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Abstract
Robots provide rich proprioceptive sensor data. By recognizing patterns in streams
of low-level sensor readings, a robot can gain awareness about the activities that are
performed by its physical body. Research in Human Activity Recognition (HAR)
has been thriving in recent years mainly because of the widespread use of wearable
sensors such as smartphones and activity trackers. By introducing HAR approaches
to the robotics domain, we aim at creating agents that have an awareness of their
own physical activities. We propose an online activity recognition pipeline that allows
a robot to classify its current action by analyzing heterogenous, asynchronous streams
of sensor readings. The approach is evaluated by recognizing different motions of
the service robot Pepper and the humanoid robot Nao. Our experiments suggest
that a multimodal approach to robot activity recognition can generate more accurate
classifications than a unimodal model. We also show that our approach can detect
deviations from expected activity execution. Through its generality, the recognition
pipeline is transferable to other robots with comparable sensing capabilities.
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Zusammenfassung
Roboter stellen eine Menge von propriozeptiven Sensordaten zur Verfügung. Durch das
Erkennen von Mustern in Strömen von Sensordaten kann ein Roboter Einsicht in die
Aktivitäten, die sein physischer Körper ausführt, erlangen. Getrieben von der großen
Verbreitung von mit Sensorik ausgestatten, tragbaren Geräten wie Smartphones und
Activity Trackern hat das Forschungsgebiet der Menschlichen Aktivitätserkennung
in den letzten Jahren große Fortschritte gemacht. Durch den Transfer von Ansätzen
aus dem Gebiet der Menschlichen Aktivitätserkennung in den Bereich der Robotik
möchten wir Agenten kreieren, die sich ihrer physischen Aktivitäten bewusst sind.
Wir stellen eine Pipeline für Online-Aktivitätserkennung vor, die es einem Roboter
erlaubt, auf Basis von heterogenen, asynchronen Strömen von Sensordaten seine aktu-
elle Aktivität zu klassifizieren. Durch das Erkennen verschiedener Bewegungen des
Serviceroboters Pepper und des humanoiden Roboters Nao wird der Ansatz evaluiert.
Unsere Experimente legen nahe, dass multimodale Ansätze für die Roboteraktivi-
tätserkennung genauere Klassifikationen als unimodale Ansätze generieren können.
Des Weiteren zeigen wir, dass unser Ansatz dazu in der Lage ist, Abweichungen vom
erwarteten Verhalten des Roboters zu erkennen. Durch seine Generalität ist unsere
Pipeline auf andere Roboter mit vergleichbarer Sensorik übertragbar.
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1. Introduction

1.1. Introduction
When robots and humans collaborate side by side, it is desirable that the machines
possess an awareness about their activities in the physical world. While the planning
layer represents an abstraction that captures a robot’s intentions, it makes no statement
about its actual state and activity. Assume a robot wants to move a certain distance
forward. During its movement it might collide with an obstacle, fall over and be
unable to proceed in its program. A robot that can recognize the unexpected body
state might be able to recover or call for help. In another scenario, a robot might
be pushed by a human or be under remote control. If a robot understands what is
happening to its body, it can give a warning when it is being moved in a way that is
overly demanding on its mechanics. In case of remote control, it might even reject
user commands to prevent damage. Furthermore, a robot that has an awareness of its
own phyiscal activities is capable of narrating its actions to a remote user and can
verify its own plan execution.

Sensor-based Human Activity Recognition (HAR) utilizes wearable sensors such
as accelerometers and gyroscopes to capture human activity and finds application
in areas including mobile computing [29], ambient-assisted living [6] and health care
[2]. The field has been thriving in recent years mainly because of the widespread
use of smartphones and activity trackers. HAR develops methods to recognize the
activities of the human body (e.g. walking or climbing stairs) by detecting activity
patterns from streams of sensor data. This happens in the pursuit of creating more
intelligent and personal devices which possess an awareness about their user’s activity .
While sensor-based HAR needs to go through the process of attaching and calibrating
sensors for each individual user, robots feature a wide variety of inbuilt sensors that
give insight into their physical states. By combining HAR approaches with the rich
proprioceptive sensor data that is provided by robots, we aim at creating agents that
possess an awareness about their body’s activity.

In this work, we propose an online activity recognition pipeline that enables a robot
to recognize its own activities by analyzing heterogeneous, asynchronous streams of
raw sensor data. The pipeline features a Long Short Term Memory (LSTM) [14]
based neural network. The approach is evaluated with the service robot Pepper and
the humanoid robot Nao both developed by Softbank/Aldebaran Robotics. In our
first experiment, we recognize a set of one and two-arm based movements executed by
the Pepper robot in the simulator Gazebo. After this proof of concept, we evaluate
our approach on the real Pepper and Nao robots. In our second experiment, the
pipeline recognizes a set of 7 different base movements by utilizing a pre-trained LSTM
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1. Introduction

based neural network that leverages multimodal sensor data (joint states, electrical
current, orientation, angular velocity and acceleration). The proposed activity pattern
recognition approach combines information from heterogeneous sources in the pursuit of
achieving better recognition results compared to a unimodal robot activity recognition
approach. Finally, we detect human interference that stops Pepper from moving
forward. Through its generality, our architecture can be utilized on other robot with
proprioceptive sensing capabilities.
The rest of this bachelor’s thesis is organized as follows:

• Chapter 2 discusses related work in the field of robotics and HAR. We take a
look at how a robot’s proprioceptive sensor data is used for monitoring and
Collision Detection and how wearable sensors are utilized to recognize human
activity.

• Chapter 3 gives an overview about the theoretical foundations of this work as
well as an introduction of the used robots and software environment.

• Chapter 4 formulates the task of sensor-based activity pattern recognition,
discusses the proprioceptive data provided by Pepper and Nao and proposes a
pipeline for online activity recognition.

• Chapter 5 explains the experimental setup and presents and discusses the
findings.

• Chapter 6 concludes this work and suggests future research directions.

2



2. Related Work

In this work, a robot’s proprioceptive sensor data is utilized to gain insight into
its internal state. This data is then analyzed in order to provide the machine with
a basic awareness of its actions in the physical world. In this pursuit, models are
learned that use streams of sensor data to recognize the machine’s activities. In the
field of robotics related work can be found in the areas of Collision Detection and
Execution Monitoring. In addition, similar approaches can be seen in the field of
Human Activity Recognition. There, systems equipped with sensors observe human
activities to provide their users with more personal and intelligent functionality.

2.1. Proprioceptive Sensor Data in Robotics
A robot’s sensors capture rich data about its internal state and external environment
and are an essential part of robotics. Together with control and actuators, sensors form
a closed loop that enables the machine to function in the world. While exteroceptive
sensors capture a robot’s environment, proprioceptive sensors capture the internal
state of the machine. By analyzing streams of proprioceptive sensor data, one can
observe a robot’s state over time and draw conclusions about its physical condition.
For example, a sudden change in a robot’s acceleration vector can indicate a collision.
While the fields of Collision Detection and Execution Monitoring are interested in
fault avoidance and fault detection/recovery respectively, we aim at providing robots
with a basic awareness about their activities. In that regard, we see our work more
related to the field of Human Activity Recognition.

2.1.1. Collision Detection

In Collision Detection a robot’s inbuilt body sensors are utilized to allow the machine
to handle intentional or accidental contact with its physical environment. Haddadin
gives an overview about current proceedings in the field [12]. The first step of the
detection process analyzes a robot’s sensor data to detect collisions. After a collision
has been detected, it is desired to isolate the part of the robot’s structure that is
affected as well as the directions and magnitudes of the acting forces. This information
is then used to allow the robot’s control to initiate a suitable reaction. One of the
central motivations of Collision Detection is to enable the machine to share a common
workspace with humans by preventing injuries caused by forceful impacts as well as
preventing damage to the robot’s body.

3



2. Related Work

2.1.2. Execution Monitoring
The area of Execution Monitoring (also known as Fault Detection and Diagnosis)
observes the sensor data of a machine over time to detect and classify faults and their
causes [23, 16]. Examples for faults are mechanical jams or the loss of hydraulic fluid
[1]. The discipline is rooted in the field of industrial control and has found its way
into robotics where it analyzes the state of a robot’s body, sensors and processing
units. Traditional Execution Monitoring approaches analyze the activities that a
certain robot performs during normal operation. For each activity, a set of features is
determined to indicate its correct execution. During runtime, these predefined features
are then monitored and, in order to detect anomalies, are either compared with the
expected system behaviour or directly subjected to pattern recognition methods. If
a fault has been detected, the system communicates its finding to its users. Also, it
is desired that the machine is capable of self-recovery to maintain a functional state.
For example, this can be achieved by switching between redundant systems.

2.2. Human Activity Recognition
As a subdiscipline of Human Computer Interaction, Human Activity Recognition
(HAR) uses sensors to collect data about user activity. This data is then analyzed in
order to allow devices to recognize the activities that are performed by their users. This
happens in the pursuit of creating more intelligent systems that utilize the knowledge
about their user’s behaviour to provide more intelligent and personal services. The
field of HAR has been thriving in recent years mainly because of the widespread
use of wearable sensors such as smartphones and activity trackers. Different HAR
approaches can be described as camera-based, microphone-based or sensor-based. A
robot is most similar to an HAR system that utilizes wearable sensors. Different
inbuilt sensors stream information about the machine’s state and can be used to
recognize its performed activities. The rich research that has been done in HAR was
a major inspiration for this work.

2.2.1. Sensor-based Human Activity Recognition
Wearable sensors, including accelerometers and gyroscopes, allow to capture data
about the activities of the human body. Devices such as smartphones (Figure 2.1a)
and smartwatches (Figure 2.1b) have inbuilt sensors to enable them to get insight into
their users physical activities. This makes the devices more personal and provides
them with rich information about their user’s daily life. A combined approach between
wearable- and camera-based recognition are motion capture methods (Figure 2.1c).
Here, the human wears a suit which is equipped with markers that are tracked by
multiple cameras to detect the positions of his joints in 3-D space. This information is
similar to the joint angles that are provided by a robot. Another use case for wearable
sensors is fall detection. Here, impaired people can be equipped with wearable devices
that detect falls and call help if necessary [32]. Cornacchia provides a comprehensive
survey about HAR with wearable sensors [7].

4



2.2. Human Activity Recognition

Traditional HAR often uses sliding window based techniques. It extracts handcrafted
features, which are designed by domain experts, from the raw sensor readings. While
these approaches achieve satisfying recognition results on simple activities such as
lying, standing and walking, it is difficult to grasp more complex behaviours. This
limitation mainly lies in the manually engineered features that are restricted by human
domain knowledge [4]. Another factor is the limited number of observations in window
based approaches. Recent advances in HAR utilize deep learning techniques because
of their automatic feature generation and selection. Deep learning approaches such as
LSTMs and Convolutional Neural Networks (CNN) can come up with task specific
non-linear features and show promising results [30].

Another challenge of HAR is the cross-people activity recognition problem. Models
that are trained with data from a specific person often have trouble when analyzing
data from other persons [33]. This difficulty lies in the physical differences between
people and the way they move. The acceleration that acts on a tall person’s waist
differs from the one that acts on a short person’s waist. Another example is the
walking style of a child and an elderly person that relies on a crutch. While differences
between individual persons can be rather large, robots from the same type that execute
the same tasks are more homogenous in their structure and behaviour.

(a) Smartphone
Source: [13]

(b) Smartwatch
Source: [5]

(c) Motion Capture
Source: [19]

Figure 2.1.: Different Human Activity Recognition systems.

2.2.2. Multimodal Human Activity Recognition
Multimodal HAR approaches use data from multiple sensors to recognize human
activities. This allows to capture more detailed data about the body’s activities. By
utilizing combined data from a variety of sensors, they can outperform unimodal
approaches [20]. One example is the use of multiple accelerometers and gyroscopes
worn by a human to capture information about the activity of his different body parts
[21, 26, 31]. Another example combines readings from an inertial measuring unit with
data from a depth camera [13] to recognize hand gestures. In [20], human activities
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2. Related Work

were captured by a variety of accelerometers, microphones, depth cameras, an impulse
motion capture system as well as quad and stereo cameras. While sensor-based HAR
relies on wearable sensors that need to be attached to the individual users, robots
are already equipped with a variety of inbuilt sensors. This convenient access to
heterogenous proprioceptive data facilitates the use of multimodal activity recognition
methods in the field of robotics. In our later evaluation, we combine data describing a
robot’s joint angles, electrical currents, acceleration, orientation and angular velocity.
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3. Basic concepts and principles
In this chapter, we discuss the underlying concepts of our work. This includes the
formal definition of activity patterns, the formal methods how to learn to recognize
activity patterns, a description of the used robots Pepper and Nao and the related
software environment.

3.1. Theoretical Background

3.1.1. Nearest Neighbor Classification
The Nearest Neighbor algorithm is a non-parametric classification method that utilizes
a metric d to measure similarity between values that take values in a given metric
space X. As a basis for its classifications, the algorithm uses a set of n pairs
{(x1, θ1), . . . , (xn, θn)}. For each i ∈ {1, . . . , n}, xi ∈ X represents a measurement and
θi ∈ 1, . . . ,m the category xi belongs to.

Given a new pair (x, θ), it is desired to estimate the class θ measurement x belongs
to by utilizing information contained in the set of known pairs. It does so by using
metric d as a similarity measurement between points in X. We call measurement

x′ ∈ x1, . . . , xn (3.1)

a nearest neighbor of x if

min
i∈{1,...,n}

d(xi, x) = d(x′, x) (3.2)

The algorithm decides x belongs to the same category θ′ as its nearest neighbor x′.
While the more general k-Nearest Neighbors algorithm takes a look at the k closest
neighbors in the vicinity of x, the basic Nearest Neighbor algorihm only considers the
point closest to x [8].
In a previous work, a nearest neighbor based algorithm has been utilized for

behavior recognition in robot soccer [9]. In this context, time series containing
multiple measurements are analyzed and classified. Each series describes a sequence
of consecutive measurements recorded during a given time frame [ti, ti+k] for i, k ∈ N
as TA(ti, ti+k) = {Mi,Mi+1...,Mi+k} where Mj = (x1, ..., xn) ∈ Rn is the respective
measurement at time j ∈ [ti, tk]. As a similarity metric between time series, the
Hausdorff metric can be used in combination with the Euclidean distance d. The
Hausdorff metric functions as a measurement between two sets by determining the

7



3. Basic concepts and principles

maximum of the minimal distances between two elements of different sets. Given two
sequences T1 and T2 the Hausdorff distance is defined as:

H(T1, T2) = max{max
p∈T1

min
q∈T2

d(p, q),max
p∈T2

min
q∈T1

d(p, q)} (3.3)

We can reduce the computational cost for classifying a motion sequence T with
m measurements to O(|C| ∗maxc∈C |c| ∗m) by determining the centroid c ∈ C for
each class and averaging over a set of labeled training sequences. Using the Hausdorff
distance allows us to measure the similarity between time series even if they have
different durations.

3.1.2. Cross-Entropy
When training a neural network, it is essential to choose a suitable loss function.
Cross-entropy can be used as a measurement of the difference between two probability
distributions p and q over the same random variable x. For the discrete case, cross-
entropy is defined as:

H(p, q) = −
∑

x

p(x)log(q(x)) (3.4)

During the training process, one can calculate the cross-entropy between the prediction
vector generated by the network and the ground truth of the training data which
is commonly a one-hot encoding containing the class that is to be predicted. The
training process then minimizes the cross-entropy between network prediction and
ground truth [11].

3.1.3. LSTM
Recurrented Neuronales Netz Kann Zustand halten Erkennt ab Gewissen Zeitpunkt
Bewegung

3.2. Utilized Hardware and Software
3.2.1. Pepper
The humanoid-like robot Pepper (shown in Figure 3.1a) is 121cm tall, has a weight of
about 28kg and has twenty degrees-of-freedom (DOF). It has an omnidirectional base
with 3 DOF, a body with 3 DOF, two arms each with 5 DOF, two simple five-fingered
hands with 1 DOF each, and a head with 2 DOF. One inertial measurement unit,
which is in the base, provides information about acceleration and rotation in 3D space.
Because Pepper was intended to interact with untrained users on a daily basis, extra
precautions were taken to prevent damage to its environment and itself. For obstacle
avoidance, multiple sensors are integrated around its base. It is equipped with three
bump sensors: two in the front and one in the back; 2 sonar sensors: one in front
and one behind, which measure the distance to potential obstacles; 6 pulsed laser line
generators and sensors in the front and on the sides; and 2 infrared sensors on the left
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3.2. Utilized Hardware and Software

(a) Pepper, Source: [22] (b) Pepper’s Joints. Source: [27]

Figure 3.1.: The service-robot Pepper.

and right sides. If any of these sensors detects an obstacle, NAOqi will immediately
stop the movement of the base to prevent accidents.
It has access to a variety of options to interact with users through multi-modal

communication. It is capable of nonverbally signaling its state by using 3 groups of
LEDs positioned in its eyes, around its ears and on its shoulders. Additionally, it
is equipped with an Android tablet on its chest, which can be used for touch-based
input or for displaying information. The manufacturer provides a toolkit to develop
applications and hosts a platform for developers to distribute their software to other
users. Both the tablet and the robot have two independent wireless connections, and
there is no way to transfer data directly between the two devices. With 3 tactile
sensors located on top of its head and one on the backside of each hand, the humanoid
can also react to users touching it. To facilitate verbal communications, the robot
can talk and play sounds through the speakers in its ears and listen to commands by
using an array of 4 directional microphones that are located on top of its head. By
determining the direction of the sound of a noise Pepper can orient itself to look in
the direction of a user.

Pepper has two RGB cameras, one on its forehead pointing upwards in the direction
of a potential user’s head, and one in its mouth pointing downwards. Both have
a native resolution of 640*480 and can provide either 640*480 images at 30 fps or
2560*1920 at 1 fps. Furthermore, one ASUS Xtion 3D sensor is placed behind the
eyes and can be used for localization, navigation and distance measurements. Based
on the camera images, the inbuilt NAOqi vision API provides some default functions
like red ball and landmark detection.
With respect to computational resources, Pepper contains an Atom E3845 quad

core processor running at 1.91 GHz, 4 GB DDR3 RAM, 8 GB flash memory, a micro
SDHC with 16 GB of memory and an integrated Intel HD graphics card. The robot is
running a proprietary operating system called NAOqi, which is based on the Gentoo
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GNU/Linux distribution. Developers do not have root access and can use sudo only
for shut down or reboot commands [27, 22].

3.2.2. Nao

Figure 3.2.: Nao’s Joints. Source: [27]

The humanoid robot Nao (shown in Figure 3.2) is 58cm tall, has a weight of about
4.3kg and has twenty-five DOF. It has two legs each with 5 DOF a hip with 1 DOF,
two arms each with 5 DOF, two simple three-fingered hands with 1 DOF each, and a
head with 2 DOF. Its inertial measurement provides information about acceleration
and rotation in 3D space. Nao has two inbuilt RGB cameras, one positioned in its
forehead pointing upwards and one in its mouth pointing downwards. The robot runs
the same NAOqi operating system as the Pepper robot. The ALMemory module can
be used to access the sensor readings of the machine [27].

3.2.3. NAOqi
The NaoQi OS is an operating system developed by Aldebaran to run on its robots
and is based on the Gentoo GNU/Linux distribution. When started, the operating
system runs the NAOqi executable which controls the robot and provides local and
remote access to all capabilities of the robot, including actuators, sensors and network
connection. The system allows for sequential, parallel and event-driven function
execution [27, 24].
The NaoQi framework acts as a distributed environment and enables software

modules which can either run on the same or on different machines, to communicate
with each other. On start, NAOqi loads autoload.ini which is a preference file that
defines which libraries should be loaded. Each library contains one or multiples
modules which in turn contain one or multiple function. The resulting structure
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Figure 3.3.: NAOqi acting as a broker. Source: [27]

resembles a tree where the broker functions as a root with attached modules and
modules with attached functions. During runtime, NAOqi acts as a broker (shown
in Figure 3.3). It advertices the functions of the modules and offers lookup services
to find the advertised services provided by the modules. For network capabilities,
multiple brokers can be connected by specifiying the IP address and port number of
the main broker [27, 22].
Two types of modules are supported by the framework. The first type consists of

local modules that can only run on the robot. They run in the same process and
can share variables and can call each other without serialization or networking. This
allows for the fasted possible communication and is recommended for closed loop
control. Local modules share the same broker process. The second type consists of
remote modules that can run either on or outside the robot. They communicate with
the other modules over network. Remote modules enable the use of extern computing,
but are not capable of fast intermodule communication [27, 22]. NAOqi comes with
a public API and a range of base modules which provide, among others, memory,
communication, motion, audio, vision and sensor capabilities.

The NAOqi framework supports cross-platform development for Aldebaran’s robots
and can be run on Linux, Windows and Mac OS. Modules can be created with either
Python or C++. Via API calls, access to the default NAOqi modules is provided.
Modules created in Python are interpreted and can be flexibly run romotely or locally
on the robot. Meanwhile, C++ modules need to be compiled to the target operating
system before they can be run remotely or locally. If the developer wishes to run a

11



3. Basic concepts and principles

C++ module locally on the robot, he is required to compile the excutable for the
NAOqi OS. [27, 22].

3.2.4. ROS
The open source Robotic Operating System (ROS) serves as a middleware frame-
work for robotics software. It enjoys an active community and provides a wide
range of libraries and tools that support the development process. These include an
inter-process communication framework, tools for visualization and algorithms for
perception, planning and localization. Although there is always one coordinating
master node, other nodes can run on different machines and communicate with each
other over the network. Because of this, ROS provides the means to extend NAOqi’s
inbuilt capabilities with a wide range of state-of-the-art libraries and algorithms to
enable more advanced applications [25, 22].
In a ROS system, functionalities are realized by running multiple processes called

nodes in parallel. One application usually runs multiple nodes that are independent
of each other. Nodes have two ways of communication with each other. The first way
is the use of messages which represent typed data and follow the publisher/subscriber
paradigm. If one node wants to send something, it can publish a message to a given
topic for example "acceleration" or "camera". Nodes that are interested in receiving
messages of a certain topic subscribe to it. Multiple nodes can publish and/or subscribe
to the same topic. Individual nodes can publish and/or subscribe to multiple topics.
To ensure loose coupling publisher and subscriber are usually not aware of each others
existence, the communication over messages is asysnchronous. As a second way of
communication, services can be used to achieve synchronous communication. The use
of services follows the client/server paradigm and allows synchronous transactions. A
service is defined by a string that represents the service name and two message types
for request and answer. Only one node can advertise a service under a given name
[25, 22].

Figure 3.4.: NAOqi and ROS can communicate over an interface. The image shows
how SLAM (simultaneous localization and mapping) can be realized by
combining NAOqi’s with ROS’s libraries. Source: [22]
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NAOqi and ROS can communicate over a ROS interface (shown in Figure 3.4) that
is provided by the ROS community [10]. The interface runs as both a NAOqi module
and a ROS node and allows to combine their functionalities. During runtime, it
provides NAOqi’s base functionalities as ROS services and topics by utilizing wrappers
that handle the communication with the native NAOqi system. It uses standardized
message types to enable the easy integration of Pepper with ROS. Therefore, it allows
the use of common ROS packages and tools like OpenCv, GMapping and rviz. Also,
it allows to port the developed code from and to other robots and to use simulation
software like Gazebo [22].

3.2.5. Gazebo
Gazebo is a robotics simulator that is supported by the Open Source Robotics
Foundation (OSRF). It allows for 3D robotics simulations which provide a graphical
visualization, simulated sensor values and a physics engine. In combination with
ROS, Gazebo is a useful tool to test algorithms, robot design and tests in a realistic
environment. New models of robots can be created by defining bodyparts, joints and
sensors. The simulation regards mass, friction and bounce factor of the body parts
and the kinematic and dynamic relationships of the joints [17].

Figure 3.5.: Pepper simulated in Gazebo.

The ROS community offers a configuration file for Pepper [25]. It allows us to
simulate and test the robot in a virtual environment. The environment does not
support NAOqi calls and so the complete robot control must be written in ROS. Also,
it is possible to use MoveIt! to control the robot’s body. Gazebo provides us with
simulated sensor values of our robot. Because the available model of Pepper has no
official support, there are some issues. For example, the sensor values in the messages
have a different order than on the real robot and some movements tend to make the
robot fall over. Nontheless, it allows for some simple testing without wearing out the
real robot. This is especially useful when we want to record multiple executions of a
motion sequence in the pursuit of training an AI system.
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In this section we start with formulating the task of sensor-based activity pattern
recognition. Subsequently, we discuss what kinds of sensor data can be utilized to
achieve reliable predictions of robot activity and take a look at the data provided
by the robots Nao and Pepper. We discuss the required steps to leverage a robot’s
proprioceptive sensor data and propose a general architecture that allows a robot to
recognize its own acitivities by analyzing heterogeneous, asynchronous streams of raw
sensor data during runtime.

4.1. Sensor-Based Activity Pattern Recognition
We formulate the task of sensor-based activity pattern recognition inspired by similar
approaches in the field of HAR [30]. Sensors act as a connection between the real world
and the digital computer and allow us to observe a robot’s physical state. During
task execution, data streams generated by a robot’s sensors can be leveraged to gain
high-level insights about the activities that are performed by the machine. Assume a
robot is executing a sequence of activities belonging to a predefined set A:

A = {ai}n
i=1 (4.1)

where n marks the number of activity types. We observe the sensor data that is
generated over time. The observed sequence s contains m consecutive sensor readings
ri, i ∈ {1, . . . ,m}, that capture the state of the robot during a given period of time
at equal intervals. Each of the m readings features l attributes.

s = (r1, . . . , rm), ri ∈ Rl (4.2)

We aim at creating a modelM that generates a sequence of predictions Â about the
performed activity at the time of each given reading ri

Â = (â1 . . . , âm) =M(s), âi ∈ A (4.3)

where the actual performed activity sequence A∗ is:

A∗ = (a∗1, . . . , a∗m), a∗i ∈ A (4.4)

An appropriate modelM minimizes the discrepancy between predicted sequence Â
and ground truth sequence A∗. This formulation makes multiple assumptions about
the nature of the sensor readings generated by the robot. Mainly, it assumes that
sensor readings are aggregated units that are sampled at equal intervals. On a real
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robot, multiple sensors can generate readings asynchronously and at different rates.
Moreover, on some systems, sensor data is only published on state changes. Therefore,
it is necessary to synchronize the streams of sensor data and to generate an equal
stream of synchronized readings.
In 4.3 we tackle these limitations by introducing the architecture of an online

recognition pipeline that is capable of analyzing data from multiple, asynchronous
sensors. Furthermore, rather than training our model directly on raw sensor data, a
set of preprocessing functions Φj, j ∈ 1, . . . , k, for each of the k sensors is utilized
(see 4.3.1). The neural network introduced in 4.3.4 is optimized by minimizing the
multinomial cross-entropy that functions as measurement for the discrepancy between
prediction Â and ground truth A∗.

4.2. Proprioceptive Sensor Data
During each deployment, proprioceptive sensors capture the state of a robot’s body
in the physical world over time. Heterogeneous sensors, such as accelerometer and
gyroscopes, provide streams of activity information that can be utilized to recognize
the actions that are performed by the machine. Common types of proprioceptive sensor
data include acceleration, torque, velocity, electrical current, voltage, orientation, joint
states and temperature. The individual types of data vary in significance based on
the class of activity that is to be predicted. For example, acceleration and torque
capture the forces that act on a robot’s body at a given time and are suitable for
detecting motion activity. Meanwhile, temperature can be seen as an indicator for
long term engine activity by being dependent on the amount of heat that is generated
during runtime.

4.2.1. Sensor Model
Formally, we assume that a robot features k sensors Sj, j ∈ {1, . . . , k}, that give
insight into its physical state. Each sensor Sj samples a signal pj(t) at a given rate fj

over time t. A reading of sensor Sj at time t0 provides a dj dimensional vector:

Sj(t0) = (v1, . . . , vdj
) ∈ Rdj (4.5)

The combined use of readings from heterogeneous sensors can achieve more accurate
predictions than mono-sensor approaches in the field of HAR [18, 21, 26]. While
sensor-based HAR relies on wearable sensors that have to be fitted for the individual
user, a robot’s body is equipped with a variety of inbuilt sensors. Therefore, it is
convenient to combine data from multiple sensors which facilitates the application of
multimodal activity pattern recognition methods.

4.2.2. Sensor Data in NAOqi
Both the Pepper (3.2.1) and the Nao (3.2.2) robot feature the NAOqi operating system
(3.2.3) which allows access to readings generated by their inbuilt sensors through the
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ALMemory API. The ROS community provides an interface which allows the use of
NAOqi functionalities via ROS topics and services (3.2.4). It does so by implementing
a set of multiple wrappers that communicate with the ALMemory module. The basic
version of the NAOqi/ROS API provides information about the joint configuration
and inertial measurement unit (IMU) via designated topics. Additionally, we are
interested in the electrical current that acts on the individual joints of the robot.
Therefore, we implemented an additional ROS node that functions as a wrapper to
communicate with NAOqi. This node samples information about the electrical current
acting on the robot’s joints at equal time intervals and publishes the information to a
respective topic for further use.

Sampling Rate (Hz)
Sensor Data Pepper Nao
Joint States 50 20
IMU 10 20
Electrical Current 10 30

Table 4.1.: The sampling rates for the individual robot.

In our evaluation in Chapter 5 we utilize joint state, electrical current and IMU data
of the robots Pepper and Nao. More specifically, we analyze joint states and electrical
current for each of their joints. Pepper features 17 and Nao 20 joints. Additionally, we
use acceleration, angular velocity and orientation information provided by the 3-axis
IMU of the robots. Table 4.1 gives an overview about the sampling rates of the used
sensor data. Because the sensor data is asychronously sampled at different rates, it is
necessary to synchronize them for further analysis. In 4.3.2 we introduce an approach
to synchronize and fuse multiple asynchronous streams of heterogenous sensor data to
a combined stream.

4.3. Online Activity Pattern Recognition
We introduce a general approach for activity pattern recognition in robotics. The
proposed architecture features a 4-step pipeline (shown in Figure 4.1) that is capable
of generating predictions by utilizing heterogeneous, asynchronous streams of pro-
prioceptive sensor data during runtime. The raw data from each sensor (4.2.1) is
preprocessed separately (4.3.1) and is then fused to a combined synchronous data
stream (4.3.2). Afterwards, the combined readings are scaled and standardized (4.3.3)
and subsequently passed to a LSTM based neural network which predicts the current
activity that is performed by the robot (4.3.4). Both scaler and network are intended
to be trained offline with prerecorded annotated activity sequences as shown in Section
4.4. In the following, we discuss the individual pipeline steps in detail with regards to
the implementation of our system.
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Figure 4.1.: The proposed activity recognition pipeline. It predicts the current ac-
tivity performed by the robot by leveraging data streams from multiple
proprioceptive sensors.

4.3.1. Preprocessing
The recognition pipeline receives one stream of raw sensor data from each of its
k sensors. The featured LSTM based neural network is capable of generating and
selecting suitable features for pattern recognition autonomously during training.
However, it can be favorable to perform sensor specific transformations before learning
the model. This can reduce the amount of required training samples by injecting
certain expert knowledge into the model. Because of this, each sensor Sj is related to
a preprocessing function Φj that is implemented in a separate module. Thereby, the
raw sensor data is transformed to a d′j dimensional feature vector.

Φj(Sj(t0)) = (v′1, . . . , v′d′
j
) ∈ Rd′

j (4.6)

For our evaluation in Chapter 5, we implemented one ROS node for each of the
topics which provide us with raw sensor data. Joint states and electrical current data
is being scaled to unit space based on the individual sensor specifications. In addition,
a filter is applied to the raw acceleration data generated by the inertial measurement
unit to generate an additional separation of low frequency gravitational acceleration
from high frequency activity acceleration. A similar approach to acceleration data
filtering was used in [3].

4.3.2. Synchronization
In general, the pipeline functions on a robot which samples its k inbuilt sensors at
different rates asynchronously. Therefore, we deal with asynchronous streams of
heterogenous sensor data. The utilized recognition module assumes all sensors to be
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Figure 4.2.: Synchronization Module.

sampled synchronously at a given rate f . Therefore, it is necessary to synchronize the
individual streams of preprocessed sensor data for further use.
The synchronization module fuses the different streams of preprocessed sensor

readings to one combined stream. First an initial start time t0 is being determined.
Subsequently, for each ti = t0 + i ∗ T , (T = 1/f) one combined measurement is being
interpolated as follows: The module observes each data stream in parallel. For each
sensor Sj one reading rjm (the m-th reading of Sj) is kept in a buffer together with
the timestamp of its creation trjm

. When a new reading rjm+1 at time trjm+1
arrives,

the condition trjm
≤ ti < trjm+1

is being checked. If the conditions are not met, the
synchronization module updates its buffer with rjm+1 and keeps on listening to the
stream until another reading fullfills the requirement. If the conditions are met, the
buffer is updated likewise and a linear interpolation between rj and rjm+1 is performed
to determine

rji
=
rjm ∗ (trjm+1

− ti) + rjm+1 ∗ (ti − trjm
)

trjm+1
− trjm

(4.7)

where rji
is the representative vector for sensor Sj at time ti that will be utilized

for activity prediction. Afterwards, the module buffers rji
in a queue and continues

to determine rj(i+1) analogously. After one vector rji
for each Sensor Sj has been

determined for time ti, it deques the vectors, concatenates them and passes the
combined and synchronized data to the next pipeline step.
Our implementation of the synchronization module is shown in Figure 4.2. For

each sensor Sj, j ∈ {1, . . . , k}, a worker Wj analyzes the stream of data published by
preprocessing node Pj. For a time ti, worker Wj interpolates a representive vector as
described above and puts it into queue Qj . Subsequently it continues to interpolate an
entry for ti+1. After one representative vector for each sensor for time ti has been put
into the queue, synchronizer S dequeues the individual vectors and fuses them to a
combined reading ri. This reading is then published to a topic for further processing.

4.3.3. Scaling
The scaling module subtracts the mean from the individual features contained in the
synchronized readings and scales them to zero mean unit variance. This pipeline
step reduces the numerical difficulties in the training process and avoids that features
in a greater numeric range have a negative impact on the optimization process. In
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our implementation we utilize the StandardScaler implementation of the scikit-learn
library which we train offline with prerecorded activity sequences (4.4). Afterwards,
the scaler is saved and later loaded during the initialization of the online recognition
pipeline.

4.3.4. Model

Figure 4.3.: The utilized Neural Network.

The model receives a stream of synchronized and scaled equidistant sensor readings
from the previous pipeline steps. This stream matches the requirements for the
activity pattern recognition formulation described in Section 4.1. Each reading
describes the physical state of the robot at a given point in time. The model analyzes
the synchronized stream of heterogenous sensor data and outputs activity labels that
describe the activity that is currently performed by the robot. Depending on the
activity patterns that are intended to be recognized, a suitable model can be selected.
The selected model is trained offline with annotated activity sequences as described
in Section 4.4.

Figure 4.3 visualizes the LSTM based neural network we utilized in our implemen-
tation. The robot’s physical state is described by an input matrix containing multiple
consecutive sensor readings. This matrix is prepared by a small buffer that proceeds
the network. In case of the Pepper robot, we use 5 readings consecutive containing
50 features each. This input then goes through two layers of LSTM consisting of
32 neurons each. Afterwards, a softmax layer classifies each sequence into one of 7
classes (see 5.2.2). Each LSTM layer is followed by a batch normalization layer and
is regularized by l1 and l2 regularizers each with coefficient 0.05. The categorical
cross-entropy function is used to calculate the loss and Adam is the used optimizer.
The python code that describes our model can be found in A.2.

4.4. Learning Activity Patterns
This section describes the training process for scaler and model which are used for the
pipeline. During training deployments, the robot performs the set of activities that is
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intended to be recognized. The data generated by the robot’s proprioceptive sensors
is captured as well as annotations generated by the control script. Both are being
stored in a database and are later combined for training. During training scaler and
model are prepared for the online deployment and saved for later use. Afterwards,
during the initialization of the recognition pipeline, pretrained scaler and model are
loaded and recognize the acitivies of the robot during normal deployment.

4.4.1. Data Collection

Figure 4.4.: The recording process.

For the training of scaler and model a training script is executed that performs two
tasks in parallel (shown in Figure 4.4). Firstly, it lets the robot perform representative
sequences of activities that are to be recognized. Secondly, it publishes annotation
information about the current action that is being performed. While the robot executes
the individual activities of the sequence its inbuilt proprioceptive sensors Si collect
data about the physical state of its body. The resulting data then goes through the
preprocessing and synchronization stage of the pipeline. The raw readings from sensor
Si are preprocessed by node Pi and subsequently fused to one combined synchronous
stream. This stream of activity information is then collected by a ROS node C which
stores the data in a lightweight SQLite database for later use. In parallel, another
node A collects the annotations which are published by the training script and stores
them in the database. Both the combined reading created by the synchronization
module and the annotations sent by the training script are associated with timestamps.
Every execution of the training script results in a new database. After recording, we
run a converter script which reads the individual databases, fuses sensor readings with
annotations based on their respective timestamps and stores the resulting tables as
pandas DataFrames afterwards.
During the data collection a human supervisor is required to verify the correct

execution of the training script. During our evaluation in 5.2.2 we encountered the
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problem that the Pepper robot sometimes ignored single commands of the training
script. For example, the robot was commanded to execute a forward movement, but it
kept standing still. The training script still sent the respective annotation and because
of this, data which should be annotated as "standing" was annotated as "forward".
This corrupted the training data and led to undesired training results.

4.4.2. Training Process
The data collected during the previous training deployments is used to learn scaler
and model for the recognition pipeline. After the training process, scaler and model
are being serialized and stored. During the initialization of the pipeline, they are then
loaded and analyze the stream of readings provided by the synchronization layer.

In our pipeline implementation, we use the StandardScaler provided by the sklearn
library, which subtracts the mean and scales the data to zero mean unit variance (see
4.3.3). We fit the scaler on the training data and store it as a pkl object. For the
training of the neural network, the deep learning framework Keras is utilized. After
training the models as described in 4.3.4, it is then stored for later use. The code for
the training of scaler and model is executed in a Jupyter Notebook. This allows us to
experiment with the parameters conveniently and to visualize our results directly.
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In this section, we evaluate the proposed activity pattern recognition approaches
in a simulation as well as on the real robots. In our first experiment, we train two
models to recognize various one-arm and two-arm motions performed by a Pepper
robot in the robotics simulator Gazebo. In the second experiment, the proposed
pipeline (see Section 4.3) is utilized to recognize a set of base movements executed
by the real robots Pepper and Nao. We show that a multimodal approach to robot
activity pattern recognition that utilizes data from heterogenous sensors can lead to
increased classification accuracy. Finally, we analyze the behavior of the model from
the previous experiment in case of unexpected behavior. Here, a human interferes
with the forward movement of the Pepper robot by pulling its base backwards.

5.1. Recognizing simulated Arm Motions
In the first experiment, we analyze series of joint state readings in order to recognize
a set of arm based motions performed by a Pepper robot in the simulator Gazebo.
We compare the recognition accuracy of two different models and analyze how many
sensor readings they need to recognize the different motions. The first model is an
LSTM based neural network. It contains an LSTM layer with 128 neurons, followed
by a batch normalization layer which is then followed by a softmax layer to determine
the classification. l1 and l2 regulizers are used each with coefficient 0.05. The Adam
optimizer is used for training and minimizes the categorical cross-entropy function.
The second model is a Nearest Neighbor based approach that uses the Hausdorff
distance (3.1.1) to determine the similarity between trajectories. Some of the results
of this experiment will be published in [15].

5.1.1. Recorded Data

Figure 5.1.: The leftmost image shows the starting position for each motion (standing).
The other images show end positions for five of the motions.
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We evaluate the two models with recordings of 20 simulated arm-based motions
(some of them shown in 5.1 together with the starting position). For every motion, the
robot begins its movement from the starting position. By using the robotics simulator
Gazebo and the control software MoveIt!, we collected 50 samples for each of the 20
individual motions. Each sample captures a 7-second-long motion sequence of the
robot and contains 10 joint states readings per second. Every reading contains a 20
dimensional real valued vector. We scale each angle to unit space based on the robots
specifications. In total, 700 samples were used for the training process and 300 for
the testing of the models.
Internally, we handle the data as a 3 dimensional tensor. The first dimension

represents the number of the sample, the second dimension represents the timesteps
of the sequences (1 to 70) and the third dimension is the 20 dimensional joint angle
vector recorded at the specific time step. For the nearest neighbor model, one centroid
is calculated for each of the 20 individual motions by averaging the representative class
samples of the training set. During the classification process, the nearest neighbor
for each test sample is determined by utilizing the Hausdorff distance. We trained
the neural network in two different ways. First, we trained a length dependent model
by training separate networks for each sequence length in the range from 1 to 70.
Subsequently, if we for example determine the class for a partial recording containing
the first 30 readings out of a test sequence, we used the neural network that was
trained on the first 30 readings of each training sample. Secondly, we trained a mixed
length LSTM that can classify any sequence containing 1 to 70 joint state readings.
We did so by taking the first n readings of each samples, n ∈ {1, . . . , 70}, and filling
the missing 70− n readings of the sequence with zero vectors.

5.1.2. Experimental Results

We analyzed the recognition accuracy of the different classification methods when
using only the first n measurements of the recorded samples, n ∈ {1, . . . , 70}. The
results of this experiment are visualized in Figure 5.2. The nearest neighbor approach
and length dependent LSTM perform similarly in the beginning and can recognize
most activities with only a few readings. The mixed length LSTM achieves similar
prediction accuracy after around 10 readings. A few of the motions follow identical
trajectories until around the 40th measurement and are non-separable up to this
point. The rest of the motions get classified correctly at this point. Soon after the
40th measurement, the nearest neighbor approach recognizes all samples correctly.
The length dependent approach requires a few measurements more than the nearest
neighbor model to reach 100% accuracy. The mixed length LSTM needs about 10
measurements more than the nearest neighbor based model to achieve the same
result. The spikes in the plot of length dependent LSTM are caused by the random
initialization of the training process. The mixed length LSTM needs to encode more
information in its parameters and is therefore less expressive than the length dependent
LSTMs.
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Figure 5.2.: Accuracy over number of observed measurements.

5.2. Recognizing Base Movements
In this Section, the activity recognition pipeline proposed in Section 4.3 is evaluated.
We learn to recognize a set of base motions of the Pepper and Nao robot by utilizing
synchronized joint state, electrical current and IMU data (see 4.2.2). For both
robots, a set of 7 different activities, namely standing, moving forward, moving
backward, moving left, moving right, rotating clockwise and rotating counterclockwise,
is recognized. First, a script is executed to collect annotated data from the robots
performing a movement sequence in repetition (shown in Figure 5.3). Multiple
recordings of robot activity are then utilized in order to train a scaler and model for
the pipeline as discussed in Section 4.4. We evaluate the recognition accuracy of the
pipeline on the two robots and discuss our findings.

5.2.1. Recorded Data
We train scaler and model in order to recognize the different movement activities
contained in the sequence shown in Figure 5.3. In this sequence, the robot performs a
full clockwise rotation, moves forward, moves right, performs a full counterclockwise
rotation, moves backwards and finally moves left to its initial position. During each
directional movement, Pepper and Nao move 2m and 1m respectively. After each of
the individual movements, the robots stand still for 2.5 seconds.
Before the beginning of the recording process, ROS is started. Afterwards, the

preprocessing and synchronization stage of the recognition pipeline are initialized to
provide access to one combined stream of sensor data containing information about
joint states, electrical current and IMU. For this experiment, the synchronization
module interpolates combined sensor readings at 10Hz. The training script and
recording nodes are started to begin the collection process (see 4.4.1). While running
the script lets the robot perform repetitions of the described activity sequence. The

25



5. Evaluation

Figure 5.3.: The recording sequence from Pepper. Nao only moves 1m during each
movement.

Pepper robot performs 5 repetitions and Nao 2 repetitions during each recording. The
generated stream of combined sensor data is collected together with the annotation
information published by the training script. Both are then stored in a database. In
total, 10 executions of the script were collected for each robot. Each recording process
results in one database with training data. The duration of one individual recording
for the Pepper robot is a little above 5 min and for the Nao robot around 4 min.

During the recording process, it is crucial that a human observer verifies the correct
execution of the activity sequence. In our experiments, the robots sometimes ignored
single commands given by the control script. This corrupted the training data because
it led to wrongly annotated data. For example, the robot kept standing still, but
the respective sensor readings were annotated as moving forward. Therefore, it was
necessary to repeat the respective recording after the robot skipped one command.

After the collection of sensor data and annotations, a converter script which labels
the individual readings based on their timestamps is executed . The script outputs a
pandas DataFrame containing annotated training data which is then serialized and
stored for later use. Appendix A.3 visualizes a part of the resulting training data
recorded from the Pepper robot as a heatmap. On it, the moving and standing parts
can be differentiated by eyesight.

5.2.2. Evaluation Pepper
We recognize a set of base movements executed by the Pepper robot. Each of the
10 previously collected recordings contains a little above 3000 annotated readings of
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combined sensor data where each reading consists out of 50 attributes (for an overview
see A.3). 7 recordings are used as training and the remaining 3 as test set. The neural
network is trained with overlapping windows containing 5 consecutive sensor readings
each. In the evaluation process, we train with different combinations of sensor data.
Therefore, we filter out the attributes provided by a single sensor. For example, if we
say we train with electrical current data, we only look at the attributes that describe
the current that acts on the individual joints. During each training process, the model
is optimized over 20 epochs with a batch size of 100. For more information about
model and scaler, refer to Section 4.3.

Figure 5.4.: The recognition accuracy achieved on Pepper’s base movements when us-
ing different sensor data. The multimodal model achieves higher accuracy
than the single sensor models.

First, we train on the complete activity sequences in various configurations. We
learn single-sensor models that only use joint states, IMU and electrical current
data respectively and one model that uses combined data. In the following, we will
call them joint, IMU, current and combined model respectively. The per-class and
overall accuracies achieved by the trained models are visualized in Figure 5.4. The
combined model achieves an overall accuracy of 97.12%, which is higher than the ones
achieved by the joint (94.32%), IMU (86.24%) and current (94.78%) model. While
the combined model outperforms the others in terms of overall accuracy, there are
differences in the individual class accuracies. The joint and current model perform
similarly except when it comes to recognizing the standing and right moving robot.
The IMU model achieves a lower overall accuracy than the other models, but achieves
the highest accuracy for the standing activity. It is worth noticing that the IMU
model achieves good results on the rotations while achieving worse results on the
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directional movements. In the following, we take a closer look at the behaviour of the
neural network when using different parts of the IMU readings.

(a) Acceleration (b) Angular Velocity

(c) Orientation (d) Combined IMU

Figure 5.5.: The above confusion matrices give insight into models that are trained on
partial and combined IMU data. Acceleration alone seems insufficient to
determine the rotation motions reliably. The use of combined IMU data
outperforms the other models.

Pepper’s IMU provides 3 types of proprioceptive sensor data, namely acceleration,
angular velocity and orientation. Figure 5.5 shows the confusion matrices of models
that are trained with acceleration, angular velocity, orientation and combined IMU data
respectively. The model that is only trained with acceleration data can’t differentiate
clearly between clockwise and counterclockwise rotations of the robot. The per-class
accuracy of the combined IMU model is higher than the ones of the other models on
every class. One exception to this is the angular velocity model which achieves an
equal accuracy on the counterclockwise rotation and a slightly higher accuracy on the
clockwise rotation. This suggests that a combination of heterogenous sensor data can
lead to more accurate recognition results.
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5.2. Recognizing Base Movements

(a) With Transitions (b) Without Transitions

Figure 5.6.: Left the confusion matrix when trained and evaluated on the full recordings
from Pepper. On the right we removed the first and last 0.5s of each
activity.

Looking at the confusion matrices from the different IMU models and the previous
combined model that utilizes all 50 attributes (see Figure 5.6a), we see that the models
have some difficulties with making a clear differentiation between the standing and
moving robot. One reason for this is the unclear start of an activity. The training
script sends the annotation information immediately before sending the movement
blocking command to the robot. While both are sent almost instantaneous, it takes
about 50-200ms before the robot starts to move. This leads to an unclear cut between
the activities. Also, during the transitions, the different activities might seem similar
to each other. To substantiate this theory, we compare the multimodal model from our
previous analysis with another model that is trained and tested without transitions.
For this purpose, we removed the first and last 0.5s of each activity contained in
the training and test sequences. As shown in Figure 5.6, it is easier to differentiate
between the classes when one ignores the transition phases.

5.2.3. Evaluation Nao

Analogously to the previous experiment with the Pepper robot, we recognized the
same set of base movements executed by the Nao robot. Here, each of the 10 collected
recordings contains around 2400 annotated readings of combined sensor data where
each reading consists of 65 attributes (for an overview see A.4). 7 recordings are used
as training and the remaining 3 as test set. Likewise to the previous experiment, the
neural network trained with overlapping windows containing 5 consecutive sensor
readings each. We trained models that use different combinations of attributes. As in
the Pepper experiment, the models were optimized over 20 epochs with a batch size
of 100.
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During this experiment, we encountered some mechanical issues which led the Nao
robot to uneven movement behaviour and sometimes even to fall. For example, the
robot sometimes just kept swinging sideways for a while when issued a sideward
movement command. During this time, even a human observer had difficulties
classfying the direction of the motion.

Figure 5.7.: The accuracy recognizing achieved on Nao’s base movements when using
different sensor data.

Again, we first trained on the complete activity sequences in various configuration.
We learned single-sensor models that only use joint states, IMU and electrical current
data respectively and one model that uses combined data. The per-class and overall
accuracies achieved by the trained models are visualized in Figure 5.7. The joint
model achieved the highest overall accuracy with 90.76% followed by the combined
(90.19%), current (79.75%) and IMU (79.24%) model. The joint models achieved the
highest per-class accuracy on all classes except for the forward and right movement,
where the combined models achieved the highest accuracy. The combined model
seems to have difficulties extracting additional information out of the additional IMU
and current data. A reason for this could be the higher variance in the training data
when compared to the Pepper data.

The current model achieved a higher per-class accuracy on the forward and backward
movement than the IMU model. Meanwhile, the IMU model achieved a higher per-
class accuracy on clockwise and counterclockwise rotations. We trained a model which
combines current and IMU data to benefit from the strength of both types. This
model achieved an overall accuracy of 84.75% and therefore outperforms the unimodal
models by 5 percent points. Furthermore, it achieved a higher per-class accuracy
on all classes except standing where the current model is better by a small margin.
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The individual per-class and overall accuracies are listed in Table 5.1. This again
suggests that a model which combines data from heterogenous sensor can achieve
better recognition accuracy than unimodal approaches.

IMU Current IMU + Current
Stand 79.51 83.46 83.07
Forward 68.53 79.24 86.05
Backward 72.97 78.93 79.64
Left 77.71 79.36 82.95
Right 77.20 76.63 80.20
Clock 88.87 82.23 91.07
Counterclock 82.98 78.85 87.59
Overall 79.24 79.75 84.75

Table 5.1.: Accuracy of IMU and current and combined model.

Similarly to the experiment with the Pepper robot, the confusion matrix (see Figure
5.8a) of the model that uses all 65 attributes shows that it has some difficulties making
a clear differentiation between the standing and moving robot. Furthermore, it is more
difficult to distinguish between the individual movements compared to the Pepper
robot. Again, a new multimodal model was trained and tested by removing the first
and last 0.5s of each activity contained in the training and test sequences. The new
model achieved higher overall accuracy (93.18%) and higher per-class accuracy for all
motions except the right movement.

(a) With Transitions (b) Without Transitions

Figure 5.8.: Left the confusion matrix when trained and evaluated on the full recordings
from Nao. On the right we removed the first and last 0.5s of each activity.
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5.3. Detecting human interference
In this experiment, we analyze the output of the recognition pipeline in case of
unexpected robot behaviour. Here, a human interferes with the forward movement of
the Pepper robot by dragging its base backwards. We show that the pipeline provides
an output which can be used to detect a problem in the activity execution. This can
allow a robot to detect deviations in the expected activity execution on its own and
report it to a remote human operator.

5.3.1. Recorded Data
The Pepper robot executes a simple control script. It first stands still for 5 seconds,
then moves 3m forward and concludes the activity by standing still for another 5
seconds. A simple control script sends the corresponding commands to the robot and
publishes annotation information in parallel. The synchronization layer of the robot
publishes combined sensor readings which contain joint state, IMU and electrical
current information. Both sensor data and annotation information is collected and
stored in a database. Later, the readings are labeled with the annotation information
to reflect the state of the control. The human watches the robot while it stands still
first. After the machine has executed about half of its forward movement, he grabs
the base of the robot in a way that is not detected by the NAOqi operating system
and pulls it backwards.

5.3.2. Experimental Results

Figure 5.9.: The robot’s activity over time as seen by the control and pipeline.

We compare the information from the control layer with the recognition results
of the pipeline that analyzes the prerecorded synchronized sensor data. In this
experiment, the pipeline uses a scaler and model that were both trained with the
10 Pepper recordings from 5.2.2. Figure 5.9 shows the robot’s current activity as
seen by the control and recognition pipeline over time. The pipeline recognizes the
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standing activity correctly. At the transition between standing and forward movement,
it makes two wrong predictions (200ms) and then recognizes the forward movement
correctly. As discussed in 5.2.2 and 5.2.3, the neural network has issues recognizing
state transitions because of their ambiguity. At around second 7, the human observer
interferes with the forward movement of the robot by pulling its base backwards. The
control does not detect the interference and thinks the robot is still moving forward.
Later, the control issues a standing command and thinks the machine is standing still
while in reality it is still moved by the human. The pipeline recognizes the change
of the robot’s body activity and classifies it first as backward, then left and then
backward again. Then it swings between standing, moving forward, moving left and
counterclockwise, followed by a long pull backwards. The human leaves the robot in
a standing position at around second 13. The model is noisy during the transition
and then recognizes the standing robot. The noisiness in the recognitions reflects the
way the robot is manipulated by the human.

In a system implementation, the output of the recognition pipeline can be compared
to what the robot’s control is doing. If control and pipeline do not agree on the same
activity for a certain amount of time (e.g. 0.5s), an observation system can detect the
unexpected behavior of the robot. This finding can then be used to allow the machine
to communicate its problem to a remote operator who then can check on the machine.
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6.1. Summary
A robot’s proprioceptive sensors provide rich information about the state of the
machine and the actions it performs. By leveraging streams of low-level sensor
readings, one can recognize patterns that tell about the activities the machine is
performing in the world. While the control layer captures what a robot is intended
to do, sensors give direct insight into what its physical body is doing. Therefore, a
robot can achieve a basic awareness of its own activities by analyzing the data streams
provided by its proprioceptive sensors. The machine can then utilize this capability
in order to verify its own activity execution or to narrate its actions to external users.
Also, it might allow the machine to recognize and recover from unexpected system
states.

In this work, we introduced a general activity recognition pipeline inspired by HAR
methods to the robotics domain. The proposed pipeline analyzes multiple streams
of asynchronous sensor data to recognize activity patterns and to classify the type
of action the machine is performing. By combining readings from heterogenous sen-
sors, one can achieve more accurate recognition results than single-sensor approaches.
We discussed the pipeline architecture in detail and evaluated it in multiple experi-
ments. Our approach can be transferred to other robots with proprioceptive sensing
capabilities.
In our evaluation, we first recognized a set of one and two-arm based motions

executed by a simulated Pepper robot in order to verify the suitability of a Hausdorff
distance based nearest neighbor algorithm and an LSTM neural network for activity
pattern recognition. We then decided to utilize the LSTM based approach for our
further analysis. Next, the pipeline was evaluated by recognizing a set of 7 different
base movements of the service robot Pepper and humanoid Nao. This experiment
showed that models which combine readings from multiple sensors can achieve higher
accuracy than single sensor approaches. In our final experiment, we analyzed the
model behavior in case of unexpected events. A human interrupted the forward
movement of the Pepper robot by pulling its base backwards and the model sucessfully
detected the unexpected system state.

6.2. Future Work
As a potential future research direction, we want to recognize more complex activities
that go beyond simple arm and base movement. Especially the application of plan
detection, where the robot executes a defined sequence of activities, is interesting
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to us. Here, we want to analyze how the current activity that a robot executes fits
into a more meaningful context. Another research question is to create more detailed
descriptions of a robot’s actions. For example, one could recognize parallel activities
such as moving forward while raising the left hand.
During our work with the Nao robot, we encountered some mechanical issues

because of its engines calibration. This led the robot to uneven movement behavior,
sometimes even to fall. It would be desirable to repeat this experiment on a Nao robot
that moves more evenly. Also, the fact that the combined model that utilizes joint
states, IMU and electrical current data achieved worse recognition accuracy than the
model that only utilizes joint states motivates further investigation. Furthermore, we
need to analyze the resource consumptions of our models regarding their deployment
on a robot.

Furthermore, it is of interest to create models that are capable of analyzing sequences
of proprioceptive sensor readings that can capture the complete deployment. During
our experiments we worked with sequences of 5 consecutive sensor readings. The
reason for this small number mainly lies in the types of activities that were recognized
in the experiments. We would like to derive compact descriptions about the robot’s
activities directly out of low-level sensor logs. A starting point would be to detect if
the robot had to drive around an obstacle instead of taking the direct path to a goal.
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A. Appendix

A.1. Joint Conversion

Real Simulated
HeadYaw HeadPitch
HeadPitch HeadYaw
LShoulderPitch HipPitch
LShoulderRoll HipRoll
LElbowYaw KneePitch
LElbowRoll LElbowRoll
LWristYaw LElbowYaw
LHand LHand
HipRoll LShoulderPitch
HipPitch LShoulderRoll
KneePitch LWristYaw
RShoulderPitch RElbowRoll
RShoulderRoll RElbowYaw
RElbowYaw RHand
RElbowRoll RShoulderPitch
RWristYaw RShoulderRoll
RHand RWristYaw
WheelFL WheelB
WheelFR WheelFL
WheelB WheelFR

Table A.1.: Order of joint states vector for the simulated and real Pepper

Each joint state message published by the Pepper robot contains an array with 20
floating point values that relate to the individual joints of the robot. While switching
from the Gazebo version of Pepper to the real robot we noticed that the order in
which the arrays describe the joint states is different. Table A.1 shows the order in
which the joints are described on the real and simulated robot. Because of this, we
implemented a converter that transforms the readings from the simulation to the
format of the real robot.
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A.2. Model Code

embedding_vecor_length = 50 # Pepper generates 50 attributes
n_classes = 7 # There are 7 activities to predict
window_size = 5 # 5 readings are used for classification

epochs = 20
batch_size = 100

reg = L1L2(l1=0.05, l2=0.05)
model = Sequential()

# first LSTM layer
model.add(LSTM(32, return_sequences=True,

input_shape=(window_size, embedding_vecor_length),
batch_size=batch_size, bias_regularizer=reg))

model.add(BatchNormalization())

# second LSTM layer
model.add(LSTM(32, bias_regularizer=reg))
model.add(BatchNormalization())

# softmax output layer
model.add(Dense(output_dim=n_classes, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='adam',
metrics=['accuracy'])

model.fit(train_X, train_Y, validation_data=(test_X, test_Y),
epochs=epochs, batch_size=batch_size, validation_split=0.25)

Listing A.1: The code for the neural network.

The above code describes the neural network used in our implementation of the
activity recognition pipeline (4.3). We used the deep learning framework Keras together
with a TensorFlow backend for our experiments. The length of the embedding vector
varies depending on the number of sensor attributes that are used for the activity
recognition.
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A.3. Collected Data Pepper

Figure A.1.: A visualization of the recorded data from the Pepper robot. The rightmost
column indicates the performed activity.
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ID Attribute Name ID Attribute Name
1 j_HeadYaw 26 BaseLinearAccelerationLowZ
2 j_HeadPitch 27 BaseOrientationW
3 j_LShoulderPitch 28 BaseOrientationX
4 j_LShoulderRoll 29 BaseOrientationY
5 j_LElbowYaw 30 BaseOrientationZ
6 j_LElbowRoll 31 c_HeadPitch
7 j_LWristYaw 32 c_HeadYaw
8 j_LHand 33 c_LShoulderPitch
9 j_HipRoll 34 c_LShoulderRoll
10 j_HipPitch 35 c_LElbowYaw
11 j_KneePitch 36 c_LElbowRoll
12 j_RShoulderPitch 37 c_LWristYaw
13 j_RShoulderRoll 38 c_LHand
14 j_RElbowYaw 39 c_HipRoll
15 j_RElbowRoll 40 c_HipPitch
16 j_RWristYaw 41 c_KneePitch
17 j_RHand 42 c_RShoulderPitch
18 BaseAngularVelocityX 43 c_RShoulderRoll
19 BaseAngularVelocityY 44 c_RElbowYaw
20 BaseAngularVelocityZ 45 c_RElbowRoll
21 BaseLinearAccelerationHighX 46 c_RWristYaw
22 BaseLinearAccelerationHighY 47 c_RHand
23 BaseLinearAccelerationHighZ 48 c_WheelFR
24 BaseLinearAccelerationLowX 49 c_WheelB
25 BaseLinearAccelerationLowY 50 c_WheelFL

Table A.2.: The attributes that were used for the Pepper robot.
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A.4. Collected Data Nao

Figure A.2.: A visualization of the recorded data from the Nao robot. The rightmost
column indicates the performed activity.
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ID Attribute Name ID Attribute Name
1 j_HeadYaw 34 BaseLinearAccelerationHighZ
2 j_HeadPitch 35 BaseLinearAccelerationLowX
3 j_LShoulderPitch 36 BaseLinearAccelerationLowY
4 j_LShoulderRoll 37 BaseLinearAccelerationLowZ
5 j_LElbowYaw 38 GyroscopeX
6 j_LElbowRoll 39 GyroscopeY
7 j_LWristYaw 40 GyroscopeZ
8 j_LHand 41 c_HeadYaw
9 j_RShoulderPitch 42 c_HeadPitch
10 j_RShoulderRoll 43 c_LShoulderPitch
11 j_RElbowYaw 44 c_LShoulderRoll
12 j_RElbowRoll 45 c_LElbowYaw
13 j_RWristYaw 46 c_LElbowRoll
14 j_RHand 47 c_LWristYaw
15 j_LHipYawPitch 48 c_LHand
16 j_LHipRoll 49 c_RShoulderPitch
17 j_LHipPitch 50 c_RShoulderRoll
18 j_LKneePitch 51 c_RElbowYaw
19 j_LAnklePitch 52 c_RElbowRoll
20 j_LAnkleRoll 53 c_RWristYaw
21 j_RHipRoll 54 c_RHand
22 j_RHipPitch 55 c_LHipYawPitch
23 j_RKneePitch 56 c_LHipRoll
24 j_RAnklePitch 57 c_LHipPitch
25 j_RAnkleRoll 58 c_LKneePitch
26 AccelerometerX 59 c_LAnklePitch
27 AccelerometerY 60 c_LAnkleRoll
28 AccelerometerZ 61 c_RHipRoll
29 AngleX 62 c_RHipPitch
30 AngleY 63 c_RKneePitch
31 AngleZ 64 c_RAnklePitch
32 BaseLinearAccelerationHighX 65 c_RAnkleRoll
33 BaseLinearAccelerationHighY

Table A.3.: The attributes that were used for the Nao robot.
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