36: result = differential_evolution(F, bounds, popsize = 5, maxiter= 5, disp= False, atol =1)
37: return result.fun, result.x
38: end function

39: end procedure

KIT

Page 26 Chapter 4. The Approach

Figure 4.3: The plots of real and simulated trajectories

To find a robust and successful solution of the placement of the movable obstacles in a reasonable run
time, experiments are carried out on different kinds of optimization algorithms. Both in gradient-based
and non-gradient-based manner. The Covariance Matrix Adaptation Evolution Strategy with fixed
initialization stood out in our case; this is discussed in more detail in the chapter Evaluation 6.

We used the center of mass position in both x and y-axes and the rotation angle of each movable ob-
stacle as input for the optimizer. Since our optimization space is a nine-dimensional continuous space
(we have three movable obstacles and each has three parameters), the numerical result from the optimizer
may lead to intersections of obstacles in reality. Figure 4.4 illustrates one possible solution returned by
the optimizer without clean-up, where the obstacles overlap each other. It is a successful but not valid
output, because in the reality the obstacles should not overlap. Therefore, there is an additional clean up
step before the parameters are being evaluated by the cost function from the optimizer.

4.2.1 The clean-up step

In the clean-up step, we first identified which movable obstacles were idle, to find out with which obsta-
cles collide with the ball and which not. Only the obstacles colliding with the ball during the run make
an impact on the ball’s trajectory. Therefore, we moved the idle obstacles near the goal object to increase
the robustness of the output layout. Since a gap between simulation and reality always exists, the ball
may bounce out of the goal object in the reality even if it would not do so in the simulation. Adding
idle obstacles near the goal object can prevent the ball from bouncing out of the goal object. Since our
setup is that the ball drops from the upper left corner of the "wall" and the goal object is located at the
bottom right corner, the first idle obstacle will be moved to the right side of the goal object and placed
in an inclined position facing the goal object. If there are more idle obstacles available, the second idle
obstacle will be moved to the left side of the goal object and be placed in an inclined position facing the
goal object. If there are still more available idle obstacles, they will be moved out of the "wall", which is
simplily setting the posistion to some large corrdinates that are not visible from the current point of view.

We can see from figure 4.5 that the layout as shown in 4.5(a) can help the ball slide back towards the
goal object if the ball bounces out of the goal. When using the layout as shown in 4.5(b) is used, the ball

KIT

Section 4.2: Implementation Page 27

Figure 4.4: A possible successful layout with clean-up

will bounce out of the goal and the run will fail.

(a) A robust layout example (b) A not robust layout example

Figure 4.5: Examples of robust and non-robust layouts

After moving the idle obstacles, on the setting is inspected for intersections of obstacles. An algorithm
for checking whether two convex polygons are overlapping is used, that was inspired by the Separating
Axis Theorem. The pseudo-code is shown in Algorithm 4.2.1 - implemented based on the post of Cozic
(2006). We compare the movable obstacles pairwise and then each movable obstacle with all fixed ob-
stacles. We separate the movable obstacles into two sets, one set contains those obstacles colliding with
the ball and the other one is the idle set. If there is an intersection between two non-idle obstacles, we
move one of the obstacle along its longitudinal direction; by doing so, the ball trajectory stays locally

KIT

Page 28 Chapter 4. The Approach

remained. That is, if the ball bounces to the right side of its falling direction, after this move of obstacles,
the ball will still bounce to the right side of its falling direction. If a non-idle obstacle overlaps with an
idle obstacle, the idle obstacle will be moved along its longitudinal direction. Similarily, if a movable
obstacle intersects with a fixed obstacle, the movable obstacle will be moved along its longitudinal direc-
tion. Our obstacles are cuboid in reality and thus can be seen as two dimensional rectangles in the view
of camera. The longitudinal direction is the direction along its longer edge of the rectangle.

Note it is rather naive to clean up in this way and it does not always return a successful layout or even
a cleaned up layout. Recall that the obstacles are compared pairwise, where one possible scenario is that
obstacle A first intersects with obstacle B and both obstacles have an influence on the ball trajectory. After
fixing this pair of obstacles, one of the obstacles, say obstacle A, is overlapping with another obstacle C
and so on. After fixing all of them, the ball trajectory will have changed and an unsuccessful layout is
computed. However, it is not trivial to move obstacles and yet maintain the ball trajectory without seeing
the obstacles as in our case. In the early phase of our optimization process, the clean-up step is placed
after a valid solution is found. Due to the imperfectness, the clean-up may return faulty results. A quick
fix would be to pass the imperfectly cleaned-up layout to the evaluation step and to constrain from there.
Thus, the evaluation of cost function is executed after the clean-up step.

4.2.2 Cost Function

Since the imperfect clean up step takes place during the optimization run, the range of possible success-
ful solutions downsized. This may result in a longer time for the optimizer to find a successful solution
but once it is found, the solution is successful and non-overlapping as desired. Our results show that by
deploying the right optimization algorithms, the optimizer is still able to find desirable solutions within
a reasonable time - with the use of some tricks. We keep a list of desirable solutions and a best score
record with the best solution, which is immediately written into an output file, where the best solution is
updated and the former best solution is overwritten. Once the list has more than the desired amount of
elements, the program will exit.

Regarding the robustness, a small number of bouncing up and down in the goal object is preferred.
In our dynamic model, we count how often the ball bounces into the goal object and out, as well as the
velocity when the ball enters the goal entry plane for the first time. Jumping into the goal entry plane
with a smaller velocity means that the energy that results from the ball bounce is smaller, hence it is more
likely that the ball will not bounce out.

Our dynamic model records the velocities of x-and y-axes when the ball is slightly over the goal en-
try plane for the first time and when the ball is slightly under the goal entry plane for the first time. As in
the direction of the y-axis the ball will be accelerated by gravity anyway, the velocities in the direction
of x-axis should be minimized (slightly over and under the plane). Our naive version of the optimizer
only minimized the velocities when the ball entered the goal entry plane. Then however, in many of
these solutions, the ball hits the edge of the goal object first and then slides into the entry plane. That
is to say the successfulness depends on the edge of the goal object, which may lead to an unsuccessful
run in reality. Note that in reality the obstacles are magnetic and stick on a wall, and a hit on the edge
may change the goal object’s layout. This is not the case in the simulation, where a fixed obstacle never
changes its position. A clean and safe solution would be to let the ball fall into the entry plane with a
low velocity in the middle of the goal object. Hence the dynamic model records the x position of the ball
when it is entering the entry plane and the x-position after the ball entered the entry plane and is slightly

KIT

Section 4.2: Implementation Page 29

Algorithm 1 2D Polygon Collision Detection
1: function OVERLAP(ver1,ver2)

2:
Input : ver1 : list o f vertices o f f irst rectangle, in tuple f orm

ver2 : list o f vertices o f second rectangle, in tuple f orm
Output : True : if two rectangles overlap each other

False : if they do not intersect

3: rects = [ver1, ver2] . rects: a list of 2 rectangles

4: for r in rects do

5: for i in range(length of r) do
6: min1, min2, max1, max2 = None

7: ind2 = (i + 1) % len(r)
8: p1 = r[i]
9: p2 = r[ind2]

10: . normal of this edge (p1,p2)
11: normal = (p2.y - p1.y , p1.x - p2.x)

12: for v in ver1 do

13: . the projected point of v along vector −−→p1 p2
14: projected = normal.x × v.x + normal.y × v.y

15: if ¬ min1 ‖ projected < min1 then
16: min1← pro jected
17: end if
18: if ¬ max1 ‖ pro jected> max1 then
19: max1← pro jected
20: end if

21: end for
22:
23: for v in ver2 do

24: . the projected point of v along vector −−→p1 p2
25: projected = normal.x × v.x + normal.y × v.y

26: if ¬ min2 ‖ projected < min2 then
27: min2← pro jected
28: end if
29: if ¬ max2 ‖ pro jected > max2 then
30: max2← pro jected
31: end if

32: if max1 < min2 ‖ max2 < min1 then
33: return False
34: end if
35: end for

36: end for
37: end for

38: return True

39: end function

KIT

Page 30 Chapter 4. The Approach

under the plane. This is also encoded in the cost function:

cost = penalty_ f actor× ((x−goal_pos_x+ penalty)2)+(vel_x_up)2 +(vel_x_down)2

+ penalty_ f actor× ((x_pos_down−goal_pos_x)2)

+ penalty_ f actor× ((x_pos_up−goal_pos_x)2)

+(y−goal_pos_y− (BALL_DIAMET ER/2)−goal.bottom_height/2)2

+overlap_count×hard_constrain_ f actor

(4.1)

where:
x : the x position o f the ball at the end o f the simulation run

y : the y position o f the ball at the end o f the simulation run

goal_pos_x : the geometry center x position o f the goal ob ject

goal_pos_y : the geometry center y position o f the goal ob ject

vel_x_up : the velocity in x direction when the ball f alls into the plane f or the f irst time

and the ball is slightly over the plane

vel_x_down : the velocity in x direction when the ball f alls into the plane f or the f irst time

and the ball is slightly under the plane

x_pos_down : the x position o f the ball when it is through the plane f or the f irst time

and it is slightly under the plane

x_pos_up : the x position o f the ball when it is through the plane f or the f irst time

and it is slightly over the plane

goal.bottom_height : the thickness o f the bottom o f the goal ob ject

overlap_count : the number o f the overlappings in the current layout

penalty : set to 1 i f this run f ails otherwise 0

Since in our simulation the x-and y-positions of the obstacles are in the intervals from 0 to 0.5, the
quadratic term of the position difference is smaller than 1; a penalty and the penalty factor are added
accordingly. If the run fails, the penalty will be set to 1 and otherwise 0; therefore, the quadratic term of
position difference will be greater than 1. This would make the minimum cost unambiguously related to
the successful solutions. Without the penalty, some gradient-based algorithms may exit before comput-
ing a successful solution due to local minima. Considering that the intersection of obstacles is unrealistic,
the hard constraint factor is set to 50, which forces the optimizer to sample in the non-overlapping com-
binations.

As mentioned above, we also keep track of the best-scored combination of obstacles out of the suc-
cessful and feasible solutions. A solution is scored once it creates a successful run and there are no
intersections between all the obstacles. The score is an additive result of the velocity of the ball in x
and y direction, when the ball enters the plane for the first time and it’s slightly above the plane, and the
number of times that the ball bounces in and out of the plane in the simulation.

score =penalty_ f actor_1× v_x_up2 + penalty_ f actor_1× v_y_up2 +bounce_count

penalty_ f actor_2× ((x_pos_up−goal_pos_x+1)2)
(4.2)

The best solution is also the minimum regarding the score function. Because low velocity in both di-
rections and low bounce count represent a robust solution in our case. Through our observations of the
experiments, the term measuring the difference of the position of the ball through the goal plane for the
first time and the goal object geometry center is appended. This term helps to avoid that these solutions
are the best solution, where the ball first hits the edge of the goal object then slides slowly into the "cup".

KIT

Section 4.2: Implementation Page 31

In this case the velocities of the ball when it enters the goal plane are small, but hitting the goal edge may
result in a faulty run in the real world.

KIT

Page 32 Chapter 5. Experiments

5 Experiments

In this chapter, the outputs of the optimizer using different optimization algorithms are depicted. The
trajectories of the ball are illustrated with the approach described in chapter Related Work 3.

5.1 Computing one valid solution

In this section, the optimizer is designed to find one valid solution, and in this connection the run time
and the score of the output is recorded. The score is calculated by the score function 4.1.

5.1.1 Conjugate Gradient (CG)

In CG we have tuned the parameter step size, figure 5.1 illustrates when the trajectory of the ball. The
ball has a complex trejectory, and it hits the edge of the obstacle at the right side of the goal object first.
Then it changes its direction and hits the goal object, and then it slides down into the goal object. After
these two hits the velocities are reduced, therefore the score is moderate (25.89). It took the optimizer
121.81s to find this solution.

Figure 5.1: The output of using CG with step size 0.1 in simulation

Figure 5.2 shows the result of using CG with step size 0.01. After hitting the edge of the fixed given
obstacle, the ball falls straight into the goal object. The ball is accelerated in the air by gravity, hence
it falls through the goal object opening with relative high velocity. This results in a bounce and a high
score (34.19). It took the optimizer less than a second to find this solution (0.26s).

KIT

Section 5.1: Computing one valid solution Page 33

From both CG run times, we can see that the variance of the run time is large (one is 121s, the other
is 0.26s). This happens regularly with the algorithm CG, as the algorithm is start position sensitive. That
is, if the minimum lies near the start position, then the algorithm will be terminate soon. Sometimes it
takes CG a long time to even find one valid solution.

Figure 5.2: The output of using CG with step size 0.01 in simulation

5.1.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Two experiments are conducted on CMA-ES , one with a fixed start point for all iterations, the other
with random start points for each iteration. Figure 5.3 depicts the output of deploying CMA-ES with a
fixed start point. In the simulation, the obstacles that interact with the ball are almost horizontal, where
the friction cancels out the horizontal velocity of the ball. However, in the vertical direction it is still
accelerated, hence the score is moderately good - 30.95. It took CMA-ES 13.46s to find this solution.

Figure 5.4 shows the result of CMA-ES with random start points, where the ball features high veloc-
ities when it hits the edge of the goal object. This may lead to a faulty run in reality,as it seems that the
success of the run depends on the hit, therefore, it has a high score of 41.49. The run time is 10.07s.

5.1.3 Differential Evolution (DE)

There are not many parameters left for tuning by the user with the DE algorithm . So, we only conducted
one experiment on DE to find one valid solution. Figure 5.5 shows the result. It is similar to the one that
CG found with step size 0.01, where the ball also bounces back once above the goal object entry plane.
Thus, this solution also has a similar score as the CG one - 35.82. The run time is 7.15s.

KIT

Page 34 Chapter 5. Experiments

Figure 5.3: The output of using CMA-ES with fixed initial point in simulation

Figure 5.4: The output of using CMA-ES with random initial points in simulation

KIT

Section 5.2: For a robust result : computing ten valid solutions Page 35

Figure 5.5: The output of using DE in simulation

5.1.4 Random Search (RS)

As our benchmark, RS performed moderately well in finding one valid solution, with a run time of 0.40s
resulting in a scored 34.83 solution. Figure 5.6 depicts the result, which is similar to the one found by
DE and CG with step size 0.01.

5.1.5 SLSQP

There were two experiments conducted on SLSQP: one with step size 0.01, one with step size 1e-8.
Figure 5.7 exhibits the outcome with step size 0.01. With this solution, the ball hits the edges of the goal
obstacle twice, which in the reality may lead to a faulty run. This output featured a score of 40.31 and
run time of 6.88s.

Figure 5.8 depicts the output with step size 1e-8. After sliding on the fixed horizontal obstacle, which
was added for increasing the difficulty of the game, the ball then hits the edge of the goal object and
bounces into the goal object. The long trace in the air leads to high velocities, this resulted in a high
score of 33.45. It took the optimizer 14.85s to find this solution.

From the examples of the experiment on finding one valid solution, we can see that the solutions found
are similar and they are not necessarily robust in fulfilling our criterion.

5.2 For a robust result : computing ten valid solutions

From the trajectories of the ball we can see that, the first solution found is not necessarily a good one. In
this section, the results of the best solution out of ten valid solutions of each algorithms will be presented.
That is, the algorithm will return the best out of the ten valid solutions it found during a run. The best
valid solution is the one with the lowest score according to the evaluation score function.

KIT

Page 36 Chapter 5. Experiments

Figure 5.6: The output of using RS in simulation

Figure 5.7: The output of using SLSQP with step size 0.01 in simulation

KIT

Section 5.2: For a robust result : computing ten valid solutions Page 37

Figure 5.8: The output of using SLSQP with step size 1e-8 in simulation

5.2.1 Conjugate Gradient (CG)

Like the experiments on computing one valid solution 5.1, two experiments were conducted with CG and
different step sizes. Figure 5.9 shows the selected output - out of ten valid solutions using CG with step
size 0.1. The ball hits obstacles three times and then, with the third hit, it bounces into the goal object.
The three hits result in smaller velocities, since the energy is lost in the hitting of the obstacles. Thus,
this solution achieved a good score of 24.37. It took the algorithm 87.32s to return the best output.

Figure 5.10 depicts the solution returned by CG with step size 0.01. The layout is similar to our layout
in reality, see figure 4.1. The ball hits the edge of the goal object and thus slightly affects the score -
29.09. It took the optimizer 11.02s to finish the task.

5.2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

CMA-ES was also run twice, once with random start positions for different iterations, and the second
time with a fixed start position for all iterations. Figure 5.11 illustrates the output of CMA-ES with
fixed start position. The layout is robust: with two obstacles forming a slope, the ball is not accelerated
as much as in the air. It hits the edge of the goal obstacle as well, but this does not produce enough
energy to result in a bounce; therefore, generally speaking, it deserves its good score of 21.14. It took
the optimizer 68.58s to terminate.

Figure 5.12 shows the output of CMA-ES with random start positions for each iteration. The layout
is similar to those found by computing one valid solution as shown in figure 5.1. It starts with a new
position every time, so the tentatively adapted covariance matrix does not necessarily work for the new
position, and the algorithm needs to adapt the matrix from scratch again. Hence, in this manner the
matrixes are not accumulatively adapted. This solution features a score of 34.20, and a run time of 28s.

KIT

Page 38 Chapter 5. Experiments

Figure 5.9: The output of using CG with step size 0.1 in simulation

Figure 5.10: The output of using CG with step size 0.01 in simulation

KIT

Section 5.2: For a robust result : computing ten valid solutions Page 39

Figure 5.11: The output of using CMA-ES with fixed start postion

Figure 5.12: The output of using CMA-ES with random start postions

KIT

Page 40 Chapter 5. Experiments

Figure 5.13: The output of using DE

5.2.3 Differential Evolution (DE)

The result from DE is an improved version of the valid solution found first, see figure 5.5. The layout in
figure 5.13 achieved a better score of 27.45 too.However, In trade-off of the score, on the downside, it
took 115.49s to compute this solution.

5.2.4 Random Search (RS)

In this run, the RS showed a moderate performance; within 82.53s, it found a solution that scored 23.31.
The solution is quite robust based on our criteria. It lets the ball slide down near the goal object, then
lets it hit the obstacle on the right side of the goal object. With that hit, the ball slides down into the goal
object with small velocities.

5.2.5 Sequential Least SQuares Programming (SLSQP)

The layout found through SLSQP, with step size 0.01, achieved a good score (22.20). The trajectory in
figure 5.15 shows that the ball hits the edge of the obstacle at the right side of the goal object, which
moves the ball moderately near the center of the goal object when it falls through. The algorithm took
83.90s to return this solution.

The output of SLSQP with step size 1e-8 displays a robust valid solution, illustrated in figure 5.16. In
the simulation the ball hits the edge of the obstacle on the left side of the goal object; it then changes its
direction and lands on the obstacle on the right side. It slides back to the goal object with low velocities.
The solution has a relative low score of 21.37 and was found relatively quickly in 51.75s.

KIT

Section 5.2: For a robust result : computing ten valid solutions Page 41

Figure 5.14: The output of using RS

Figure 5.15: The output of using SLSQP with step size 0.01

KIT

Page 42 Chapter 5. Experiments

Figure 5.16: The output of using SLSQP with step size 1e-8

5.3 The longer the computational time the better the results ?
Computing twenty valid solutions

The outputs of computing ten valid solutions have improved. Thus, we wanted to explore whether the
output will be improved by computing twenty valid solutions.

5.3.1 Conjugate Gradient (CG)

The output of CG with step size 0.1 (see figure 5.17) was quite robust; the hits on the obstacles next to
the goal object reduced the velocities which resulted in a good score (21.84). However, the run time was
unsatisfying as it took 224.60s to finish the task.

Furthermore, the output from CG with step size 0.01 was robust too. See the trajectory of the ball in
figure 5.18 where the ball first bounces on the obstacle on the right side of the goal object and then slides
down into the goal object. In this manner, the ball is not accelerated by gravity as compared to the air.
This solution features a score of 22.80 and the run time is 160.96s.

5.3.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The CMA-ES with fixed initial position for all iterations in a run returns a satisfying result (scored 21.39).
Though, it is slightly worse than the one found by CMA-ES with a fixed start position for computing of
ten valid solutions, which scored 21.14. The solution illustrated in figure 5.19 is rather the same as found
by CG. CMA-ES terminated within a minute in this run (52.55s).

The layout from CMA-ES with random start positions for all iterations as shown in figure 5.20 is
less robust than the one found with a fixed start position(scored 23.45). It took CMA-ES with random

KIT

Section 5.3: The longer the computational time the better the results ? Computing twenty valid
solutions

Page 43

Figure 5.17: The output of using CG with step size 0.1

Figure 5.18: The output of using CG with step size 0.01

KIT

Page 44 Chapter 5. Experiments

Figure 5.19: The output of using CMA-ES with fixed initial position

Figure 5.20: The output of using CMA-ES with random initial positions

KIT

Section 5.3: The longer the computational time the better the results ? Computing twenty valid
solutions

Page 45

start positions, 79.82s to finish and find twenty valid solutions. During our experiments, CMA-ES, with
random start positions often exceeded the maximum iteration number and therefore failed to find twenty
valid solutions. More will be discussed in chapter Evaluation 6.

5.3.3 Differential Evolution (DE)

Figure 5.21: The output of using DE

The output from DE as depicted in figure 5.21 is similar to the one found by CG with step size 0.1. It
features a score that is typical for a robust solution, that is 22.46. The run time is moderate for computing
twenty valid solutions: 108.21s.

5.3.4 Random Search (RS)

The layout from RS is also a regular robust layout and a score of 22.77. Though the trajectory in figure
5.22 shows that the ball hits on the edge of the obstacle on the right side of the goal object directly after
hitting the edge of the fixed given obstacle. After accelerating in the air, the last hit on the obstacle is a
strike, which needs to be tested in the real environment. The algorithm took 274.65s to find twenty valid
solutions. The longest run time indicates that when computing for more than one valid solutions, random
sampling loses its advantages in run time.

5.3.5 Sequential Least SQuares Programming (SLSQP)

Figure 5.23 depicts the solution returned by SLSQP with step size 0.01, which is similar to the one found
by DE and CG with step size 0.1. It also features a moderate score of 22.85, offering a regular robust
solution. The algotihms took 110.19s to terminate.

The layout displayed in 5.24, as returned by SLSQP with step size 1e-8, shows another variety of those
frequently seen. It "forms" a bridge, which lets the ball fall onto the obstacle on the right side of the goal

KIT

Page 46 Chapter 5. Experiments

Figure 5.22: The output of using RS

Figure 5.23: The output of using SLSQP with step size 0.01

KIT

Section 5.3: The longer the computational time the better the results ? Computing twenty valid
solutions

Page 47

Figure 5.24: The output of using SLSQP with step size 1e-8

object, then lets the ball slide down into the goal object with small velocities. The score (22.88) indicates
that it is a robust solution. The run time of this run is 134.62s.

KIT

Page 48 Chapter 6. Evaluation

6 Evaluation

For better performance, various optimization algorithms with different parameters are applied, CG and
SLSQP for gradient-based, and further, Differential Evolution (DE), Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) with random initial vectors for each iteration, or fixed initial vectors and
random search for non-gradient-based. Roughly speaking, gradient-based methods converge fast as ex-
pected, but they may fail to compute the desired numbers of valid solutions before they exit the program,
which is called early exit henceforth. I.e., gradient-based methods will break the program as soon as they
encounter a zero-gradient. In the following, we use valid to denote that a solution is successful in the
simulation and shows no overlapping in the layout. In our case, this would happen when the ball does
not intersect with any of the obstacles and falls directly to the ground for two successive runs. Where the
zero gradient occurs, gradient-based methods would fail, which happened frequently at the beginning of
our experiments with a naive cost function 6.1:

cost = (x−goal_pos_x+ penalty)2

+(y−goal_pos_y− (BALL_DIAMET ER/2)−goal.bottom_height/2)2 (6.1)

It is likely that at the beginning of sampling, the ball does not hit any of the obstacles and the gradient-
based methods would exit the program.

Meanwhile, non-gradient-based algorithms were able to compute valid solutions from the very begin-
ning. This corresponds to the advantage of black-box optimization algorithms, which have the ability to
handle non-differential, non-linear and multimodal cost functions. Note that even though our cost func-
tion consists of quadratic terms only, it is neither continuous nor differential to the input vector (positions
and angles of the movable obstacles). The input vector is passed to the dynamic model, and the model
produces velocities, positions, and bounce counts needed for the cost function. This explains why the
Random Search method performs fairly well, as it always return a valid solution within a reasonable run
time.

After several adjustments of the cost function, which is further discussed in chapter 5, all optimiza-
tion algorithms are capable of computing at least one valid solution. Once we find one valid solution,
it will be evaluated by the score function under 4.2, which represents the robustness in our case. The
reason for using a slightly different function than cost function 4.1 is that the cost function serves mainly
to help the algorithm to sample in feasible parameter regions and to avoid an early exit of the gradient-
based methods. The score function under 4.2 measures the core features of a valid solution. It selects the
output from a range of valid solutions.

Generally, letting optimization algorithms run multiple iterations creates better results. It is basically
a tradeoff between run time and output quality. To find a good balance, several experiments on run time
and output scores were conducted, which is further discussed in section 6.1

Two kinds of gradient-based algorithms, CG and SLSQP as detailed in section 2.2.1 and each with two
different step sizes, are run. Three types of non-gradient-based methods are used. These are CMA-ES,
DE and random search as explained in section 2.2.2, where the random method serves as a benchmark
for the algorithms. In order to find the balance between run time and output quality, each algorithm is
run ten times to compute one valid solution, ten valid solutions, and twenty valid solutions.

Figure 6.1 reveals a first glance at the optimization landscape of our problem, showing the average

KIT

Page 49

run time and the output scores, evaluated by the score function under 4.2 - for the algorithms to find
one valid solution. DE, SLSQP with small step size, and random show all small deviations in time. For
DE, CMA-ES with fixed initialization and random methods it took less than 10 seconds to find one valid
solution. An attentive reader may realize that the left bound of the CG with step size 0.01 is smaller
than 0, which is physically impossible. It is due to the excessive variance in the run time, the shortest
recorded of run time was 1.38s and the largest is 198.26s. The large variance in scores for all algorithms
is reasonable, because the first valid solution found is not necessarily a robust one.

Figure 6.1: Average run time and scores for each algorithm to find one valid solution

From figure 6.2, showing the average run time and scores for ten valid solutions, we can see that all
methods tend to shift to the right, meaning that it took more time to finish the tasks. This is because the
average run time is calculated only from successful runs, which generated at least ten valid solutions.
In this case, both of the CG methods failed to compute ten valid solutions in one of the ten trials. The
high variance in run times indicates that CG strongly depends on the start positions. Furthermore, the
random method slides down from the top two to the third-to-last place in run time. This suggests that
other algortihms, except for CG, have advantages in computing multiple valid solutions. Compared to
the last graph of one valid solution as shown in figure 6.1, all the scores go down, arguing for better
output qualities, which indicates it is worthy to let the algorithms run a bit longer.

If we let the algorithms continue to run till twenty valid solutions are found, we get the average per-
formance shown in figure 6.3. All the algorithms took longer to finish the tasks, and the random methode
features the worst run time performance. CMA-ES with fixed start positions works smoothly and well,
for twenty valid solutions it only needs around 20s more than computing ten valid solutions. The CMA-
ES with fixed start positions has also the least variances both in run time and scores, which reveals the
stability of CMA-ES with fixed start positions. Meanwhile CMA-ES with random initialization has a
slightly longer run time than DE, which still makes for good performance. However, in fact, CMA-ES
with random initialization failed 3 times to finish computing twenty valid solutions during ten trials.

KIT

Page 50 Chapter 6. Evaluation

Figure 6.2: Average run time and scores for each algorithm to find ten valid solutions

Table 6, which compares the algorithms’ performances with different amounts of valid solutions, gives
a better overview with details on the performance. We can see that DE, CMA-ES with fixed start posi-
tions and Random are the only threes algorithms which always manage to compute the desired numbers
of valid solutions. Nevertheless, all of the gradient-based methods encountered the early exit problem,
while CMA-ES with random initializations exceeded the maximum iterations to find ten or twenty valid
solutions .

Generally speaking, the low deviations of DE and CMA-ES with fixed initialization indicate stable per-
formances, both in time and score. They either feature the best performance or slightly differ from the
best. For computing larger numbers of valid solutions, CMA-ES with fixed initialization outperforms
DE. Non-gradient based methods performed more satisfactorily in our case. In the meantime, SLSQP
eps 1e-8 performs best under gradient-based algorithms. It did can handle any degrees of non-linearity
as claimed by Kraft (1988), though in our case it suffered from early exit as did the other gradient-based
methods. In contrast to CG, a small step size worked better for SLSQP in our case. It could be that with
SLSQP the step size is for approximating second-order derivates, which, with a small change, would
lead to a sharper turn than first-order derivates.

The Random method fell from the third best to the worst, which is encouraging as a benchmark, that
it means other algortihms with fine techniques work better than random sampling. Remember that it is
able to compute any desired number of valid solutions and that this is greatly due to the clean-up step
described under section 4.2.1 before the solutions are passed to the dynamic model. The clean-up step
may also be the reason for irritating some algorithms when they try to find the correlation between input
vectors and the cost function. Random sampling did help to explore the search space in our case.

CMA-ES with fixed start positions has almost the same performance as DE, and meanwhile CMA-ES
with random start positions performs much worse than with fixed initialization. This is because, with a
random start position for each iteration, it needs to adapt the covariance matrix from scratch each time,

KIT

Section 6.1: Run time and robustness Page 51

Figure 6.3: Average run time and scores for each algorithm to find twenty valid solutions

which does not take advantage of the adaptation principle of the algorithm. CMA-ES with random ini-
tialization did return moderate outputs if it did not exceed the number of maximum iterations. CG is
meant for sparse linear systems, which may not be the case here.

6.1 Run time and robustness

Here we take a closer look to the performance of each algorithm. Each algorithm was run to compute
one, ten and twenty valid solutions, where the successful runs are recorded. A successful run is a trial
that the optimizer manages to compute for the desired number of valid solutions.

6.1.1 Conjugate Gradient (CG)

Two step sizes, 0.1 and 0.01, were tested using the CG. Figure 6.4(b) shows an interesting phenomenon,
that the average run time for twenty valid solutions is slightly better than the run time for computing ten
valid solutions. Tests for one or twenty valid solutions have at least one instance for which the run time
is less than 10s. CG did converge fast if it was not distracted by faulty local minima. Both of the graphs
from figure 6.4 show an improvement of scores over time, where between one to ten valid solutions the
improvement is significant, whereas between ten to twenty it is tiny. For CG with small step size, the
average run time for twenty valid solutions is even smaller than the one for ten valid solutions. It implies
that the algorithm CG depends strongly on the start position, if the start position is near a group of valid
solutions, the algorithm terminates fast indeed.

6.1.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

For CMA-ES, the initialization vector should remain constant for all iterations in one trial. This is
because CMA-ES adapts a covariance matrix iteratively. If the initial vectors are different every iteration,
the tentative covariance matrix is not built based on the current vector, hence it needs to be adapted

KIT

Page 52 Chapter 6. Evaluation

CG eps 0.01 CG eps 0.1 CMA-ES random CMA-ES fixed DE Random SLSQP eps 1e-8 SLSQP eps 0.1

avg. time 50.08 64.47 7.18 5.15 3.55 5.15 15.10 20.03
dev. time 56.65 39.41 8.75 4.91 3.29 4.91 5.37 10.84

avg. score 34.34 33.80 32.97 35.71 35.71 35.05 30.96 32.31
dev. score 7.03 7.17 8.04 6.19 5.20 5.20 4.77 5.88

early exit / max iters - - - - - - - -

Table 6.1: Table of average performance on finding one valid solution

CG eps 0.01 CG eps 0.1 CMA-ES random CMA-ES fixed DE Random SLSQP eps 1e-8 SLSQP eps 0.1

avg. time 211.91 180.38 80.61 95.69 62.38 95.67 72.47 71.66
dev. time 71.93 70.39 40.62 28.36 16.56 28.36 24.01 28.45

avg. score 25.49 24.09 26.82 24.39 24.98 24.39 24.09 24.70
dev. score 5.01 3.13 5.27 3.43 3.62 3.43 3.28 3.55

early exit / max iters 1 1 1* - - - - 1

Table 6.2: Table of average performance on finding ten valid solutions

CG eps 0.01 CG eps 0.1 CMA-ES random CMA-ES fixed DE Random SLSQP eps 1e-8 SLSQP eps 0.1

avg. time 131.42 180.00 105.96 70.38 103.11 58.20 158.03 74.62 72.99
dev. time 87.16 84.13 58.32 15.16 37.13 24.59 65.58 22.18 15.92

avg. score 25.21 23.63 25.74 21.89 22.99 24.11 12.65 12.32 12.43
dev. score 4.86 2.11 4.26 0.69 1.30 3.60 1.13 22.18 0.58

early exit / max iters 1 1 3* - - - - 1

Table 6.3: Table of average performance on finding twenty valid solutions

from scratch, which means discarding the provisional results. This explains why CMA-ES with random
initialization needs so long for computing more than one valid solutions. Moreover, figure 6.5(b) shows
much better performance both on run time and output quality.

6.1.3 Differential Evolution (DE)

Figure 6.6 has an " L " shape, where the score represents the output quality in terms of robustness. The
high variance of scores on finding one valid solution indicates that the first valid solution is not necessarily
a good one. The small variance of time and score for ten valid solutions indicates that valid solutions may
be grouped together. Whereas the high variance of run time at finding twenty valid solutions indicates
that the clusters of valid solutions are rather small, that each cluster may have around ten valid solutions.
The optimizer needs to travers the optimization landscape for an while to gather twenty valid solutions.
Meanwhile, the small variance for scores of twenty valid solutions implies that it is not worth to continue
finding valid solutions.

6.1.4 The random method

Figure 6.7 depicts a similar distribution as the one from DE, as shown in figure 6.6. The score does
not improve much after ten valid solutions neither, i.e., the differences of scores between ten and twenty
valid solutions are small. This is an indicator to stop running the optimitzer. Hence we do not let the
optimizer continue to compute thirty valid solutions.

6.1.5 Sequential Least SQuares Programming (SLSQP)

Figure 6.8 shows the run times and scores of the output from the optimizer while using SLSQP with two
different step sizes (it is denoted as eps, epsilon in the SciPy implementation). Figure 6.8 shows that with
a larger step size the output is better when the program has to find more than ten valid solutions. During
the ten trials to find ten or twenty valid solutions, both of them were failed once to find all the ten or

KIT

Section 6.2: The path to valid solutions Page 53

twenty valid solutions before the maximum number of iterations was reached or the program exited too
early. This can be seen from the marker number, for ten runs of ten or twenty valid solutions, the markers
of the same kind are less than 10. With a smaller step size, the time for computing more valid solutions
differs. Within less than 20 seconds the optimizer would find one valid solution in around 50s and within
100s it would find ten valid solutions if it is does not get stuck in some faulty local minima, and within
an average of 75 seconds it will find twenty valid solutions. Meanwhile, with a larger step size, the time
differences bewteen computing ten or twenty valid solutions are not so significant as with a smaller step
size. With a small step size the optimizer is more likely to stay in one local minimum region and gather
ten valid solutions. But for twenty it probably needs to jump to other local minima and thus the time
increases. With a large step size, the optimizer may jump back and forth in the function landscape which
leads to no significant differences in run time and a slightly better on the outputs. Roughly speaking, in
our case, there are multiple feasible valid solution regions, which form the local minima area. The opti-
mizer needs to have the ability to jump out of them and keep on searching to gather the desired amount
of valid solutions.

Another noticeable point is that the suitable step size varies for different algorithms. For CG the step
size needs to be relatively large - we tested 0.1 and 0.01. Meanwhile, tests were conducted for SLSQP
1e-8 and 0.01. It may need to be conducted for efficient step sizes, otherwise the algorithm may fail to
return a result.

6.2 The path to valid solutions

In this section we will take a look into how the algorithms for finding valid solutions are intuitive. In
the following we will present plots of the examined obstacles and of successful obstacle combinations,
which are identified with in larger dark red markers. The order of the obstacles is determinded by their
center x-direction posistion. The leftmost obstacle is henceforth the first obstacle and so on.

6.2.1 Conjugate Gradient (CG)

From figure 6.2.1 we can see the sampling distribution of the algorithm CG with step size 0.1. The first
subgraph, which depicts the distribution of finding one valid solution, shows that the sampling path is
clustered, which indicates that for the x-positions of the leftmost and rightmost obstacles have their own
ranges. For the other subgraphs, the x-positions of the leftmost obstacle varias by a large range, whereas
the rightmost still looks constrained. This is due to the clean-up step, where the idle obstacles are moved
in a certain manner.

Figure 6.2.1 using CG step size 0.01 shows similar plots as shown in figure 6.2.1. That the plots
in the example for computing twenty solutions to be disordered - for a more descriptive overview, we
applied Principle Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to reduce the
dimensions of the space distributions of the obstacles. For a sufficient data amount, the data for PCA
and LDA are all the sampled obstacles space information(x,y-positions and the angle) of ten trials for
each valid solution amounts. The reduced dimensions plots from figure 6.2.1 reveal a clearly defined gap
between the rightmost obstacle and the other two obstacles. Note that the PCAs of the three subgraphs
have quite the same form, where the line of the third obstacles (also the rightmost one), always remain
parallel to the other two, with a definite gap in-between. Whereas in the plots of the LDA, the clusters
grow thicker as more the valid solutions need to be found. Moreover the gaps between the clusters of the
rightmost obstacle and of the rest are getting smaller. This is because the LDA tries to project the data
into the most separable lower dimension space. A smaller gap implies that the sampling positions of the
obstacles have smaller distinguishing range as the sampling amount grows.

The reduced plots of CG with step size 0.01 shows a bit of a difference from the one with a larger
step size. Both PCA and LDA have similar plots for one or twenty valid solution batches. However for

KIT

Page 54 Chapter 6. Evaluation

the ten valid solutions batch, both PCA and LDA show that the data is rather inseparable. It could be that
the ten trials for computing ten valid solutions have well mixed up space distribution of the obstacles.

6.2.2 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Figure 6.2.2 shows the sampling distributions from CMA-ES with fixed initialization for all iterations.
The points are sampled in a specific area in the space, in a wat that the points form a "band" in the middle
of the space.

Subgraphs using the same reduction techniques have the almost the same results of reduced illustration,
which indicates that the algorithm CMA-ES with fixed initialization for all iterations does not involve
much randomness.

The plots of the points sampled by CMA-ES with random initialization for each iteration do have more
points than the one with fixed initialization, although for twenty valid solutions the points are similarly
clustered as in the subgraph for finding one valid solution. More points means longer run time. According
to our experiments, CMA-ES does not need random initialization in our case.

The reduced dimension representations by PCA are similarly to those using the CG algorithm, see
figures 6.11(a) to 6.11(e). CG also involves a covariance matrix in the algorithm, but in a gradient-based
manner. For our case, non-gradient-based algorithms showed better performance since they don’t exit the
program before the task is finished. Moreover, PCA deploys eigenvector decomposition on the covari-
ance matrix of sampling data and takes the first two greatest eigenvalues and their eigenvector to form the
subspace. Therefore the samplings of CG and CMA-ES with fixed initialization for all iterations come
out with similar distributions.

The reduced dimension representations by LDA for CMA-ES with random initialization for each itera-
tion result in different representations on finding one, ten and twenty valid solutions. The first reduced
distribution on finding one valid solution by LDA is again similar to those in figures 6.2.1 and 6.2.1. The
three subgraphs in the LDA column with different shapes imply that the randomness of initialization has
an influence on the sampling distribution. Unlike the subgraphs in fixed initialization, see figure 6.2.2,
where the subgraphs of the same column have the same shape.

6.2.3 Differential Evolution (DE)

The plots from PCA for DE have common shape in line with other representations. Whereas the plots
from LDA have distinct shapes between themselves. Interestingly, the reduced distributions with regard
to finding ten or twenty valid solutions are more concise than the one for one valid solution. And the
randomness of Differential Evolution (DE), which is realized through mutation and crossover between
individuals as discussed before under section 2.2.2 , does not affect the shape of reduced distribution.

6.2.4 Random Search (RS)

The plots from Random Search (RS) shown in figure 6.2.4 does not show any regulations, especially the
first obstacle, the leftmost one, which is in most cases sampled arbitrarily. We can see from figure 6.2.4
that the third obstacle, the rightmost one is the most distinguishable from others due to the clean-up step.

6.2.5 Sequential Least SQuares Programming (SLSQP)

The points in the plots in figures 6.2.5 and 6.2.5 that were sampled by SLSQP have certain structures, in
the way that some points form lines, which suggests local minima and that the algorithm has the intention
to sample in this region.

KIT

Section 6.2: The path to valid solutions Page 55

The reduced dimension shape of SLSQP is entirely different from the others. This means that the SLSQP
algorithm uses another strategy to sample the data. Basically the representation of reduced dimension
reveals that the leftmost and the rightmost obstacles are separated by the second obstacle, which corre-
sponds to the space order when the obstacles are labelled. Moreover, in most of the plots of the reduced
dimension expressions, the line formed by the second object is almost vertical to lthe ine or cluster
formed by the third object. This implies that the second object usually has an angle that is opposite to
the thrid obstacle in a layout. So that the third obstacle is likely to be placed at the right hand side of the
goal object and the second one is probably on the left hand side of the goal object. They should have
opposite angles so that they are facing each other and form a “V" shape so that if the ball bounces out of
the goal object it can still bounce back after colliding with these two obstacles.

KIT

Page 56 Chapter 6. Evaluation

(a) CG eps 0.01

(b) CG eps 0.1

Figure 6.4: CG run time and score of best output

KIT

Section 6.2: The path to valid solutions Page 57

(a) CMA random initialization

(b) CMA fixed initialization

Figure 6.5: CMA run time and score of best output

KIT

Page 58 Chapter 6. Evaluation

Figure 6.6: DE run time and score

Figure 6.7: The random methods’ run time and score

KIT

Section 6.2: The path to valid solutions Page 59

(a) SLSQP eps 1e-8

(b) SlSQP eps 0.1

Figure 6.8: SLSQP run time and score of best output

KIT

Page 60 Chapter 6. Evaluation

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.9: Sampling examples of CG with step size 0.1

KIT

Section 6.2: The path to valid solutions Page 61

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.10: Sampling examples of CG with step size 0.01

KIT

Page 62 Chapter 6. Evaluation

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles for finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.11: Reduced plots of obstacle space information using CG with step size 0.1

KIT

Section 6.2: The path to valid solutions Page 63

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles for finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.12: Reduced plots of obstacle space information using CG with step size 0.01

KIT

Page 64 Chapter 6. Evaluation

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.13: Sampling examples of CMA-ES with fixed initialization for all iterations

KIT

Section 6.2: The path to valid solutions Page 65

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles for finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.14: Reduced plots of obstacle space information using CMA-ES with fixed initialization for all
iterations

KIT

Page 66 Chapter 6. Evaluation

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.15: Sampling examples of CMA-ES with random initialization for each iteration

KIT

Section 6.2: The path to valid solutions Page 67

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles for finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.16: Reduced plots of obstacle space information using CMA-ES with random initialization for
each iteration

KIT

Page 68 Chapter 6. Evaluation

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.17: Sampling examples of DE

KIT

Section 6.2: The path to valid solutions Page 69

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles for finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.18: Reduced plots of obstacle space information using DE

KIT

Page 70 Chapter 6. Evaluation

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.19: Sampling examples of RS

KIT

Section 6.2: The path to valid solutions Page 71

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles for finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.20: Reduced plots of obstacle space information using RS

KIT

Page 72 Chapter 6. Evaluation

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.21: Sampling examples of SLSQP with step size 0.01

KIT

Section 6.2: The path to valid solutions Page 73

(a) Sampling example for finding one valid solution

(b) Sampling example for finding ten valid solutions

(c) Sampling example for finding twenty valid solutions

Figure 6.22: Sampling examples of SLSQP with step size 1e-8

KIT

Page 74 Chapter 6. Evaluation

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles for finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.23: Reduced plots of obstacle space information using SLSQP with step size 0.01

KIT

Section 6.2: The path to valid solutions Page 75

(a) PCA on space information of obstacles for finding one
valid solution

(b) LDA on space information of obstacles for finding one
valid solution

(c) PCA on space information of obstacles of finding ten
valid solutions

(d) LDA on space information of obstacles for finding ten
valid solutions

(e) PCA on space information of obstacles for finding
twenty valid solutions

(f) LDA on space information of obstacles for finding
twenty valid solutions

Figure 6.24: Reduced plots of obstacle space information using SLSQP with step size 1e-8

KIT

Page 76 Chapter 7. Summary and future work

7 Summary and future work

7.1 Summary

We have developed a framework for a robot to play basic marble run. After the robot precepted the
positions of the goal object and given fixed obstacles, this space information will be transferred to the
simulator and also the optimizer. The optimizer is started, it will pass some solutions to the simulator
and use the information provided by the simulator (velocities, end positions, etc.) to find a valid solution.
The optimizer will return a layout of a valid solution, which contains positions and angles of the movable
obstacles. The robot can place the obstacles directly using the layout.

7.2 Future work

In our approach, a dynamic model of the physical environment is built and passed to the robot. It would
be more intelligent if the robot can understand the physical environment by itself, i.e, it can learn the
dynamic modell by itself. In other words, the robot would know there exists earth gravity in the real
world, and therefore the objects will fall to the ground without applying any outer seen forces on them.
Another example would be the robot would notice that if the ball hits an obstacle, its trajectory will
change. And eventually the robot would be aware of the effect of the friction, that sliding on different
materials may lead to different velocities hence trajectories due to various friction factors.

7.2.1 3D Object Detection

So far our robot can only play with the 2D version of marble run. For a 3-dimensional marble run, the
challenging problem of 3D object detection needs to be solved first, as pointed out by Pang and Neu-
mann (2016) and illustrated in Fig. 7.1. In our early phase of this thesis, we used to use the depth camera
Kinect V1 to recognize 3D marble run parts.

Figure 7.1: Discrete sampling, noisy scans, occlusions and cluttered scenes, the barriers of successful 3D
object detection. The figure is from Pang and Neumann (2016)

KIT

Section 7.2: Future work Page 77

Figure 7.2: An example of a 3D marble run from the brand Marble Mania

Unfortunately, the parts are too small for the existing 3D object-recognition packages, such as Table-
top by Muja and Ciocarlie, or in-hand scanner for small objects by Point Cloud Library (PCL) 1. We also
attempted to use 2D real-time object detection neural network YOLO, developed by Redmon and Farhadi
(2018), to detect the objects, but the success rate and the run time is rather unsatisfying on a computer
without GPU. On our computer, a four-core Dell i5 with no GPU acceleration, YOLO took more than
one second to recognize a single object with a success rate lower than 80%. As a consequence, we came
to color detection for object recognition, which works astounishingly perfect in single environment, that
is the lighting circumstance has to remain the same.
A further possibility for 3D object-recognition would be projecting the 3D point cloud to 2D images, and
then register them into a 3D model, as supposed by Pang and Neumann (2016).

7.2.2 Deep neuronal networks and optimization algorithms

As mentioned before, our model can be extended to learn the dynamic model by itself. Recently, Univer-
sity Stanford released the news that they have built a programm (AI) that can recreates the chemistry’s pe-
riodic table of elements, see Than (2018). The paper of this research will be first published in July,2018,
on Proceedings of the National Academy of Sciences, which exceeds the due of this thesis. According
to the announcement, the programm is inspired by the Word2Vec, a language neural network created by
Google to parse natural language. The language neural network converts words into numerical vectors,
and hence vector operations can be applied. For instance, the word "king" is often followed by the word
"queen", and "man" often with "woman". So the word "king" might be roughly seen in a vector manner
that "king" is "a queen minus a woman plus a man". Similar idea is applied in the Stanford AI, all the
known chemical compounds are passed to the network, such as NaCl, KCl, H20, and so on. Then from

1http://pointclouds.org/documentation/tutorials/in_hand_scanner.php

KIT

http://pointclouds.org/documentation/tutorials/in_hand_scanner.php

Page 78 Chapter 7. Summary and future work

these compounds the network figured out that some elements are similar to each other. For example, it
has discovered the element potassium (K) and sodium (Na) must have similar properties because both
elements can bind with chlorine (Cl).

Back to our problem, this might be an inspiration that physical phenomena can be fed to a neural net-
work, such as "the ball will fall to the ground if there is no obstacle inbetween" or "the ball will stop
sliding at some point if the surface is rough". The Stanford AI is trained unsupervised, hence we can
start to train our network in an unsupervised manner.

However, knowing the physical phenomena "semantically" is not sufficient for a robot to play the puz-
zles. The simulated dynamicall model has the exact calculations of gravity and collision. Hence we can
acquire velocities and so on from the dynamical model and pass them to the optimizer. Without an exact
model, the robot has to estimate the model roughly by itself. One possibility for that is to let the robot
play in the real world to gain expierence, as stated in the DeepMind paper by Martin Riedmiller and
Springenberg (2018), where a robot arm learned complex behaviors from scratch by directly trying to
finish the given task, such as moving an object into a box. In our scenario, the robot needs not only to
know that "hitting on an obstacle the ball will change its trajectory" but also "If the obstacle is inclined
facing the goal object, the ball will thus fly towards the goal objects". Moreover, with different angles of
the inclined obstacles the ball will have different trajectories, though the placement positions remain the
same.

Humans play such physical games also by adjusting the angles or placements of the obstacles through
vision feedback. To archieve this, the robot also needs the ability of online object recognition, which
is not yet completely solved in our system. Additionally, training the robot to play the game is more
complex than the merely moving objects, the rewards could be even more sparse, which increases the
difficulty for applying reinforement learning. Considering the success of AlphaZero, which is trained
without any human input as mentioned in the chapter Related Work, it is possible to train a network from
scratch to play physical puzzles. Overall, this particular area which employs artificial intelligence for
solving physical puzzles, allows for more thorough research in future works.

KIT

Bibliography Page 79

Bibliography

Abdelhameed Ibrahim Alaa Tharwat, Tarek Gaber and Aboul Ella Hassanien. Linear discriminant anal-
ysis: A detailed tutorial. Ai Communications, 2017. 18

Anne Auger Alexandre Chotard and Nikolaus Hansen. Cumulative step-size adaptation on linear func-
tions: Technical report. arXiv, 2012. 12

Jeremiah Liu Artur Filipowicz and Alain Kornhauser. Learning to recognize distance to stop signs using
the virtual world of grand theft auto 5. Transportation Research Record, 2017. 2

Chris Atkeson. Dynamic optimization. University Lecture, 2018. 3, 19

BBC. Fourteen-year-old creates top apple game app. URL http://www.bbc.co.uk/news/
technology-12241564. 2

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. 2004. 15

N. A. Campbell and William R. Atchley. The geometry of canonical variate analysis. Systematic Zoology,
1982. 15, 16

Laurent Cozic. 2d polygon collision detection, 2006. URL https://www.codeproject.com/
Articles/15573/2D-Polygon-Collision-Detection. 27

Karen Simonyan Ioannis Antonoglou Aja Huang Arthur Guez Thomas Hubert Lucas baker Matthew
Lai Adrian bolton Yutian Chen Timothy Lillicrap Fan Hui Laurent Sifre George van den Driessche
Thore Graepel David Silver, Julian Schrittwieser and Demis Hassabis. Mastering the game of go
without human knowledge. Nature, 2017. 21

Chris J. Maddison1 Arthur Guez1 Laurent Sifre1 George van den Driessche1 Julian Schrittwieser
David Silver1, Aja Huang1, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Do-
minik Grewe Sander Dieleman, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of
go with deep neural networks and tree search. Nature, 2016. 2, 5

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang.
Deep learning for real-time atari game play using offline monte-carlo tree search plan-
ning. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, editors, Advances in Neural Information Processing Systems 27, pages 3338–
3346. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.
pdf. 2

Laura Diane Hamilton. Introduction to principal component anal-
ysis (pca), 2014. URL http://www.lauradhamilton.com/
introduction-to-principal-component-analysis-pca. 17

Nikolaus Hansen. The CMA Evolution Strategy: A Comparing Review. Springer, 2007. 10, 11, 12

Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv, 2016. 10

Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards, 1952. 6

KIT

http://www.bbc.co.uk/news/technology-12241564
http://www.bbc.co.uk/news/technology-12241564
https://www.codeproject.com/Articles/15573/2D-Polygon-Collision-Detection
https://www.codeproject.com/Articles/15573/2D-Polygon-Collision-Detection
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf
http://papers.nips.cc/paper/5421-deep-learning-for-real-time-atari-game-play-using-offline-monte-carlo-tree-search-planning.pdf
http://www.lauradhamilton.com/introduction-to-principal-component-analysis-pca
http://www.lauradhamilton.com/introduction-to-principal-component-analysis-pca

Page 80 Bibliography

Dieter Kraft. A software package for sequential quadratic programming, 1988. 8, 50

Thomas Lampe Michael Neunert Jonas Degrave Tom Van de Wiele Volodymyr Mnih Nicolas Heess
Martin Riedmiller, Roland Hafner and Tobias Springenberg. Learning by playing – solving sparse
reward tasks from scratch. arXiv, 2018. 22, 78

Cade Metz. Paul allen wants to teach machines common sense, 2018. 2

Volodymyr Mnih, Koray Kavukcuogl, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, and Daan Wierstra. Playing atari with deep reinforcement learning. arXiv, 2013. 2,
5

Marius Muja and Matei Ciocarlie. Tabletop object detector. URL http://wiki.ros.org/
tabletop_object_detector. 77

G. Pang and U. Neumann. 3d point cloud object detection with multi-view convolutional neural network.
pages 585–590, 2016. doi: 0.1109/ICPR.2016.7899697. 76, 77

Frank Hutter Patryk Chrabaszcz, Ilya Loshchilov. Back to basics: Benchmarking canonical evolution
strategies for playing atari, February 2018. 5

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018. 77

Sebastian Risi and Julian Togelius. Neuroevolution in games: State of the art and open challenges. arXiv,
2015. 5

Wilson Robinson. A simplicial algorithm for concave programming. PhD thesis, Graduate School of
Business Adminstration, Havard University, 1963. 8

Jürgen Schmidhuber and Jieyu Zhao. Direct policy search and uncertain policy evaluation. AAAI Spring
Symposium on Search under Uncertain and Incomplete Information Stanford Univ, page 119–124,
1998. 5

Jonathan Richard Shewchuk. An introduction to the conjugate gradient method without the agonizing
pain, 1994. 6

Russell Smith. Open dynamics engine, v0.5 user guide, 2006. URL http://ode.org/
ode-latest-userguide.html. 19

Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 1997. 13, 14

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.Stanley, and Jeff
Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training deep neural
networks for reinforcement learning. arXiv, 2018. 5

Ker Than. Stanford ai recreates chemistry’s periodic table of ele-
ments, 2018. URL https://news.stanford.edu/2018/06/25/
ai-recreates-chemistrys-periodic-table-elements/. 77

Wikipedia. Cma-es, 2018. URL https://en.wikipedia.org/wiki/CMA-ES. 13

Zelda B. Zabinsky. Random search algorithms. University Lecture, 2009. 13

KIT

http://wiki.ros.org/tabletop_object_detector
http://wiki.ros.org/tabletop_object_detector
http://ode.org/ode-latest-userguide.html
http://ode.org/ode-latest-userguide.html
https://news.stanford.edu/2018/06/25/ai-recreates-chemistrys-periodic-table-elements/
https://news.stanford.edu/2018/06/25/ai-recreates-chemistrys-periodic-table-elements/
https://en.wikipedia.org/wiki/CMA-ES

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Overview
	1.4 Approaches
	1.5 Contribution

	2 Background
	2.1 Reinforcement Learning
	2.2 Optimization Algorithms
	2.2.1 Gradient-based
	2.2.2 Black-box Optimization

	2.3 Separating Axis Theorem
	2.4 Data analysis
	2.4.1 pca
	2.4.2 lda

	3 Related Work
	3.1 ode, dynamic model
	3.2 Object Detection
	3.3 Optimization Algorithms
	3.4 Learning from scratch

	4 The Approach
	4.1 Preparation
	4.2 Implementation
	4.2.1 The clean-up step
	4.2.2 Cost Function

	5 Experiments
	5.1 Computing one valid solution
	5.1.1 cg
	5.1.2 cma
	5.1.3 de
	5.1.4 rs
	5.1.5 slsqp

	5.2 For a robust result : computing ten valid solutions
	5.2.1 cg
	5.2.2 cma
	5.2.3 de
	5.2.4 rs
	5.2.5 slsqp

	5.3 The longer the computational time the better the results ? Computing twenty valid solutions
	5.3.1 cg
	5.3.2 cma
	5.3.3 de
	5.3.4 rs
	5.3.5 slsqp

	6 Evaluation
	6.1 Run time and robustness
	6.1.1 cg
	6.1.2 cma
	6.1.3 de
	6.1.4 The random method
	6.1.5 slsqp

	6.2 The path to valid solutions
	6.2.1 cg
	6.2.2 cma
	6.2.3 de
	6.2.4 rs
	6.2.5 slsqp

	7 Summary and future work
	7.1 Summary
	7.2 Future work
	7.2.1 3D Object Detection
	7.2.2 Deep neuronal networks and optimization algorithms

