
Facial Landmark Detection and Shape
Modeling using Neural Networks

Master’s thesis of

Simon Hessner

At the faculty of Computer Science
Institute for Anthropomatics and Robotics

Reviewer: Prof. Dr.-Ing. Rainer Stiefelhagen
Second reviewer: Prof. Dr.-Ing. habil. Jürgen Beyerer
Advisor: Dr.-Ing. Saquib Sarfraz

Duration: 14th January 2019 – 15th August 2019

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Computer Vision for Human-Computer Interaction Research Group
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology
Title: Facial Landmark Detection and Shape Modeling using Neural Networks
Author: Simon Hessner

Simon Hessner
uldci@student.kit.edu

ii

Statement of Authorship

I hereby declare that this thesis is my own original work which I created without illegitimate
help by others, that I have not used any other sources or resources than the ones indicated
and that due acknowledgement is given where reference is made to the work of others.

Erklärung

Ich versichere wahrheitsgemäß, die Arbeit selbstständig verfasst, alle benutzten Hilfsmittel
vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten
anderer unverändert oder mit Abänderungen entnommen wurde, sowie die Satzung des
KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
zu haben.

Karlsruhe, 15. August 2019 .
(Simon Hessner)

Abstract

Facial landmarks are distinctive points in human faces that are used for a variety of tasks
such as facial expression analysis, lip reading or face recognition. The performance on these
tasks depends heavily on the accuracy of the detected facial landmarks. It is challenging
to accurately locate facial landmarks even on faces that are partially occluded by glasses,
facial hair or other objects. In this work we introduce a new approach to tackle these
challenges on unconstrained frontal and semi-frontal face images. The proposed solution is
a new deep learning based algorithm that is built on the Stacked Hourglass Network which
has proven to be effective for human pose estimation, a task similar to facial landmark
detection. The algorithm processes face images by repeatedly down- and upsampling the
image and thus analyzes it on multiple scales. The Stacked Hourglass Network is trained
using Wing loss and regresses coordinates using a Differentiable Spatial To Numerical
Transform. Our algorithm is able to outperform current state-of-the-art solutions on the
300-W and Menpo datasets in terms of the point-to-point normalized error. Additionally, a
neural Point Distribution Model is employed as a shape model that refines the predictions
made by the Stacked Hourglass Network. By adding the Point Distribution Model, the
prediction error on the inner facial landmarks of the challenging test set of 300-W reduces
even more. The Point Distribution Model achieves the biggest improvements on the inner
landmarks of faces with strong head poses while improving the predictions of landmarks
on the outline is more challenging.

Kurzfassung

Facial Landmarks sind markante Punkte in menschlichen Gesichtern, die für die Analyse
von Gesichtsausdrücken, Lippenlesen, Gesichtserkennung und eine Vielzahl weiterer Auf-
gaben verwendet werden. Die Ergebnisqualität bei diesen Aufgaben hängt stark von der
Genauigkeit der erfassten Punkte ab. Sie auch auf Gesichtern, die teilweise durch Bril-
len, Gesichtsbehaarung oder andere Gegenstände verdeckt sind, genau zu lokalisieren, ist
schwierig. In dieser Arbeit gehen wir diese Probleme für semi-frontale Gesichter in realen
Umgebungen an und stellen einen neuen Ansatz zum Lokalisieren von Facial Landmarks
vor. Die vorgeschlagene Lösung ist ein Deep Learning - basierter Algorithmus, der auf dem
Stacked Hourglass Network aufbaut. Diese Netzwerkarchitektur hat sich als sehr effektiv
für die Bestimmung menschlicher Posen (Human Pose Estimation) in Bildern erwiesen, ei-
ne der Erkennung von Facial Landmarks ähnlichen Aufgabe. Bilder von Gesichtern werden
von dem Netzwerk durch wiederholtes Herunter- und Hochskalieren auf mehreren Skalen
analysiert. Das Stacked Hourglass Network wird mit der Wing loss - Fehlerfunktion trai-
niert und bestimmt die Koordinaten der Facial Landmarks mithilfe einer Differentiable
Spatial To Numerical Transformation. Der in dieser Arbeit vorgestellte Algorithmus ist
in der Lage, auf den 300-W- und Menpo-Datensätzen einen geringeren Punkt-zu-Punkt
normalisierten Fehler als andere Ansätze auf dem aktuellen Stand der Technik zu erzielen.
Zusätzlich wird ein Point Distribution Model als Shape Model eingesetzt, um die Vorher-
sagen des Stacked Hourglass Networks weiter zu verfeinern. Dadurch erhöht sich vor allem
die Erkennungsgenauigkeit für die inneren Facial Landmarks auf schwierigen Bildern von
300-W noch weiter. Das Point Distribution Model verbessert vor allem die Erkennung von
Facial Landmarks im Inneren von Gesichtern, die aus großen Winkeln gezeigt werden. Eine
Verbesserung der Erkennungsgenauigkeit von Landmarken auf der Gesichtskontur erwies
sich hingegen als schwieriger.

Contents

1 Introduction 1

2 Related Work 3
2.1 Classic approaches for facial landmark detection 3

2.1.1 Active Shape Models (ASMs) . 3

2.1.2 Active Appearance Models (AAMs) 4

2.1.3 Constrained local models (CLMs) 5

2.1.4 Regression and cascaded regression 5

2.2 Deep learning based facial landmark detection 6

2.2.1 Neural Networks . 6

2.2.2 Convolutional Neural Networks . 7

2.2.3 State-of-the-art approaches . 9

2.3 Evaluation baselines . 13

3 Methods 15
3.1 High-level system overview . 15

3.2 Input images . 16

3.3 Coordinates . 17

3.4 Stacked Hourglass Network: Computing initial facial landmark predictions . 17

3.4.1 Stacked Hourglass Network architecture 17

3.4.1.1 Residual modules . 19

3.4.1.2 Hourglass . 20

3.4.1.3 Stacked Hourglass Network 22

3.4.2 Differentiable Spatial to Numerical Transform 25

3.4.3 Wing loss function . 29

3.4.4 Recap: Initial predictions . 31

3.5 Point Distribution Model: Refining predictions 31

3.5.1 Relation to other shape models . 32

3.5.2 Overall concept . 33

3.5.3 Latent vector size . 35

3.5.4 Training: Learning a shape model 35

3.5.5 Inference: Improving predictions . 38

3.5.6 Confidence estimation . 39

3.5.7 Initializer for the latent vectors . 40

3.5.8 Learning rate scheduling . 41

4 Evaluation 42
4.1 Datasets . 42

vii

Contents

4.2 Metrics . 44
4.3 Evaluation categories . 45
4.4 Training details . 46
4.5 Stacked Hourglass Network . 47

4.5.1 Data augmentation . 47
4.5.2 Hyper-parameter overview . 47
4.5.3 Effect of architecture hyper-parameters 49

4.5.3.1 Number of stacked Hourglasses (HGs) 50
4.5.3.2 Length of residual sequence 51
4.5.3.3 Number of features . 52
4.5.3.4 Number of downsampling steps 52
4.5.3.5 Separate models for 49 and 68 landmarks 54
4.5.3.6 Number of network parameters 54

4.5.4 Effect of training and regression hyper-parameters 56
4.5.4.1 Loss function . 56
4.5.4.2 Loss normalization . 58
4.5.4.3 Regression method . 59
4.5.4.4 Heatmap regularization using Jensen-Shannon divergence . 60
4.5.4.5 Rotation augmentation . 61
4.5.4.6 Loss on inter-landmark distances 62

4.5.5 Comparison with state-of-the-art methods 64
4.5.6 Unsuccessful experiments with Spatial Transformer Networks 67

4.6 Point Distribution Model . 68
4.6.1 Hyper-parameter overview . 69
4.6.2 Latent vector size . 70
4.6.3 Decoder architecture . 71
4.6.4 Pre-initialization of latent vector . 72
4.6.5 Error comparison between Stacked Hourglass Network with and with-

out Point Distribution Model . 74
4.6.6 Comparison with state-of-the-art methods 78

4.7 Qualitative results . 80

5 Conclusion 81
5.1 Summary . 81
5.2 Outlook . 81

Bibliography 83

List of abbreviations 90

viii

List of Figures

1.1 Example faces with annotations from the 300-W test set [55, 57]. 1

2.1 Visualization of a feed-forward neural network 7

2.2 Visualization of a convolutional neural network 9

3.1 Scheme of a Stacked Hourglass Network . 18

3.2 Scheme of a residual module . 19

3.3 Scheme of a residual sequence . 20

3.4 Scheme of an Hourglass network before stacking 21

3.5 Scheme of a Stacked Hourglass Network . 23

3.6 Visualization of the data flow in a Stacked Hourglass Network 24

3.7 Differentiable Spatial to Numerical Transform (DSNT) example 27

3.8 Example heatmaps produced by a Stacked Hourglass Network 29

3.9 Plots of L1, smooth L1 and L2 losses . 30

3.10 Plot of Wing loss with different parameterizations 31

3.11 Examples for Point Distribution Model inference 34

3.12 Scheme of Point Distribution Model (PDM) inference 37

4.1 Annotation scheme with 68 facial landmarks 43

4.2 Annotation scheme with inter-ocular distance 45

4.3 Effect of number of stacked Hourglasses on the error rate 50

4.4 Effect of number of residual modules on the error rate 51

4.5 Effect of number of features on the error rate 52

4.6 Effect of hourglass depth on the error rate 53

4.7 Effect of number of landmarks on the error rate 54

4.8 Effect of number of trainable network parameters on the error rate 55

4.9 Comparison of error rates achieved with L1 loss, L2 loss and Wing loss . . . 57

4.10 Effect of loss normalization on the error rate 58

4.11 Effect of regression method on the error rate 59

4.12 Effect of Jensen-Shannon Gaussian variance on the error rate 60

4.13 Effect of rotation augmentation on the error rate 61

4.14 Effect of distance loss on the error rate (per category) 63

4.15 Effect of distance loss on the error rate (average of all categories) 64

4.16 Effect of latent vector dimensionality on the PDM reconstruction error . . . 70

4.17 Comparison of different PDM decoder architectures 72

4.18 Error rates depending on number of PDM inference epochs for different
initialization strategies . 73

4.19 Example predictions by our system . 80

ix

List of Tables

List of Tables

4.1 Error comparison between Stacked Hourglass Network and state-of-the-art
methods . 65

4.2 Hyper-parameter choices for best Point Distribution Models 67
4.3 Best architectures for the Point Distribution Model decoder 74
4.4 Comparison of the best stacked Hourglass and the best HG-PDM pipelines 75
4.5 PDM inference parameters used for the best models 77
4.6 Error comparison between HG-PDM pipeline and state-of-the-art methods . 78

x

1. Introduction

Figure 1.1: Example faces with annotations from the 300-W test set [55, 57].

In order to achieve satisfactory human-computer interaction it is crucial for computers to
understand the content of images. Analyzing images of human faces is an active research
field with numerous different subtopics. Some focus on face recognition [42, 64, 75] which
can be used to unlock a phone or open a door by looking at a camera. Analyzing facial
expressions and emotions [23, 70] is another direction that can be useful for medical appli-
cations or to detect if a person is stressed or relaxed and muting or enabling notifications
over new messages based on this. Furthermore, estimating a person’s head pose [46, 52,
58, 59] or gaze direction [61, 62] can be used to understand conversations or to detect
whether a car driver is focused or distracted.

Another research direction focuses on detecting facial landmarks which are distinctive
points with a semantic meaning that are distributed over a human’s face, for example
around the eyes, mouth and outline. Figure 1.1 shows three faces with 68 annotated facial
landmarks. Facial landmarks serve as input to other tasks such as lip reading [15, 43] to
improve speech recognition accuracy, facial expression analysis, emotion detection or face
recognition [44, 64].

The problem of facial landmark detection is often called facial alignment or facial landmark
localization. It can be formally described as finding the (x, y) coordinates of l ∈ N+

semantic points on an image of a human face. Hence, the output of a facial landmark
detection algorithm is a vector p = [x1, y1, ..., xl, yl] ∈ R2l. There is also 3D facial landmark
detection [49, 80], but this work focuses on 2D coordinates.

Various challenges arise when designing a facial landmark detection algorithm. For exam-
ple, images can be of varying quality due to camera resolution, illumination or distance
between the camera and the face. Moreover, faces can be occluded by hats, glasses or
facial hair. Furthermore, faces appear differently depending on the facial expression. Fi-

1

nally, the face can be shown in a non-frontal position and there is natural variance due to
different ethnicity, gender, age and individual appearance. We focus on semi-frontal faces
which include faces viewed from different angles as long as no landmark is occluded by the
face itself. Hence, we exclude profile faces from our work. The images are allowed to show
faces in uncontrolled settings such as indoor or outdoor, under varying light conditions
and with arbitrary backgrounds.

In the early years of computer vision most approaches to analyze images made extensive
use of hand-crafted features such as the scale invariant feature transform (SIFT) [40], local
binary patterns (LBP) [1] or histogram of oriented gradients (HOG) [20]. These features
were used to train classic machine learning algorithms like support vector machines (SVM)
[7] or random forests [8]. In 2012, Krizhevsky et al. proposed AlexNet [35], a convolutional
neural network that was able to beat the state-of-the-art in image classification by a large
margin. Inspired by this success, many researchers in the computer vision domain started
to use neural networks and were able to improve their results. The advantage of using
(convolutional) neural networks is that no hand-crafted features are needed. Moreover,
neural networks are trained to extract hierarchies of complex features by optimizing a loss
function using back-propagation. Those features are optimized for the problem at hand,
which is the main reason why they outperform hand-crafted features.

In this work we also use neural networks and introduce an approached based on a Stacked
Hourglass Network [47] that down- and upsamples the image multiple times to get an
understanding of the scene. The Stacked Hourglass architecture is a fully-convolutional
neural network architecture that is able to extract complex features from face images.
Based on these features heatmaps for each landmark are generated. The heatmaps indicate
the likelihood of a landmark at each position in the image. We convert the heatmaps into
numerical coordinates using a Differentiable Spatial To Numerical Transform (DSNT) [48].
The network is trained using Wing loss [24] which is insensitive to outliers and converges to
a better model than other commonly used loss functions. The predictions from the Stacked
Hourglass Network are then further improved by a Point Distribution Model (PDM). The
PDM is a neural network based unsupervised generative shape model.

The main contributions of this work are

• The Stacked Hourglass Network [47] is combined with the Differentiable Spatial to
Numerical Transform (DSNT) [48] and trained using Wing loss [24].

• Effects of different Hourglass design choices are explored in detail.

• A Point Distribution Model (PDM) is implemented and used as a shape model to
fix wrong predictions from the Stacked Hourglass Network. We investigate in which
cases the PDM is able to improve predictions the most.

• The whole system is trained and evaluated on the 300-W [55, 56, 57] dataset. To as-
sess the performance on an unrelated dataset, we perform a cross-dataset evaluation
on the Menpo [82] dataset.

This thesis is organized as follows: Related work on the field of facial landmark detection is
presented in Chapter 2. Both the Stacked Hourglass Network and the PDM are introduced
in Chapter 3. Various design choices are evaluated in Chapter 4 for both the Stacked
Hourglass Network and the PDM. To conclude, Chapter 5 reviews what has been achieved
in this work and outlines which further ideas could be explored in the future.

2

2. Related Work

In this chapter an overview over relevant publications in the field of facial landmark detec-
tion is presented. We first start with classic approaches that allowed for first successes in
facial landmark detection in Section 2.1. Similar to other computer vision problems, the
rise of deep learning models has enabled more powerful algorithms in the facial landmark
domain as well. A selection of deep learning based solutions is presented in Section 2.2.
Finally, the baselines we use to compare our models to are presented in Section 2.3.

2.1 Classic approaches for facial landmark detection

Most algorithms for facial landmark detection can be classified as either model-based or
regression-based [79]. They differ in how the coordinate prediction is done.

Model-based approaches learn constraints on the arrangement of landmarks relatively to
each other. This is useful to locate landmarks in non-rigid objects since the locations
of landmarks are often constrained by other landmarks. We present three important
model-based algorithms: Active Shape Model (ASM) in Section 2.1.1, Active Appearance
Model (AAM) in Section 2.1.2 and Constrained Local Model (CLM) in Section 2.1.3.

Regression-based approaches do not have an implicit shape model. They instead operate
directly on the image and regress the coordinates of the landmarks. Cascaded regression
approaches run multiple regression models consecutively, each one refining the predictions
of its predecessor. An overview over regression-based algorithms as well as cascaded re-
gression solutions is presented in Section 2.1.4.

Some of the most important classic approaches are presented in this section. However,
there are many more algorithms for facial landmark detection. Wang et al. [71] give a
comprehensive survey on facial landmark detection algorithms that were published before
2014.

2.1.1 Active Shape Models (ASMs)

In 1995, Cootes et al. [17] published ASMs, an algorithm that puts constraints on the the
locations of individual landmarks. Possible shape variations are learned from the training
set and stored in a Point Distribution Model (PDM). Before learning the variations,
all samples in the training set are aligned by rotating, scaling and translating them so
that the difference between samples is minimized. The idea is to have all landmarks
in all samples approximately at the same position so that the actual shape variations
can be estimated without the influence of pose variations. The PDM stores the average
locations of each landmark and the main modes of variation, including correlations of shape

3

2.1. Classic approaches for facial landmark detection

parameters. The PDM finds a basis of the shape parameters where the shape parameters
are uncorrelated, allowing to change each of the parameters and still generating a valid
shape. This is done using Principal Component Analysis (PCA). Once learned, the
model can be used to generate new shapes that were never seen in training by varying the
uncorrelated shape parameters.

The ASM uses the PDM to find the landmarks in an unseen test image. Locating land-
marks involves finding shape parameters that correspond to a shape as close as possible
to the test image. The original algorithm assumes that landmarks lie on strong edges. An
ASM does not model texture but only looks for edges in arbitrary textures (around the
current estimate). The initial location estimates are set to be the mean of the training
set. Then, iteratively a local region around each landmark is analyzed by looking on the
normal through each landmark and finding the strongest nearby edge. This is then used to
update the pose and shape parameters to best fit the new landmark locations. Important
to note is that the estimates are not updated directly. Rather, they are updated by finding
shape parameters that map to locations that are as close as possible to the new estimate.
This is important as otherwise the shape constraints could be violated. The whole process
is repeated until convergence.

The algorithm can be improved in terms of speed and accuracy by following a coarse-to-
fine approach. That means that the algorithm is first executed on a blurred image. The
obtained locations are then used as the initial estimate when running the algorithm on a
finer resolution. The process is repeated until the finest resolution is reached.

Although the ASM paper used resistors and human hands as example objects, the algo-
rithm was also an important milestone in the history of facial landmark detections since
it allowed to model non-rigid shapes [18].

2.1.2 Active Appearance Models (AAMs)

Building on the success of ASMs, Cootes et al. [16] introduce AAMs. The main difference
to ASMs is that texture variation around the landmarks is learned in addition to the
shape variation. The AAM can be used to synthesize a whole image using the shape and
appearance parameters, hence it is a generative model. Landmarks in unseen images are
located by finding shape and appearance parameters that minimize the difference between
the generated image and the test image.

The shape model is built in the same way as in ASMs. The appearance model learns the
appearance variations in shape-free images. A shape-free image is obtained by aligning the
original image with the mean image. To generate a synthetic image, first the appearance
parameters are used to generate an image that is shape-free. Then the shape parameters
are used to warp it to the desired shape using triangulation-based interpolation.

To find the optimal shape and appearance parameters, the error between the original
image and the synthesized image is minimized. In comparison, the ASM is not minimizing
distances between images but seeks to improve the current estimate by searching around
a small local area. However, the AAM is a holistic model.

Similar to ASMs, the authors construct a multi-resolution model on a Gaussian image
pyramid. For each level on the pyramid there is a separate model. Working from coarse to
fine, the algorithm is both faster and more accurate than using only the finest resolution.

4

2. Related Work

The algorithm is applied to the problem of facial landmark detection in the original AAM
paper. According to [18], ASMs are more accurate and faster than AAMs, but the latter
are able to better match the texture. According to [21] AAMs suffer from lightning changes
and bias towards the mean face.

2.1.3 Constrained local models (CLMs)

Another class of shape models are CLMs, proposed by Cristinacce et al. [19]. CLMs are
similar to AAMs as both model shape and appearance variations of deformable objects
like faces. CLMs model the appearance around each landmark in local templates, whereas
AAMs model the whole object. The templates are normalized to have zero mean and unit
variance.

When using the CLM to locate landmarks, the shape and appearance models are used
to generate estimated locations and texture templates around each landmark. Then for
each landmark the correlation between the template and the actual image at this position
is computed. The iterative fitting process maximizes these correlations while respecting
shape constraints. CLMs achieve a lower localization error than AAMs when predicting
facial landmarks [19].

2.1.4 Regression and cascaded regression

An alternative to shape-based models like ASMs, AAMs or CLMs are regression-based
approaches. According to Zadeh et al. [79], cascaded regression has mostly replaced CLMs
as they aren’t able to model complex appearance variance that is caused by different facial
expressions, facial hair or makeup.

An example for non-cascaded regression is the work from Dantone et al. [21]. They use
random forests [8] conditioned on the head pose to regress the locations of facial landmarks.
There is one random forest for each of five head pose ranges and during inference the
predictions of each random forest is weighted by the probability of this specific head pose.
Each random forest is only trained on one specific head pose. This allows the random
forest to focus on the appearance specific for that head pose. In addition to the actual
regressors for the facial landmarks, a regressor for the head pose probability is trained.

Zhu et al. [86] use the cascaded regression pattern to search the so-called shape space that
contains all shapes seen during training. In each stage the best fitting shape is picked and
then refined in the next stage. This is done by restricting the search space to the most
likely candidates. In the last stage the final predictions are computed. Their approach does
not require an initial estimate for the location of the landmarks. Moreover, by starting
from a coarse scale (considering all possible shapes with all possible poses) and refining the
shape space on each cascade level, the algorithm is less prone to local minima. They use
different features on each level. The first level makes use of fast but less accurate features
while the last stage uses slower and more accurate features. This ensures allows them to
run the algorithm in real-time. We will compare our results to this approach and refer to
it as CFSS (Coarse to Fine Shape Searching) in Chapter 4.

Cao et al. [13] train a cascaded regression model that regresses shapes which are guaranteed
to be a linear combination of shapes seen during training. This ensures that the algorithm

5

2.2. Deep learning based facial landmark detection

predicts valid shapes without the need to learn a shape model. The regressors in the
cascade are trained to explicitly minimize the prediction error on the training data and all
landmarks are jointly predicted. The first regressors in the cascade handle large variations
(e.g. head pose) while the final regressors are responsible for fine-grained predictions like
closed/open eyes/mouth. The regressors are built on simple features that compare two
pixels. This makes the algorithm both fast and invariant against variations caused by
illumination.

2.2 Deep learning based facial landmark detection

Early facial landmark detection algorithms, such as the ones presented in the previous sec-
tion, were implemented using manually engineered features and classical machine learning
algorithms like random forests [8] or Support Vector Machines (SVMs) [7]. Since the rise
of artificial neural networks (commonly just referred to as neural networks) most work in
the field of facial landmark detection relies on Convolutional Neural Networks (CNNs), a
special kind of neural networks.

Deep neural networks are also extensively used in this work. In the rest of this chapter
we first give a short introduction into neural networks in Section 2.2.1 and CNNs in
Section 2.2.2 and then present some approaches using neural networks in Section 2.2.3.
More deep learning based approaches have been summarized by Bodini et al. [6].

2.2.1 Neural Networks

Neural networks are a powerful class of machine learning algorithms. For some applications
like image processing, they do not require manually crafted features but are able to learn
suitable features themselves (representation learning). When using classic algorithms,
features have to be engineered manually. This enables more accurate models since humans
do not have to come up with optimal features for the task at hand. It also allows the use of
complex hierarchical features because neural networks are typically organized in multiple
layers that compute features on the features from the previous layer [26].

Neural networks can be applied to a variety of different tasks in speech processing [27, 69],
natural language processing [25, 77], image processing [10, 11, 29, 35, 44, 46, 47, 63, 76,
79] and more [39]. The main drivers for the success of neural networks are large amounts
of available data and enough computational power to train these networks. Since these
conditions were fulfilled, it has been possible to push the state of the art results by a large
margin for many applications.

A neural network can be seen as a complex non-linear function that maps the input (e.g.
an image or audio signal) to a set of output values (e.g. class probabilities or coordinates).
The neural network itself is comprised of a sequence of linear transformations followed by
non-linear functions. A non-linear activation function is crucial because otherwise, multiple
linear functions in a sequence collapse to one single linear function which drastically reduces
the variety of functions the network can approximate.

Such a network usually consists of multiple layers, each containing a number of neurons.
The neurons in each layer are connected to each neuron of the previous layer. There is
a weight on each connection. The first layer is called the input layer and as such has

6

2. Related Work

Figure 2.1: Visualization of a feed-forward neural network with two hidden layers from
Goldberg et al. [25]

no input connections. Analogously the last layer is the output layer and has no output
connections. All layers between the input and output layer are hidden layers and they
are fully connected with both the previous layer and the succeeding layer. An example
network with two hidden layers is depicted in Figure 2.1. As the data is fed from the
input layer to the following layers and never backwards, this kind of network is called
feed-forward network. The objective of the training process is to minimize a loss function
by learning the network weights. This is possible through back-propagation [54].

The network can be applied to a sample by feeding the sample into the first layer. The
values in the next layer are computed by multiplying the values from the previous layer
with the connection weight and then computing the sum of these products. The sum is
then transformed by the non-linear activation function and the result is the output of the
current layer. This process repeats until the last layer is reached.

A more detailed introduction to neural networks can be found in many publications, e.g.
the book by Goodfellow et al. [26] or the introduction to natural language processing by
Goldberg et al. [25]. The next subsection is focused on a special class of neural networks
that is mostly used for image processing.

2.2.2 Convolutional Neural Networks

In standard feed-forward neural networks the input data is an one-dimensional vector and
all layers are fully-connected, which means that each neuron is connected to each neuron
from the previous layer. However, this is not ideal when the input is an image, because
images have a width, height and color channels, so the input is a three-dimensional tensor.
Furthermore, when analyzing images, a desired property is to have spatial invariance. This

7

2.2. Deep learning based facial landmark detection

means that an object should be recognized regardless of its position in an image. When
using fully-connected layers this is not possible because there is a connection weight for
each of the possible pixels. To have spatial invariance in this case, the network must be
trained on images where the objects appear in all possible locations. This is an unrealistic
requirement because training data is still limited and training is time-consuming.

Convolutional Neural Networks (CNNs) [37] solve these issues by organizing the layers
in three dimensions (width, height, channels) and replacing the fully-connected layers by
convolutional layers. CNNs are inspired by Time-Delay Neural Networks (TDNNs) [69].
A convolutional layer consists of a set of filter kernels with a relatively small size (e.g.
3× 3 px) that operate on all channels of the input layer. The kernel is convolved with the
input layer and creates a filter response for each location. The output of the convolutional
layer consists of one channel for each of the filters and each channel contains of the filter
responses. A channel is often referred to as feature map because the filters that produce
it compute features on the input channels. It is important to note that the weights of
the convolutions are the independent of the location where the convolution is applied. In
other words, the filter kernels share the weight among all locations (parameter sharing).
This has the advantage that for each kernel only a relatively small number of weights has
to be learned in contrast to a fully-connected network. It also makes the filters invariant
to translations. The output of the convolutions is transformed by a non-linear activation
function, similar to feed-forward networks.

The size of a filter is also called its receptive field. It describes the area around a pixel that
influences the value of the convolutional layer’s output. Filters with a small receptive field
can only compute local features and are not able to analyze an image at a larger scale.
To overcome this issue, many modern CNN architectures include subsampling layers that
reduce the spatial extent (width and height) of a layer. The subsampling process is often
called pooling. A commonly used pooling operator is the maximum function which returns
the largest value in a n×n px region. However, other functions such as the average function
could also be used. By using the maximum, the network is also able to get rid of noise
and focus on the most prominent features. A frequently used pooling size is 2 × 2 px.
It transforms an input feature map of size h × w × c into an output feature map of size
h
2 ×

w
2 × c. The pooling operation does not reduce the number of channels but only the

width and height. When a convolution is applied to the pooled output of a convolution,
the receptive field grows since more input neurons have an influence on the value at each
pixel. Therefore, the features computed in early layers detect local patterns like corners
and edges and get more complex after each subsequent layer.

Figure 2.2 shows a simple CNN with two convolutions and two subsampling steps. The
fully connected layers in the end convert the features computed by the convolutional part
of the network into an output vector. The output values can represent class probabilities
or regressed coordinates. A CNN without fully-connected layers is called a Fully Convolu-
tional Neural Network (FCNN) and its output is a multi-dimensional tensor. Part of this
work is realized using a FCNN.

8

2. Related Work

Figure 2.2: Visualization of a Convolutional Neural Network from Liu et al. [39]

2.2.3 State-of-the-art approaches

Since the rise of deep convolutional neural networks the performance of facial landmark
detection systems has massively improved. Deep learning based approaches mostly out-
perform classic solutions. In this section, a brief overview over publications with state-of-
the-art results in the field of facial landmark detection is given. Most of the deep learning
based algorithms shown here are regression based approaches, except the one by Zadeh et
al. [79] which combines a CLM with a neural network as local detector and by Merget et
al. [44] which uses an additional shape model on top of the regressed coordinates. The
paper titles are written in bold.

Deep Convolutional Network Cascade for Facial Point Detection

Sun et al. [63] present a multi-stage neural network that locates five facial landmarks. This
is different to most other presented publications and our work that locate 68 landmarks.
The system is one of the first deep learning based facial landmark detection solutions. It
regresses the coordinates directly rather than regressing a heatmap. A three-stage cascade
of convolutional networks is trained. The first stage produces initial predictions and the
next two stages only operate on a window around the current estimate and refine the
prediction.

Each stage consists of multiple networks whose predictions are averaged before running
the next stage. On the first stage there are three networks. One predicts all five landmarks
and operates on the whole image and is already able to produce decent initial predictions.
The other network in the first stage analyzes only the top and middle part of the image
and locates the eyes and nose. The last one operates only on the bottom and middle part
of the image and locates the nose and mouth. After fusing the predictions the next stage
employs two neural networks for each landmark that operate on patches with different
sizes. As opposed to the first stage the other stages only predict relative shift vectors
to the last predictions. These predictions are averaged again before running the next
stage. There are two patches with different sizes for each landmark because sometimes
predicting landmarks based on small regions is ambiguous. The second and third stages are
only allowed to shift the prediction by a small value to avoid drifting. The final prediction
is the sum of the first predicted location and the shifting vectors of the last two stages.

9

2.2. Deep learning based facial landmark detection

Convolutional Experts Constrained Local Model for Facial Landmark Detec-
tion

Zadeh et al. [79] state that standard CLMs [19] are not able to model all possible variations
of regions around facial landmarks that can be caused by facial expressions, facial hair or
makeup. To overcome this problem, they employ a Convolutional Experts Network (CEN)
as a local detector for each landmark. Based on heatmaps produced by the CEN a CLM
produces the final coordinates. The CLM has a global view while the CEN operates only
locally and does not take the location of other landmarks into consideration. Each CEN
is optimized to detect one specific landmark in multiple possible variations such as head
pose, skin color or facial hair.

The CE-CLM (Convolutional Expert Constrained Local Model) algorithm is model-based
and works iteratively. The CENs analyze a n × n region around the current estimate of
a landmark and return a heatmap corresponding to the probability in that region. The
region shrinks in each iteration as the model gets more confident. The individual experts
vote for a location probability and these votes are combined with non-negative weights to
obtain the final prediction of the CEN.

The CLM penalizes unlikely landmark arrangements and thus causes the model to predict
more likely locations in the next iteration. The CLM is based on a PCA shape model
that modifies the 3D mean face shape using principal component shape parameters. The
so obtained 3D face shape is transformed by a 3D affine transformation (rotation, scale,
translation) and then projected to 2D. The new estimate is the one obtained by finding
shape and affine parameters that make the difference to the initial predictions small. Then
the process repeats and the CEN crops the region around it. The overall objective is to find
locations with a high probability for each landmark while at the same time having a low
regularization error, which effectively means that the landmarks arrange in a shape that is
likely to be a face. During minimization, the optimization process finds affine parameters
and shape parameters that represent a face that can be constructed by manipulating the
mean face using the shape parameters and afterwards applying the transformation and
projection to it. By doing this it is possible to model both different face appearances like
facial expressions (shape parameters) and different head poses (affine parameters).

The algorithm can be compared to the classic CLM by Cristinacce et al. [19]. They share
the same PDM (based on the definition by Cootes et al. [17]) but the texture modeling
is different. Zadeh et al. [79] use a neural network (CEN) to produce a heatmap for each
landmark around the current estimate and to move the estimate to a more likely position.
However, Cristianacce et al. [19] have a local appearance model that creates templates
which are then correlated with the input image to find more accurate estimates. The
templates are created using a linear PCA-based appearance model while the CEN is a
non-linear neural network. As such it is able to model more complex variations. We refer
to the approach by Zadeh et al. [79] as CE-CLM in Chapter 4.

Robust Facial Landmark Detection via a Fully-Convolutional Local-Global
Context Network

Merget et al. [44] have proposed a fully-convolutional local-global context network that
solves an issue of ordinary fully-convolutional neural networks, namely that they are not
good at aggregating global context because of their local receptive field. The local-global

10

2. Related Work

network introduces global context into the fully-convolutional network rather than using
cascades of neural networks or fitting a statistical model. This is done by an implicit
kernel convolution that blurs the output of a local-context subnet which is then refined by
a global-context subnet using dilated convolutions [78]. The implicit kernel convolution
makes the gradients less steep and local minima more shallow so that the gradient flow
is improved. It furthermore allows to use dilated convolutions which have a bigger re-
ceptive field compared to regular convolutions. The receptive field of dilated convolutions
grows exponentially with the network depth while the receptive field of regular convolu-
tions grows only linearly. Hence, dilated convolutions allow for a receptive field of the
whole image within only a few layers without losing resolution and thus make pooling
unnecessary. This means that global context can be analyzed without the need of down-
and upsampling again. Without the implicit kernel convolution dilated convolutions can
lead to sampling artifacts, but the implicit kernel convolution acts like a low-pass filter
and thus undersampling is avoided [44].

The local-context subnet predicts initial landmark coordinates which are later refined by
the global-context subnet. It consists of 15 zero-padded convolutions followed by a 1 × 1
convolution which produce 68 heatmaps, one for each landmark. These heatmaps are
convolved with the implicit kernel and then processed by the global-context network. The
implicit kernel is defined for only one channel and applied in the same fashion to all
channels. It smooths the heatmaps from the local-context subnet and thus allows for the
use of dilated convolutions in the following global-context subnet. The implicit kernel is a
mixture of Gaussians and it has half the size of the whole input image.

The global-context subnet consists of 7 zero-padded dilated convolutions with dilation
factor 4. The output of this subnet is a heatmap from each landmark. The algorithm is not
restricted to tightly cropped images, so multiple faces can occur in one image. Therefore
it is not possible to just take the argmax of the heatmaps. To extract the coordinates for
each face, a PCA-based PDM is used. As a consequence the algorithm does not require
a face detection step and is able to handle multiple faces at different resolutions in one
image.

We refer to the algorithm by Merget et al. [44] as FC-LGCN. A detail that is not
mentioned in their paper but shown in their figures is that they apply an intermediate
loss after the local-context network 1. Similarly to the Stacked Hourglass Network for
human pose estimation [47] two branches follow the local-context network. One predicts
the intermediate landmark locations that are used for the intermediate loss. The other
branch contains the implicit kernel convolution. Both branches are stacked afterwards
again and then fed into the global-context network.

Stacked Hourglass Network for Robust Facial Landmark Localization

Yang et al. [76] follow an approach similar to ours. Their basic element is a Stacked
Hourglass Network [47] that is used to generate heatmaps for each landmark. However, in
contrast to this work they first apply a supervised face transformation [14] in order to get
rid of the translation, scale and rotation of the input faces. The normalized face is then
used as input to the Stacked Hourglass Network. The advantage of normalizing the faces

1As the paper does not mention the second branch but it is shown in the architecture visualization, we
asked Daniel Merget via e-mail and he explained the meaning of the two branches.

11

2.2. Deep learning based facial landmark detection

before processing them in the Stacked Hourglass Network is that the Stacked Hourglass
Network needs a lower capacity since it has do deal with less variation.

The supervised face transformation first detects faces by running a region proposal network
(RPN) which also detects five facial landmarks named 5L (it remains unclear in the paper
which landmarks are detected). The candidates are then warped to a mean face shape
and only the candidates that show valid faces after warping are further processed. In the
next step they use a third-party pre-trained facial landmark detector [4] to extract 19
facial landmarks. These are then used to remove the effects of rigid transformations. The
resulting face is cropped from the original images so that it is centered and normalized.
The Stacked Hourglass Network is only trained and evaluated on images that were pre-
processed with this pipeline. They use the heatmaps produced by the Stacked Hourglass
Network to decide which landmarks are occluded based on a confidence threshold.

The algorithm by Yang et al. [76] is the closest to the work presented in this master’s
thesis since both use the hourglass structure to produce heatmaps. However, there are
fundamental differences. First of all, this work does not require the face to be normalized
first. To deal with variations in the dataset we make extensive use of data augmentation
instead and use a model with high capacity. Next, to train our model, we do not use the
standard L2 loss but a new loss function named Wing loss [24]. Their approach also differs
from ours in what training objective is used. They generate ground-truth heatmaps while
our algorithm makes use of the Differentiable Spatial to Numerical Transform (DSNT) [48]
and this does not require artificially generated heatmaps. Instead, we can directly optimize
the final numerical coordinates. Details on our approach are presented in Chapter 3.

Their model is trained on the Menpo dataset [22, 82] and evaluated on different datasets
(COFW [12], iBUG [56], indoor-outdoor 300-W [55, 56, 57], Menpo) using the euclidean
point-to-point normalized distance. The normalization is done by the bounding box diag-
onal (left-top and bottom-right point of shape bounding box). For completeness they also
report the Inter-Ocular Distance (IOD) normalized error. They only compare themselves
to baselines implemented by themselves. We compare our system to the algorithm by
Yang et al.[76] on the iBUG [56] dataset because they don’t provide numbers for the other
datasets that we used in our evaluation. We refer to their algorithm as YANG-HG in
Chapter 4.

Mnemonic Descent Method: A recurrent process applied for end-to-end face
alignment

Trigeorgis et al. [66] apply a recurrent neural network (RNN) combined with a CNN as
feature extractor to the problem of facial landmark detection. This approach is different
from many deep learning based facial landmark detection systems as it does not only
use convolutions but also recurrent layers that are mostly known for speech and audio
processing [27, 30]. The approach follows the cascaded regression pattern where predictions
are refined iteratively. In contrast to classic cascaded regression algorithms, the regressors
can be trained jointly and end to end. The convolutional part of the network extracts
features which are then analyzed by the recurrent part that returns the final predictions.
By using a RNN the network can use the whole history to base its prediction on.

The algorithm starts by assuming the landmarks belong to the mean face shape. Then, a
30 × 30 px region around each landmark is extracted and processed by a two-layer CNN

12

2. Related Work

to get an abstract representation of the region. Once obtained for all of the landmarks,
these representations are fed into the RNN which outputs a direction that points to a new
estimate for each landmark. This is repeated three times with the newest estimate and
the final estimate is used.

The big advantage of this system compared to classic cascaded regression architectures
is that no hand-crafted features are required. Instead, by training the CNN and RNN
end-to-end, optimal features for the task at hand are learned via back-propagation.

How far are we from solving the 2D & 3D Face Alignment problem?

Bulat et al. [10] follow a similar approach as Yang et al. [76] by using a Stacked Hourglass
Network [47] to produce heatmaps for each landmark. However, they replace the residual
module [29] by a hierarchical, parallel and multi-scale block [9] that does not use 1 × 1
convolutions. Their Face Alignment Network (FAN) consists of four stacked hourglasses.
The model is evaluated on about 220,000 face images. The differences to this work include
that our work returns numerical 2D coordinates while they regress heatmaps and that
they replaced the residual module by a different block.

Super-FAN: Integrated facial landmark localization and super-resolution of
real-world low resolution faces in arbitrary poses with GANs

Bulat and Tzimiropoulos [11] use Generative Adversial Networks (GAN) to simultaneously
improve face resolution and detect facial landmarks. A sub-network for facial landmark
heatmap regression is used within the GAN. The generator converts a low-quality and low-
resolution face image into a higher-resolution image and the discriminator decides if it was
an original or generated image (only during training). In parallel to the discriminator, the
Face Alignment Network (FAN) regresses heatmaps for all facial landmarks. The FAN is
the same as in [10] that was shown to perform poorly on low-resolution images. However,
when combined with the super-resolution GAN, the accuracy is improved for both the
super-resolution and landmark detection tasks.

The heatmap loss compares the output of a FAN operating on the high-resolution image
(ground truth) and of the FAN operating on the image produced by the generator. The
goal is to have a FAN that generates the same heatmaps on the original and the generated
image. Note that the two FANs do not share weights and the high-resolution FAN is
pre-trained and not updated during the GAN training.

2.3 Evaluation baselines

Out of the previously described approaches we use CFSS from Zhu et al. [86], YANG-
HG from Yang et al. [76], CE-CLM from Zadeh et al. [79] and FC-LGCN from Merget
et al. [44] to compare our own system to. The other presented systems are not used in the
evaluation since they were evaluated on different datasets. We also compare our results to
other works:

• CLNF: Baltrusaitis et al. [3] propose Constrained Local Neural Fields for robust
facial landmark detection. It consists of a probabilistic patch expert which assigns
per-landmark alignment probabilities to the input image. CLNF is a variation of
classic CLMs.

13

2.3. Evaluation baselines

• SDM: Supervised Descent Method (SDM) by Xiong et al. [74] uses cascaded regres-
sion to minimize a Non-Linear Least Squares function, e.g. the mapping from a face
image to shape coordinates.

• CFAN: Zhang et al. [83] use cascaded regression in their Coarse-to-Fine Auto-
Encoder Network (CFAN). In each cascade stage the image resolution is increased
and a finer prediction is made.

• DRMF: Asthana et al. [2] present Robust Discriminative Response Map Fitting
(DRMF) with CLMs. For each landmark heatmaps are regressed and from these
heatmaps the landmark coordinates are regressed.

• PO-CR: Georgios Tzimiropoulos [67] proposes a cascaded regression approach that
works especially well on the iBUG dataset [56].

• TCDCN: Zhang et al. [85] use multi-task learning to predict facial landmark coordi-
nates, head pose and facial attributes like gender, smile or wearing glasses. Learning
multiple tasks helps achieving better performance on the landmark detection task.

• 3DDFA: Zhu et al. [87] focus on profile faces. They present a 3D dense face
alignment (3DDFA) which fits a dense 3D model to the face image which allows
them to not only locate the visible but also the hidden landmarks (due to pose).

• DU-Net: Tang et al. [65] build on the Stacked Hourglass Network [47] and design
a Quantized Densely Connected U-Net. This architecture differs from the original
Hourglass architecture because feature maps of the same size are not only connected
within each Hourglass but also with all following Hourglasses in the stack. To improve
the model size and inference speed, they use quantized weights and gradients.

• LAB: Wu et al. [73] choose a novel approach and detect the face boundary first.
These boundaries can be interpolated from existing datasets and are independent of
the exact number of landmarks, thus allowing to use datasets with different annota-
tion schemes together. Based on the detected boundaries the actual facial landmarks
are regressed. Their architecture builds on the Stacked Hourglass Network [47].

• AWL: In April 2019, Wang et al. [72] have proposed Adaptive Wing loss which is
an extension to the Wing loss function [24] that is designed to optimize heatmap
regression networks. They use it to train a facial landmark detection network which
is based on the Stacked Hourglass Network [47]. Their solution achieves state-of-the-
art results on various datasets.

The evaluation results are presented in Chapter 4.

14

3. Methods

A detailed overview about the system that is designed and implemented during this thesis
is given in this chapter. First, the overall architecture is described on a high level in
Section 3.1. Then, assumptions about the input images are made in Section 3.2 and the
coordinate system is explained in Section 3.3. The two main components of the system
are the Stacked Hourglass Network and the Point Distribution Model. Details about the
architecture of the Stacked Hourglass Network can be found in Section 3.4 and the Point
Distribution Model is covered in Section 3.5.

3.1 High-level system overview

The algorithm developed in this work is fully based on neural networks and divided into
two steps.

First, initial coordinate predictions for each facial landmark are computed using a fully-
convolutional neural network that regresses heatmaps for each landmark. This network
architecture is known as Stacked Hourglass Network and described in Section 3.4.1.3. It is
designed to analyze an image on multiple scales at the same time and to combine features
on different scales. This allows the network to learn how the landmarks are typically
arranged relatively to each other. The resulting heatmaps are converted into numerical
coordinates using the Differentiable Spatial To Numerical Transform (DSNT) as described
in Section 3.4.2. The network is trained using Wing loss because it has some desirable
properties for the optimization of regression networks that are explained in Section 3.4.3.
All components mentioned in this paragraph belong to the first step and are described in
Section 3.4.

Since the first step does not include a shape model, it is not guaranteed to predict correct
shapes for all face images. For example, it is possible that some landmarks are predicted
to be located at positions that are unlikely due to human anatomy. Thus, the second
step takes the initial predictions and optimizes them using a neural shape model called
Point Distribution Model (PDM). The PDM is trained to encode valid 3D face shapes
in a latent vector representation. By using 3D instead of 2D coordinates internally it is
able to learn representations that are independent from the head pose or camera position.
Different head poses are represented by a 3D affine transformation and a 2D projection.
The PDM iteratively finds a latent vector that gets mapped to a shape that is as close
as possible to the predictions from the Stacked Hourglass Network. Since it only encodes
valid shapes it is expected to converge to a valid face shape. To prevent correctly predicted
landmarks from being modified, the first step also returns a confidence measurement for
each landmark. This confidence measurement is based on the variance of the probability

15

3.2. Input images

distribution represented by the heatmaps that the Stacked Hourglass Network produces.
Section 3.5.6 contains details about the heatmap variance and confidence calculation. The
whole PDM architecture is described in Section 3.5.

To summarize, in the first step the face image is converted into a set of 2D coordinates
and confidence measurements which are then fed into the second step to optimize these
coordinates. The PDM never operates on the image but only on the coordinates.

To the best of our knowledge, we are the first to combine the Stacked Hourglass Network
with a shape model. Various design choices for the system components will be explained
for each of the components. The performance of the components and the overall system
are evaluated in Chapter 4.

3.2 Input images

The input to the algorithm are 128 × 128 px RGB images that contain a single cropped
face. Larger or smaller images are scaled to 128× 128 px. Cropping faces from arbitrary
images can be done using a face detection algorithm such as Viola & Jones [68] or MTCNN
[84]. Face detection is not part of this work.

It is important to use the same face cropping method during model training and evaluation.
For example, training the model on images that show tightly cropped faces and evaluating
it on images that contain more of the background would result in worse predictions since
the Stacked Hourglass Network learns a different bias because it was trained on faces with
a different scaling than it is evaluated on. We empirically confirmed this behaviour by
training and evaluating the network on different bounding box sizes. If the goal is to use
the system on faces found by arbitrary face detectors, the training data must be augmented
accordingly.

Since the bounding boxes provided by the different datasets that are used in this work
(Section 4.1) often are too tight and do not comprise all landmarks, we decided to create
artificial bounding boxes instead. The bounding boxes are created based on the facial
landmark annotations. The smallest rectangle that contains all landmarks is increased
by 5% in both width and height and used as the bounding box for the face cropping.
This procedure can only be applied when the landmarks are already annotated, e.g. when
evaluating the model on benchmark datasets. When the goal is to use the system on
arbitrary images without annotations, it either has to be trained using a real face detector
or a mapping between the detections of a real face detector and the artificial bounding
boxes has to be learned. Alternatively data augmentation as described in the previous
paragraph can be used. These are open topics not covered in this thesis that could be
further investigated in future works. This work is focused on proving the concept of the
Stacked Hourglass Network and the PDM.

The face images are assumed to show only frontal or semi-frontal faces which means that all
landmarks are visible in the image. Faces with head poses different from the neutral pose
are allowed as long as no landmark is occluded by the face itself. The system could also
be used for profile pictures if the Stacked Hourglass Network was adapted to additionally
output a visibility indicator for each landmark. The PDM would not have to be adapted
as it already can handle occluded landmarks using its internal 3D face model if their

16

3. Methods

confidence is set to zero. Both the Stacked Hourglass Network and the PDM would have
to be re-trained on datasets that contain profile faces. However, this is not part of this
work as we focus on frontal and semi-frontal images.

3.3 Coordinates

The whole system uses normalized coordinates in the range [−1, 1] instead of real image
coordinates in [0, 127]. This is because regressing values that are centered around 0 is nu-
merically more stable than regressing only non-negative values, since the network weights
are initialized randomly and the expected output in the first epoch is 0. Using positive
values could lead to exploding gradients in the first epochs of the training.

Real image coordinates can be converted into normalized coordinates using this formula
applied to both the x and y component:

normalize(c) =
c

63.5
− 1 (3.1)

and back to image coordinates using

unnormalize(c) = (c+ 1)× 63.5 (3.2)

The value 63.5 is the image width/length divided by two.

3.4 Stacked Hourglass Network: Computing initial facial land-
mark predictions

The first step in the facial landmark detection pipeline is described in this section. Based
on the input image the (x, y) coordinates for each of the 68 facial landmarks are predicted.
The input image is assumed to only contain a cropped face as described in Section 3.2.

The main component of this pipeline step is the Stacked Hourglass Network described in
Section 3.4.1. It works directly on the input image and produces a set of heatmaps that
represent the likelihood for each of the landmarks to be present at a specific location. Since
we are interested in numerical 2D coordinates, these heatmaps have to be transformed into
numerical values. This is done using the Differentiable Spatial To Numerical Transform
(DSNT) as presented in Section 3.4.2. The Wing loss function described in Section 3.4.3 is
used to train the network. A short recap about this pipeline step is given in Section 3.4.4.
The whole procedure is evaluated in Chapter 4 in Section 4.5.

3.4.1 Stacked Hourglass Network architecture

Convolutional Neural Networks (CNNs) are well-suited for various image processing tasks
[11, 29, 35, 47]. Many common image analysis networks are special CNN architectures.
This work focuses on finding and implementing a neural network architecture that is able
to produce accurate facial landmark location predictions.

17

3.4. Stacked Hourglass Network: Computing initial facial landmark predictions

Figure 3.1: Scheme of a Stacked Hourglass Network [47]. The dashed lines mark the
limits of a single hourglass. The left image is the input image and the right blue box is
the set of heatmaps produced by the Stacked Hourglass Network.

Newell et. al [47] have defined a novel regression-based CNN architecture that is used
for human pose estimation. It produces heatmaps for each of the landmarks of a human
body, for example the knee, elbow, wrist or the shoulder. The shape of this network
architecture reminds of an hourglass and the network is thus called an Hourglass network.
We will refer to the Hourglass network as Hourglass (HG) from now on. It is a Fully
Convolutional Neural Network (FCNN) that processes the image by downsampling it to a
certain resolution (this is the bottleneck of the HG) and then upsampling it again in order
to produce the heatmaps. Between layers of the same size there are shortcut connections.
This allows the HG to analyze the image on different scales and, at the same time, combine
features from different scales. When multiple landmarks whose locations depend on each
other have to be located, this is helpful because the HG can use global cues to do local
predictions. For the use case of human pose estimation the locations of different joints
depend on each other because the human skeleton has only a certain degree of freedom.
These relationships can be learned by a HG. The final output is a heatmap for each of
the landmarks that indicates the likelihood for each pixel in the input image.

In order to produce even more accurate results, Newell et al. [47] stack multiple HGs
and feed the output of one HG into the next HG. A stack of multiple HGs is depicted in
Figure 3.1 and called a stacked HG. The idea behind this is to allow the network to first
produce an initial prediction which is then refined by the following HGs. Before the first
HG, the image is pre-processed as described in Section 3.4.1.3 in order to reduce the image
dimensions and the memory usage. The more HGs are stacked, the more refinement can
be done. The downside is that the cost also grows, e.g. number of parameters, memory
usage, training time, inference time.

Newell et al. [47] use this architecture to estimate human pose from an image. Human
pose estimation is related to facial landmark detection as in both tasks the position of
each landmark depends on the position of the other landmarks to a certain degree. For
example, if the position of the left eye is known, the position of the right eye can already
be roughly estimated. Furthermore the rough layout of a human face is fixed: There is no
situation where an eye would be at the position of the mouth or the nose and the mouth
are confused. However, due to different face shapes, head poses, emotions and occlusions it
is not possible to exactly predict landmarks based on only a few other landmarks. In order
to produce exact predictions the model must have a general understanding of a human face

18

3. Methods

shape and the typical appearance of landmarks. A HG is able to encode a general model
of a face in its internal weights and use this information to produce accurate predictions.

As facial landmark detection is related to human pose estimation, this architecture has
been chosen as the basic element for this work. We investigate how well stacked HGs
work for facial landmark detection. Results are shown in Section 4.5. The stacked HG
architecture and its basic elements are described in detail in this section and the changes
that were made to the original architecture are outlined.

3.4.1.1 Residual modules

Newell et al. [47] make extensive use of residual modules [29] which are frequently used in
image recognition tasks. These modules simplify the training of deep neural networks as
they allow the gradients to flow back through not only one path but through a main path
and a shortcut connection. Residual modules are the basic building blocks of HGs.

The general form of a residual module is shown in Figure 3.2. The module input is a 3D
tensor with nin channels and the output a 3D tensor with nout channels. Both tensors
have the same width and height. In other words, a residual module does not change the
spatial dimensions (width and height) of the input but only the number of channels. The
residual module consists of two branches, a main branch and a shortcut branch and the
output of both branches is combined in the end. Both branches are labeled in green in
Figure 3.2.

noutnout/2nout/2 3x3 1x1 +

nout1x1

1x1 noutnin

Main

Shortcut

Figure 3.2: The basic building block of a HG is a residual module (Res). Blue boxes
represent 3D tensors that have a width, height and a number of channels. The labels
within the boxes denote the number of channels. The arrow labels show the kernel size of
the convolution that is applied. If nin = nout the 1× 1 convolution in the shortcut
branch is replaced by the identity function. The red sum symbol represents an
element-wise sum operation.

In the main branch, first a 1×1 convolution is applied to reduce or increase the number of
features from nin to nout/2. Then a padded 3× 3 convolution with nout/2 output feature
maps is performed. The padding ensures that the spatial extent of the input is preserved.
In contrast to the previous 1× 1 convolution, the 3× 3 convolution does not only look at
one specific pixel and combine the information of the feature maps at this position, but
it also considers a 3 × 3 px neighborhood around that pixel so that relevant local spatial

19

3.4. Stacked Hourglass Network: Computing initial facial landmark predictions

patterns in the input feature map can be captured. The last step in the main branch is
another 1× 1 convolution with nout channels.
The shortcut branch is a 1× 1 convolution which maps nin to nout feature maps if nin 6=
nout and the identity function otherwise. It branches off the main branch before its first
convolution.

Both the main and shortcut branch have nout channels and can thus be combined to the
output of the residual module by performing an element-wise sum. Before each convolution
in the main branch, batch normalization [31] is performed and the result is activated with
ReLU(x) = max(0, x).

This basic building block is used at many places in the (stacked) HG and will be referred
to as Res(nin, nout) in further figures.

Residual sequences

Residual modules are used in sequences called residual sequences as shown in Figure 3.3.
They consist of nmod residual modules which all have the same number of input and output
channels (nin = nout). Therefore we refer to the number of channels as nfeat. Having the
same number of input and output channels implies that the shortcut branch in the residual
modules is just the identity function.

We refer to residual sequences with nmod modules and nfeat features asResSeq(nmod, nfeat).
Using sequences of two or more residual modules allows the network to generate complex
local features by alternatively combining multiple channels of a 1 × 1 px and a 3 × 3 px
neighborhood.

Res(,) Res(,) Res(,)

Figure 3.3: A Residual sequence (ResSeq) consists of nmod residual modules with the
same input and output dimensions.

3.4.1.2 Hourglass

Based on the residual sequence from Section 3.4.1.1 a HG is be defined. Its architecture
is formulated recursively with a certain recursion depth and visualized in Figure 3.4. We
will later refer to a HG with the recursion depth depth and residual sequences containing
nmods residual modules which have nfeat features as HG(nfeat, nmods, depth).

On each recursion level a HG has two branches which operate on different scales, a big and
a small branch. The green labels mark the two branches in Figure 3.4. The big branch
operates on the original input resolution. The small branch performs 2D max pooling and
therefore operates on a smaller scale where width and height are halved. It processes the
downscaled input and then upsamples it using nearest neighbor upsampling. The output
of both branches is summed element-wise so that features of different scales are combined.

The input is first downscaled (max pooling) in the small branch before it is processed by a
residual sequence ResSeq(nfeat, nmods). The next step is called the bottleneck and defined

20

3. Methods

Pool
+

ResSeq
()

ResSeq
()

ResSeq
()

Bottleneck
(HG or ResSeq)

ResSeq
()

Up-
Sample

Big

Small

Figure 3.4: Scheme of an Hourglass (HG) before stacking. Blue boxes illustrate
sub-networks and the bottleneck is a nested HG unless the maximum recursion level has
been reached. The small branch operates on a smaller resolution (after pooling) than the
input resolution while the big branch operates on the original input resolution. The last
ResSeq is only present on the highest recursion level.

recursively. If the recursion level has reached depth, a ResSeq(nfeat, nmods) is placed in
the computation graph. Otherwise, a HG(nfeat, nmods, depth− 1) is inserted. This nested
HG works on the smaller resolution and will further downsample it if the recursion end
has not yet been reached. Note that the downsampling leads to a bigger receptive field in
the 3 × 3 convolutions in the nested HGs. The more downsampling steps, i.e. the higher
the depth value, the more of the global context can be captured by the convolutions at a
specific depth.

The next element in the small branch is another residual sequence in both recursion cases.
To be able to combine the features from the small and big branch the feature maps in the
small branch need be to upsampled. Newell et al. [47] use nearest neighbor upsampling,
however more advanced interpolations such as bilinear interpolation could also be used.
Since nearest neighbor upsampling already achieves low error rates (shown in Section 4.5),
we also used nearest neighbor upsampling and did not compare the effect of different
interpolations.

The big branch is a residual sequence of nmods residual modules which have nfeat features
and works on the pre-pooled input, i.e. on the original resolution. It is used to transport
and transform information from the network part before the downsampling to the part
after the upsampling step.

The output of both branches is summed up element-wise. Since both branches operate on
different scales, the element-wise sum operation is the place where features from different
scales are combined.
On the highest recursion level (original resolution) the output of the sum is fed into the
last ResSeq. It provides the HG with an opportunity to transform its features before the
next HG is executed or the final heatmaps are predicted. This block is omitted for nested
HGs and the sum is directly used as its output.

Modifications of the original HG definition

The final residual sequence after the sum operation is not used by Newell et al. [47] in
the original HG definition. They use a sequence of two 1 × 1 convolutions instead. A
disadvantage of 1 × 1 convolutions is that they have no access to information of their

21

3.4. Stacked Hourglass Network: Computing initial facial landmark predictions

neighbors but only to information of one specific pixel in all channels. Therefore we
replace it by a residual sequence since we believe that the network can benefit from the
3× 3 convolutions within the residual sequence. They allow to combine information from
a local neighborhood instead of only combining information of all channels at one pixel.
Since our implementation worked well we did not compare it to the original definition by
Newell et al. [47].

The sum operation could be replaced by concatenating the feature maps of both branches
and then applying a 1× 1 convolution to reduce the number of channels afterwards. This
could improve performance because during training a more complex combination of the
two inputs can be learned instead of being forced to sum them. On the other hand this
would increase the number of network parameters and the memory usage. As the sum
already worked well, we did not explore the effects of this change.

The recursion depth of a HG is fixed to 4 in the original paper [47]. In this work the depth
of the HG is a hyper-parameter that was explored using grid search (see Section 4.5.3). The
maximal possible depth is defined by the input image dimensions. The images in this work
have the size 128× 128 px and the pre-processing of the stacked HG (see Section 3.4.1.3)
reduces the dimensions to 32 × 32 px. On each recursion level the width and height are
reduced by a factor of 2. Thus, the deepest HG evaluated in this work has 5 levels (25 = 32)
and the bottleneck is only 1× 1 px large.

3.4.1.3 Stacked Hourglass Network

A single HG as defined in Section 3.4.1.2 performs only one round of down- and upsam-
pling. Stacking multiple HGs can improve the predictions as the first HG computes initial
predictions which are refined by the following HGs. When multiple HGs are stacked, the
image is down- and upsampled multiple times, allowing the network to get a fine-grained
understanding of the scene.

Newell et al. [47] have proposed a stacked HG, as shown in Figure 3.5 for the case of nhg = 2
HGs. StackedHG(nhg, nf , nm, no, depth) describes a stack of nhg HGs with a certain
depth that contain residual sequences with nm residual modules that have nf features.
The stacked HG produces no output feature maps that can be interpreted as heatmaps.
Each of the no heatmaps corresponds to one landmark and indicates the likelihood of this
landmark at each location in the image.

Pre-processing part of the stacked HG

The image is pre-processed by a neural network before running the actual HGs. The first
step in the pre-processing network is a 2-strided 7 × 7 convolution with 64 channels that
serves two purposes: It captures local patterns directly in the RGB image and reduces
the image width and height by 50%. The image is further processed by a residual module
which takes 64 channels and returns 128 channels. To further reduce the width and height
of the tensors, a 2D max pooling operation is executed. After this step the width and
height are four times smaller than in the original image. This is important as it reduces
the memory usage and processing time. Since the image size in this work is 128× 128 px,
the resolution at this point in the pre-processing pipeline is 32 × 32 px. Before the first
HG is executed, two more residual modules compute nf features. The original stacked

22

3. Methods

7x7

+

PoolRes(64,128) Res(128,)Res(128,128)

HG() nf nf

nfno

HG() nf no
A

B

B

Figure 3.5: A stack of nhg = 2 HGs including pre-processing steps. For better readability
the number of features is designated as nf instead of nfeat and the number of modules is
nm instead of nmods. no is the number of heatmaps that are be produced.

HG architecture uses nf = 256 features throughout the whole network. We make nf a
hyper-parameter and explore the effects of different values on the task of facial landmark
detection. Results are presented in Section 4.5.3.3.

After these pre-processing steps, the resolution is 32 × 32 px. All HGs in the stack work
on this resolution, Thus, after four downsampling steps (HG depth 4) the size is only 2×2
px while it is 4 × 4 px in the original paper (due to 256 × 256 px input images). The
maximum possible depth is 5 as this will reach 1× 1 px feature maps in the bottleneck. A
way to increase the resolution the HGs work on and maximum possible depth is to replace
the initial 7× 7 convolution by a 3× 3 convolution or completely remove it. However, in
this work we kept the original pre-processing pipeline since the models would get too big
to fit on a single GPU otherwise and the processing time would increase too much.

Main part of the stacked HG

Depending on the number of HGs nhg in the stack the following steps are repeated:

A HG with nf features in sequences of nm residual modules and a specific depth is executed.
A 1×1 convolution with nf features processes the output of the HG before branching into
two paths which are marked with green A and B labels in Figure 3.5. Branch A is another
1 × 1 convolution with nf features and branch B produces no heatmaps using a 1 × 1
convolution (red box in Figure 3.5). If the HG is the last one in the stack, these heatmaps
are the final predictions of the stacked HG. Otherwise, the heatmaps can be used to apply a
loss function for intermediate supervision. Intermediate supervision means that the error
between the predictions and the ground-truth is computed after every HG rather than
after only the final HG. Newell et al. [47] found that this can lead to a small accuracy
improvement. The intermediate heatmaps are transformed back into the feature space
with nf channels by performing a 1× 1 convolution.

The input for the next HG in the stack is the element-wise sum of

• The input of the current HG. In case of the first HG this is the pre-processed image.
This can be seen as a skip connection between adjacent HGs. It allows an HG to
add its own information to the set of features and also improves the gradient flow.

23

3.4. Stacked Hourglass Network: Computing initial facial landmark predictions

• The output of branch A

• The output of branch B

To clarify: In the case of the last HG in the stack, branch A is not executed and branch B
does not map the heatmaps back into the feature space, but the heatmaps visualized by
the red box are used as the final prediction. This means that the red box of the last HG
in Figure 3.5 is the final output.

The different HGs in a stacked HG do not share weights. The reason for this is that
the input to each HG represents different features that can not be processed in exactly
the same way. For example, the input to the first HG is the pre-processed image and
thus contains only low-level features. However, the input to the second HG is the output
of the first HG (plus the input of the first HG) which means that it is based on multiple
representations of the original image on different scales, thus it contains high-level features
that require different processing in the subsequent HGs (if there are any in the stack).

Stacked HG overview

Figure 3.6 shows the data flow of the whole architecture with a stack of nhg = 2 HGs.
The boxes are sized according to the width and height of the tensors they represent. For
simplicity the temporary heatmaps (branch B) for the first HG and the skip connections
are not shown in this image.

Figure 3.6: Tensor sizes visualized throughout a stack of two HGs. The dashed box
shows the limits of a single HG. The four recursion levels can be seen through the
differently sized boxes. Image source:
http://pocv16.eecs.berkeley.edu/camera_readys/hourglass.pdf

The final output of the stacked HG is a set of unnormalized heatmaps. There is exactly one
heatmap for each landmark. The higher the value in the heatmap at a specific location,
the more likely the landmark is present at this location in the input image. The heatmaps
are unnormalized because the sum of the elements in one heatmap is not guaranteed to

24

http://pocv16.eecs.berkeley.edu/camera_readys/hourglass.pdf

3. Methods

be exactly 1 and elements can be negative, thus they don’t represent a real probability
distribution. For applications that require (x, y) coordinates the heatmaps need to be
transformed into numeric coordinates. The next section explains the method used in this
work.

3.4.2 Differentiable Spatial to Numerical Transform

In order to train and evaluate the model, the heatmaps produced by the stacked HG have to
be converted into numerical (x, y) coordinates. In this section we present multiple possible
solutions to this problem. The optimal method should have the following properties:

• Spatial generalization: Must be able to detect objects in each possible location
in the image, even if it was never seen at this location during training.

• Differentiability: The operation should be differentiable to allow that the error can
be directly computed between the regressed numerical coordinates and the ground-
truth coordinates. This is better than computing the error between the regressed
heatmap and an artificially generated ground-truth heatmap because it leads to an
end-to-end trainable system. In such a system the gradients can be back-propagated
through the whole network, from the numerical output to the input image [48].

• No parameters and hyper-parameters: Since training data is limited, the net-
work is more likely to overfit when the system has too many parameters. Moreover,
each additional hyper-parameter requires tuning to find the optimal value. Thus, an
optimal coordinate regression method does not have trainable parameters and does
not add hyper-parameters to the model.

Argmax. A simple solution is to look for the highest value in each heatmap and to use the
location of this value as the regression result [47, 48]. However, if there are two similarly
high values far apart in the heatmap it is not clear if the higher value is the correct one
or if the true output should be the second highest or somewhere in between. Another
problem is that the precision of this method depends on the resolution of the heatmap
[48]. In other words, argmax is not able to return sub-pixel coordinates.

Furthermore, the argmax operation is not differentiable. Hence, to train the model, one
must generate a ground-truth heatmap that can be used to compute of the prediction,
e.g. using Mean Squared Error (MSE) or more advanced heatmap loss functions such as
the Adaptive Wing loss [72]. Newell et al. [47] follow the argmax approach and generate
a 2D Gaussian distribution with a standard deviation of 1px around the true location
of a landmark. While this approach can achieve good results without adding network
parameters, it is not differentiable and thus not well-suited for a end-to-end trainable
system.

Method rating:

3 Spatial generalization

7 Differentiabilty

3 No parameters

25

3.4. Stacked Hourglass Network: Computing initial facial landmark predictions

Fully connected regression. Another possibility is to add a fully connected regression
network after the heatmap. While this approach is differentiable and consequently end-to-
end-learnable, it has problems generalizing to unseen locations during test time [48]. For
example, if a given landmark appears only in the left top corner area of an image during
training but it is in the middle of the image during inference, then this solution will not
be able to regress the location correctly because the connection between the heatmap and
the regressor is fully connected. In other words, there is a specific network weight learned
for each location in the heatmap and thus this approach requires more training samples
with a wider distribution.

Using a fully connected layer after a set of heatmaps requires many parameters. For
example, when 68 landmarks have to be predicted, there are 68 heatmaps with an example
size of 32 × 32 px. A fully connected solution requires a minimum of 32 ∗ 32 = 1024
parameters for each of the landmarks and 68∗1024 = 69632 parameters for all landmarks.
This is only the lower bound of the number of parameters when only one fully connected
layer is used. In practice, using two or more layers might produce better predictions.

Method rating:

7 Spatial generalization

3 Differentiabilty

7 No parameters

Differentiable Spatial to Numerical Transform. To overcome the aforementioned
issues, Nibali et al. [48] propose a Differentiable Spatial To Numerical Transform (DSNT).
The DSNT layer has no learnable weights and no hyper-parameters that have to be tuned.
Intuitively, they calculate the weighted sum of a static coordinate grid and use the nor-
malized heatmap values as the weights. Figure 3.7 visualizes how the DSNT layer works.
There is a static grid for both the x and y component of the coordinate. For a h × w
heatmap, the grids are defined as follows:

Xi,j =
2j − (w + 1)

w
(3.3)

Yi,j =
2i− (h+ 1)

h
(3.4)

for i = 1...h, j = 1...w. The example in Figure 3.7 shows the case h = w = 5.

Before applying the DSNT layer, the unnormalized heatmaps Z from the stacked HG are
normalized using the softmax activation function:

Ẑr,c =
exp (Zr,c)∑h

i=1

∑w
j=1 exp (Zi,j)

(3.5)

In this formula, r and c denote the row and column of the heatmaps and Ẑ is the normalized
heatmap where all entries are non-negative and sum up to 1.

26

3. Methods

Figure 3.7: The Differentiable Spatial to Numerical Transform (DSNT) [48] applied to a
normalized heatmap Ẑ. The coordinates x (y) are computed as the scalar dot product
between the vectorized matrices Ẑ and X (Z). Image source: [48]

To produce the output coordinates, each heatmap value is multiplied with the correspond-
ing grid value and the products are summed up. This can be formalized using the Frobenius
inner product:

DSNT (Ẑ) =
[〈
Ẑ,X

〉
F
,
〈
Ẑ, Y

〉
F

]
(3.6)

An example of the Frobenius inner product is shown in Figure 3.7. It is defined as the
scalar dot product between two vectorized matrices.

Normalizing ensures that the values in the heatmap represent a probability distribution,
so that applying Equation 3.6 is guaranteed to output values in (−1, 1).

µx = E[X] =
〈
Ẑ,X

〉
F

and µy = E[Y] =
〈
Ẑ, Y

〉
F

have a probabilistic interpretation.

They are the mean of X and Y with the probability distribution Ẑ. In contrast, the
argmax operation is the mode of X and Y with the probability distribution Ẑ [48].

Symmetrically distributed values around the center cancel each other out, so the center is
still predicted correctly. The example in Figure 3.7 shows four values of 0.1 around the
0.6 that cancel each other out. The DSNT layer is designed to predict the correct location
even when there is evenly distributed noise around the highest value.

Nibali et al. [48] claim that the DSNT layer can improve accuracy in stacked HG mod-
els when used instead of the argmax method. We furthermore have compared the pre-
diction results using a fully connected regression network to the results using DSNT in

27

3.4. Stacked Hourglass Network: Computing initial facial landmark predictions

Section 4.5.4.3 and found that DSNT leads to a significant improvement. This is why we
use DSNT to convert the heatmaps into coordinates.

DSNT generalizes spatially and is differentiable, so when training a coordinate regression
network (e.g. a stacked HG), the loss can be directly calculated between the ground-truth
coordinates and the predicted coordinates, without the need to create artificial heatmaps
and to calculate the loss between them.

Method rating:

3 Spatial generalization

3 Differentiabilty

3 No parameters

Combining DSNT with heatmap regularization

The DSNT layer as previously described satisfies all requirements to a optimal regression
method. Nibali et al. [48] have shown that results can be further improved by regularizing
the heatmaps.

Since the normalized heatmaps can be interpreted as probability distributions, the Jensen-
Shannon divergence is a suitable regularization function. It compares two probability dis-
tributions and penalizes differences between them. Using the Jensen-Shannon divergence
between the normalized heatmaps and a 2D Gaussian around the ground-truth coordi-
nates forces the model to generate heatmaps that are shaped like a Gaussian distribution.
Example heatmaps are shown in Figure 3.8. The top row contains heatmaps that are
shaped like a 2D Gaussian as intended by using the regularization. The heatmaps in the
bottom are wide-spread across the image and thus lead to inaccurate predictions when
using DSNT.

The goal is to produce heatmaps with a high probability at the correct location of the
respective landmark and a probability close to zero everywhere else, as this will lead to
more accurate and robust predictions. This is true for the top row in Figure 3.8. If there
were noisy probability values on one side of the correct location, the nature of the DSNT
layer would lead to a prediction that is slightly moved to that side (second face in the second
row). This is because the probability values are used to calculate the weighted mean of
the coordinate grid which is then used as the final prediction. DSNT can only compensate
noisy values when they are evenly distributed around the ground-truth location.

Using only the final coordinate loss can not directly avoid this unwanted behaviour. Nev-
ertheless, the HG will still learn to produce heatmaps that have their highest value at the
ground-truth location, but there is no guarantee that the values around that location are
close to zero. The DSNT layer would also predict the correct location if the heatmap had
the same value everywhere but a slightly higher value at the correct location.

Another extreme example is a heatmap that is zero everywhere except two places, where it
has high probabilities. In that case DSNT would predict a point between those two values.
An example is shown in the third picture in the second row. This means that when only
using the end coordinate loss, the model could learn to predict multimodal distributions

28

3. Methods

Figure 3.8: Example heatmaps produced by a stacked HG. High heatmap values are
visualized with green color. The ground-truth location is marked red, the predicted
location blue. Top row: Low heatmap variance and accurate predictions. Bottom row:
High heatmap variance and inaccurate predictions.

around the true location and the final prediction would still be correct. However, the
heatmaps would not be meaningful in this scenario.

For these reasons, we use both the final coordinate loss and the Jensen-Shannon divergence
to train the stacked HG. The Jensen-Shannon divergence introduces the variance of the
Gaussian as a new hyper-parameter. We compare using the divergence with different
variances to not using it in Section 4.5.4.4.

For the sake of completeness, we note that Luvizon et al. introduce the soft-argmax layer
[41] which works similarly to the DSNT layer. Nonetheless, we decided to use the DSNT
layer since it is available for PyTorch [51], which we used in this work.

3.4.3 Wing loss function

In order to train a neural network a loss function is required. The network prediction is
compared to the ground-truth and the loss is small if the prediction is close to the ground-
truth and high if it is further from the optimal value. Loss functions are differentiable
and can be minimized using back-propagation. The goal is to have a neural network that
predicts the correct value for all samples, in which case the loss would be zero. There is
a multitude of possible loss functions and the choice of a suitable function can have a big
impact on the model performance. In this section some commonly used loss functions are
reviewed and an alternative is shown.

29

3.4. Stacked Hourglass Network: Computing initial facial landmark predictions

Many facial landmark detection systems are optimized by minimizing the L1, smooth L1
or L2 loss [11, 24, 48, 76]. Feng et al. [24] name various problems when using the L2 loss
to train a deep neural network. It is sensitive to outliers as the difference between the
ground-truth and prediction is squared. Besides that, predictions that are already close to
the ground-truth but not exactly correct have little influence on the gradient since squaring
a small value makes it even smaller. The closer the prediction is to the ground-truth the
smaller the gradient gets. Consequently it is hard to reach optimal predictions.

Figure 3.9: Comparison of L1, smooth L1 and L2. The x-axis is the difference between
prediction and ground-truth (only one dimension is shown). Image from Feng et al. [24]

Figure 3.9 shows the behaviour of the L1, smooth L1 and L2 loss functions. L1 and smooth
L1 are less sensitive to outliers than L2, but they are not optimal either: The step size
of the L1 loss is dominated by large errors. The smooth L1 loss behaves like L2 around
x = 0 and thus is not able to approach the optimal solution quickly.
Feng et al. [24] propose the Wing loss function that mitigates these problems. It is
composed of a logarithmic part and a linear part:

wing(x) =

{
w ln (1 + |x|/ε) if|x| < w
|x| − (w − w ln (1 + w/ε)) else

(3.7)

The parameter w defines the width of the logarithmic part and ε describes its steepness.
Figure 3.10 shows the Wing loss defined in Equation 3.7 for different choices of the hyper-
parameters w and ε. The logarithmic part has a gradient that grows when x approaches
0. The linear part has a constant gradient and thus prevents outliers from having a big
impact. At the same time it ensures that the network can recover from large errors caused
by faces with a strong head pose. Using only the logarithmic part would lead to gradients
that approach 0 for large errors.

Combining these two functions avoids the downsides of the L1, smooth L1 and L2 loss
functions. Outliers have a smaller influence on the gradient than in the L2 loss function.
Moreover, since the gradient grows as the error decreases, the network can converge to a
state where it produces optimal predictions. In other words, in contrast to the L2 and
smooth L1 losses, the Wing loss strengthens the effect of errors within (−w,w). We found
that better models can be trained with the Wing loss than with the L1 and L2 losses.
Different loss functions and their effect on the facial landmark detection accuracy are
compared in Section 4.5.4.1.

30

3. Methods

Figure 3.10: Shape of the Wing loss function for different values of w and ε. Image from
Feng et al. [24]

3.4.4 Recap: Initial predictions

The previous sections covered all components of the first step of the pipeline. The predic-
tions produced by these components can already be used for tasks that use facial landmarks
as input features, e.g. facial expression analysis. The stacked HG combined with the DSNT
layer and the Wing loss as presented in Section 3.4.1.3 is able to produce accurate state-
of-the-art predictions without the need of any post-processing. We compare the results to
multiple state-of-the-art systems in Section 4.5.

However, even though the stacked HG already learns an implicit shape model (the spatial
relationship between landmarks) by extracting features on multiple scales, strong head
poses can still lead to wrong predictions. Predictions on images with strong head poses
often have a higher error than images with frontal faces. The next section will present
another network that is trained to improve the initial predictions. It is executed on top of
the stacked HG and is intended to help fixing imprecise predictions caused by strong head
poses or occlusion.

3.5 Point Distribution Model: Refining predictions

The second part of the system is the Point Distribution Model (PDM). The PDM is a
shape model that is used to post-process the shapes predicted by the stacked HG in a
way that ensures spatial consistency among all facial landmarks. Irregular face shapes
should be transformed into more likely shapes which means that wrong predictions should
be fixed. The PDM is completely independent from the landmark appearance in the face
image as it operates purely in the coordinate space and does not use color information
from the original image. Instead, it relies on initial coordinate predictions (e.g. by the
stacked HG) together with a reliable confidence measurement in order to determine which
points to improve and which to keep unchanged.

31

3.5. Point Distribution Model: Refining predictions

The PDM is an unsupervised generative shape model that learns the arrangement of facial
landmarks in various possible head poses, appearance of different humans, etc. It hence
learns how faces in various scenarios are shaped and how the individual landmarks are
correlated. This knowledge is used to fix wrong predictions of other models, e.g. the
stacked HG.

In Section 3.5.1 the relationship between the PDM and other shape models is outlined.
The overall concept of the PDM is explained in Section 3.5.2. The optimal size of the
internal representation is discussed in Section 3.5.3. Section 3.5.4 covers the training of
the PDM and Section 3.5.5 shows how it is used to reconstruct shapes while fixing wrong
predictions. Details on the confidence measurement are given in Section 3.5.6. Finally, two
methods to optimize speed and accuracy are presented in Section 3.5.7 and Section 3.5.8.

3.5.1 Relation to other shape models

The PDM developed in this work differs from the PDM used Active Shape Models (ASMs)
[16] (see Section 2.1.1) in the way shapes are represented. The PDM in ASMs uses Principal
Component Analysis (PCA) to embed face shapes into a vector space that captures the
natural variations of faces in its dimensions. The PDM in this work builds its shape
representations using a neural network that defines a mapping from a latent vector space
and face shapes. From now on, the term PDM always refers to the model designed in this
work.

The PDM is an implementation of the Variational Auto Decoder (VAD) [81] which can be
seen as an encoder-less Variational Auto Encoder (VAE) [34]. Although the VAE can be
used to encode 2D face shapes into a vector space, there are two downsides. First, there is
no natural way which allows to encode pose information and actual face shape information
separately. VAE encodes the 2D shape into a vector and can decode it from this vector
again. However, the VAE has no information about the angle the underlying 3D shape is
shown from. Hence, it will encode the same face into different vectors when it is shown
from different directions. This means that both the variation in the face itself (such as
facial expressions and natural variations due to different persons) and the pose (the angle
and scale the face is shown from) are encoded into one vector. Second, if some of the points
are self-occluded, there is no way to ignore these points and encode the face into a vector
that is similar to the vector for the same shape without self-occlusions. In other words,
the VAE is not designed to be used with partial data. This is especially problematic if the
VAE needs to encode profile faces where many points are occluded by the face itself. While
the second problem is not relevant for this work (since only semi-frontal faces are used),
the first one can cause issues. To summarize, the VAE can not separate shape variations
from pose variations and it is not able to work well with shapes that have self-occlusions.
Both problems are caused because the the shapes are modeled in 2D.

The VAD does not have an encoder. It only consists of a decoder that maps a latent
vector to arbitrary data like 2D or 3D shapes. Hence, the latent vector is the encoded
version of the data. In order to obtain the latent vector for a new data sample, a way to
invert the decoder is required. The VAD achieves this by starting from a random latent
vector which is iteratively optimized until it gets decoded to the input data. In other
words, the latent vector is obtained by finding a vector that has the lowest reconstruction
error. The PDM is a special version of the VAD that is able to model 3D shapes that are

32

3. Methods

observed in 2D. This is the case for all images that show real-world objects, e.g. faces. A
face is a 3D object but an image only shows the 2D projection that depends on the pose.
Variations in the 3D shapes and pose variations are modeled separately. Zadeh et al. [79]
follow a similar approach in their Constrained Local Model (CLM) variant, but instead of
latent representations, they rely on principal components. The following sections provide
a detailed explanation of how the PDM works.

3.5.2 Overall concept

As described in the previous section, the PDM internally models shapes in 3D although
only 2D projections of these shapes are used to train and use the PDM. In this work these
2D projections are the 2D faces that the stacked HG detects in an image.

The PDM uses VAD to embed 3D face shapes into a latent vector space. This multidi-
mensional vector space contains abstract encodings of 3D shapes. A latent vector in this
space corresponds to a specific shape that can be reconstructed from its vector by applying
a (non-) linear function. Possible shape variations correspond to directions in this vector
space. For example, in the case of faces there are some dimensions that encode variations
caused by facial expressions while others encode gender or the shape of the face outline. To
avoid that pose information is also encoded in the latent vectors, the PDM builds on the
VAD and applies a 3D transformation (rotation, scale, translation) to the 3D shape that
was decoded from the latent vector. This 3D transformation corresponds to the head pose
or camera angle. This means that the shapes encoded in the latent vectors correspond
to a neutral pose and are transformed to the actual pose using the 3D transformation.
Since only 2D shapes are used in this work, the transformed 3D shape is projected to 2D.
Thanks to the fact that the latent vector is independent from the transformation parame-
ters, the PDM can effectively model face variations separately from pose variations. This
is not only useful for profile faces but also for semi-frontal faces that have in-plane and
out-of-plane rotations.

At the core of the PDM there is the decoder which is a fully-connected feed-forward neural
network. The architecture of the decoder network can be arbitrarily deep. The only con-
straints are that the first layer has the same size as the latent vectors and that the output
layer has 3Nlm neurons (in this work Nlm = 49 or Nlm = 68 facial landmarks). It decodes
a latent vector into a set of 3D coordinates. These 3D coordinates are then transformed
using a 3D affine transformation (scale, translation and rotation) and projected to 2D. All
steps from the decoder to the projection are fully differentiable. The training procedure
of the decoder is explained in Section 3.5.4. In order to encode a 2D face shape, both a
latent vector and transformation parameters need to be inferred.

Once trained, the PDM can be used to improve the predictions by the stacked HG. For
this purpose, the PDM infers a latent vector and a transformation that correspond to a
2D shape as similar as possible to the stacked HG prediction. Since the PDM is trained on
valid face shapes, the produced shape will also be a face. If the hourglass prediction already
was a valid face, the PDM will find a latent vector and transformation parameters that
fully reconstruct this face. If some of the landmarks were predicted wrong but most others
were correct, the reconstruction will match the correct landmarks but differ in the incorrect
ones. That way, a wrong shape can be fixed. In order to prevent the PDM from changing
the locations of correctly predicted landmarks, a confidence measurement is needed. A

33

3.5. Point Distribution Model: Refining predictions

point that should remain unchanged should have a high confidence while points that are
most likely wrong and should be moved to a better location should have a confidence
close to zero. The confidence measurement is reliable if it is inversely proportional to the
prediction error. Details on the inference process are given in Section 3.5.5. When the
PDM converged, the reconstructed shape is used as the final prediction of the system.

To better understand the process, Figure 3.11a shows the prediction from a stacked HG
and the reconstructed shape from the PDM after 0, 10 and 100 epochs. The reason why
the blue points after 0 epochs (left image) already show a face rather than random noise is
that the PDM has learned a bias that corresponds to the mean face of the training data.
In the first epoch, the two shapes have a high distance (high reconstruction error). This
distance is minimized iteratively and after 10 epochs (middle image) the reconstructed
face is better aligned with the stacked HG prediction. After 100 epochs (right image) the
reconstructed shape matches the input shape almost perfectly. This means that the PDM
has inferred a latent vector and transformation parameters that encode the shape. The
prediction by the stacked HG was already a valid face shape, thus there is no reconstruction

(a) Reconstruction of a correct stacked HG prediction after 0/10/100 epochs

(b) Correction of a stacked HG prediction with some wrong landmarks after 0/50/1000 epochs

Figure 3.11: Fixing a prediction using the PDM inference. The prediction from the
stacked HG is drawn red and the blue points belong to the shape that the PDM
reconstructs. The red lines visualize the distance between the same landmarks in both
shapes.

34

3. Methods

error left in the end. In many cases there will be a difference between the two faces, but
the reconstructed face will always be a valid face that is as close as possible to the input
face. An example for this is shown in Figure 3.11b. In this example, most landmarks are
reconstructed exactly, but some landmarks around the left eye still have a reconstruction
error after 1000 epochs. This reconstruction error is caused by the stacked HG prediction
that was not correct for these landmarks. The PDM could successfully fix these landmarks.

The PDM can be used on top of arbitrary models that output numerical coordinates and a
confidence measurement. It is independent from the stacked HG and also from the shapes
it is trained on. Besides face shapes it could also model human poses or other general
shapes that are represented by landmark coordinates. For this purpose it would have to
be trained on the shapes to model. In this work the PDM is used on top of the stacked
HG to model facial landmarks.

3.5.3 Latent vector size

The size of the latent vector plays an important role. If it is too small, not all variations
can be encoded and the reconstructed shapes lack in details. If it is too large, the PDM can
store the original coordinates in the latent vector without having to learn possible shape
variations and their correlations. If shapes with n 2D landmarks should be modelled,
the dimensionality of the latent vector should be at least smaller than 3n because the
decoder maps the vector to 3D coordinates. If it is larger than or equal to 3n, the x, y, z
components of the 3D landmarks can be stored in the vector and neither the correlations
between different landmarks nor the pose variations are modelled. However, since the 3D
coordinates are only used internally and only the 2D coordinates are used to compute the
reconstruction error, the dimensionality should even be smaller than 2n. Otherwise the
2D coordinates could be directly encoded in the vector and the transformation parameters
could be set to the identity transformation. This would mean that the latent vectors
encode both the shape and its pose in the vector. Since many landmarks are correlated
with each other, the necessary number of dimensions in the latent vector space should be
much smaller than 2n. By using a small number of dimensions, the PDM is forced to
learn a general representation of a human face and to be able to efficiently encode possible
variations (emotions, head shape, etc). The optimal size of the latent vector is determined
in Section 4.6.2.

3.5.4 Training: Learning a shape model

When training the PDM, the objective is to reconstruct the original 2D shapes from the
latent vectors. For this purpose, optimal decoder weights have to be learned. These weights
define the function the decoder uses to map the latent vectors to the 3D coordinates. The
latent vector space is implicitly defined during training because the PDM finds a latent
vector (and a transformation) for each training face that is mapped to a 3D shape which
is then transformed to the original 2D face. It is not necessary to define the vector space
or the decoder first. Instead, they are initialized randomly and learned jointly. By doing
this, the PDM learns which variations can occur in faces and their correlations. These
correlations are implicitly stored in the weights of the decoder network that is trained
by minimizing the reconstruction error between the decoded and original shape. In total,

35

3.5. Point Distribution Model: Refining predictions

three things have to be learned jointly during training: The decoder weights, latent vectors
for the training samples and transformation parameters for the training samples.

An important detail is that no 3D data is required to train the PDM because 3D is only
used internally. When using enough training samples with different poses, the PDM will
learn to encode the shape variations for the mean pose in the latent vector space and to
encode the pose variations in the transformation parameters. Internally a 3D shape model
is learned. Depending on the quality of the training samples, this 3D model is more or
less accurate.

The PDM is trained on samples that contain a set of 2D coordinates, e.g. facial landmarks.
The training procedure is illustrated in Algorithm 1. For a better understanding of the
data flow, the most important steps of the training and inference are shown in Figure 3.12.

Algorithm 1: PDM training algorithm, implementation of VAD training [81]

Input: 2D coordinates X = [x1, ..., xn] for each landmark of n training samples with
xi ∈ RNlm×2, Nlm is the number of landmarks for each sample

Result: Trained PDM decoder weights W ,
latent vectors Z = [z1, ..., zn],
affine transformation parameters T = [t1, ..., tn],
reconstructed 2D coordinates C2D = [c2D1 , ..., c2Dn] with c2Di ∈ RNlm×2

1 Initialize weights W of PDM decoder network randomly;
2 Initialize latent vectors zi randomly;
3 Initialize affine transformation parameters ti as the identity transformation;
4 while maximum training epochs not reached do
5 shuffle samples;
6 foreach mini-batch do
7 foreach sample i in mini-batch do
8 Decode zi using PDM weights W into set of 3D coordinates c3Di ;

9 Transform c3Di using sample-specific transformation ti into c3D
′

i ;

10 Project c3D
′

i into 2D space by dropping the z-component and store in c2Di ;

11 end
12 Compute reconstruction error err between xi and c2Di for all samples i in the

mini-batch;
13 Back-propagate err and update W , Z and T

14 end

15 end

In the beginning of the training, a random latent vector zi ∈ Rd is initialized for each
sample i. The affine transformation parameters ti are initialized to represent the identity
transformation (no rotation, no scaling and no translation).

Once the variables are initialized, the iterative process begins. The latent vectors are
decoded to a set of 3D coordinates c3Di for each sample by applying a simple feed-forward
fully-connected neural network (the decoder). The input layer takes the latent vector
and the output layer returns Nlm 3D coordinates. Afterwards, the 3D coordinates are
transformed by the sample-specific affine transformation ti. Since we are only interested
in 2D coordinates, the z-dimension is dropped to project the landmarks from 3D to 2D.

36

3. Methods

z 3D 3D‘
2D

(prediction)
decode transform

t
project

2D
(target)

error

Update transformation parameters t

Update latent variable z Back-propagation

Figure 3.12: PDM inference to reconstruct the target shape: The latent z is decoded into
a set of 3D coordinates which are then transformed using the transformation parameters
t and projected to 2D by dropping the z-component of the 3D (x, y, z) coordinate. The
error between the reconstructed 2D coordinates and the target is back-propagated to
both the latent and the transformation parameters. During PDM training, the error is
also back-propagated to the PDM decoder weights. The process repeats for a given
number of iterations.

After the first iteration the resulting points are random since the latent vectors, the decoder
network and the transformation parameters were initialized randomly. The goal is to find
a latent vector zi and an affine transformation ti for each sample that are mapped to the
2D input shape xi (the points predicted by the stacked HG). In addition to that a decoder
needs to be learned. Thus, the loss between the PDM output shape c2Di and the input
shape xi is computed and back-propagated to both the decoder network weights W and
the latent vector zi, as well as the affine parameters ti. Due to the beneficial properties of
the Wing loss (Section 3.4.3) we employ it here as well: err = WingLoss(c2Di , xi). In the
second iteration, the updated latent vectors and affine parameters are used by the updated
PDM to produce new 2D coordinates which are more accurate. The process repeats until
the maximum of iterations is reached.

During training, the PDM jointly learns optimal decoder weightsW and both latent vectors
Z and transformation parameters T that lead to a minimal reconstruction error on the
whole training set. In order to do so it needs to learn a general 3D model of a human
face and which variations are possible (e.g. smile or head shape). The model will learn to
encode a frontal 3D face in the latent vectors (including variations like facial expressions
or head shape) and to handle different head poses through the transformation parameters.

This model can then be used to generate new faces shapes that were never seen during
training but can be generated by inferring a latent vector that gets decoded to that new
face. The inference process is outlined in the next section.

37

3.5. Point Distribution Model: Refining predictions

3.5.5 Inference: Improving predictions

The inference is similar to the training process. The main difference is that the network
weights are not initialized randomly but have already been trained. Thus, the mapping
between the latent vectors and the shapes has already been learned and can now be used to
infer latent vectors and transformation parameters for unseen face shapes. In the following
we will refer to the combination of a latent vector z and the transformation parameters t
as shape parameters.

In order to fix wrong predictions from the stacked HG, the PDM infers the shape param-
eters for these predictions. As the PDM has learned to map latent vectors to face shapes,
it will produce a shape c2Di that is aligned as best as possible with the HG prediction xi.
The procedure is shown in Algorithm 2 and visualized in Figure 3.12.

Algorithm 2: PDM test algorithm, implementation of VAD inference [81]

Input: 2D coordinates X = [x1, ..., xn] for each landmark of n test samples with
xi ∈ RNlm×2, Nlm is the number of landmarks for each sample,
Confidences π = [π1, ..., πn] with πi ∈ RNlm×2

Result: latent vectors Z = [z1, ..., zn],
affine transformation parameters T = [t1, ..., tn],
reconstructed 2D coordinates C2D = [c2D1 , ..., c2Dn] with c2Di ∈ RNlm×2

1 Initialize latent vectors zi randomly ;
2 Initialize affine transformation parameters ti as the identity transformation;
3 while maximum test epochs not reached do
4 foreach mini-batch do
5 foreach sample i in mini-batch do
6 Decode zi using PDM weights W into set of 3D coordinates c3Di ;

7 Transform c3Di using sample-specific transformation ti into c3D
′

i ;

8 Project c3D
′

i into 2D space by dropping the z-component, store in c2Di ;

9 end
10 Compute reconstruction error err between xi and c2Di for all samples i in the

mini-batch, weighted element-wise by the confidence πi (Equation 3.8);
11 Back-propagate err and update Z and T ;

12 end

13 end

To prevent the PDM from changing points that have already been predicted correctly, a
confidence measurement π is used. For each of the Nlm landmarks of sample i there is
a non-negative confidence value for both the x- and y-component stored in a confidence
vector πi ∈ RNlm×2. The PDM is less likely to change the x or y component of a landmark
if its confidence is high. Therefore the model that predicts the initial landmark locations
must also predict a confidence measurement. Using a separate confidence for both the
x and y direction has the advantage that predictions where one coordinate component is
most likely correct while the other is unclear can be modelled. This is especially useful
for landmarks that have an ambiguous appearance, e.g. the landmarks on the outline. In
most scenarios the x component can be predicted easily because the outline landmarks
are at edges with skin color on one side and background on the other side (for landmarks

38

3. Methods

on the bottom of the skin the y component can be predicted more easily). However, the
exact landmark location can be along the face outline. In this case the confidence in the
direction orthogonal to the face border would be high and low in the other direction. A
method to define the confidence is shown in Section 3.5.6. The confidence is only used
during inference because the points that are used to train the PDM are the ground-truth,
so they are all correct and their confidence is 1. Thus is can be omitted during training.

Suppose the stacked HG predicted a set of landmarks where all except one landmark have
a high confidence. The PDM should be punished for moving these landmarks to other
locations and as a consequence engaged to move the landmark with the low confidence
value. This can be achieved by a loss function that has a specific weight for each of the
landmarks for both the x and y direction. In Equation 3.8, both the reconstructed shape
c2Di and stacked HG prediction xi are element-wise multiplied (�) with the confidence πi.
Hence, the loss gets weighted by the HG confidence measurement.

loss(c2Di , xi, πi) = WingLoss(πi � c2Di , πi � xi) (3.8)

Assume the stacked HG is not sure about the position of a landmark xi,j . In this case
it returns a low confidence (πi,j,x,πi,j,y) for this landmark. In the other case the stacked
HG is certain about its prediction and returns a high confidence value. Since the loss is
weighted by the confidence, it will be high if the PDM reconstruction of a confident point
is far away from its original position xi, so the PDM gets penalized. At the same time
it gets less penalized for a far reconstruction of a landmark with a low confidence. The
lower the confidence of a landmark, the more the reconstruction is allowed to differ from
the original position. This allows the PDM to move unconfident points to a more likely
position while keeping the confident points. By doing so it fixes wrong predictions from
the stacked HG.

When equation 3.8 is minimized using back-propagation, the latent vectors zi and trans-
formation parameters ti are updated so that they represent a 2D shape that is closer to
the confident points from the HG prediction xi. The unconfident points will be moved
to a new location that is more likely to correspond to a valid face. Note that points are
not moved actively because that could lead to the generation of an invalid face shape. In
other words, it is not possible to only change the location of one landmark without moving
the others. Instead, if one point needs to be moved the error for this point is greater
than zero. By back-propagating to the latent vectors zi, the PDM moves this point in the
desired direction. Important to note here is that this will also cause other points to move
because the landmarks are correlated to each other. Therefore, moving a point makes the
whole set of points more likely to be a valid face shape. The design of the PDM ensures
that reconstructed shapes are valid faces when the process converged, i.e. when the error
approaches zero or when it plateaus.

3.5.6 Confidence estimation

The variance of the heatmap of a landmark is a good indicator for how confident the
stacked HG is about its prediction. If the heatmap has a low variance, the prediction is
more likely to be correct than if it has a high variance. The more likely a prediction is to be

39

3.5. Point Distribution Model: Refining predictions

correct, the less likely the PDM should be to modify it and therefore, the confidence value
should be high. The heatmap variance in the x-direction Hvar[cx] is defined as follows.

Hvar[cx] = E[(cx − E[cx])2] =
〈
Ẑ, (X − µx) · (X − µx)

〉
F

(3.9)

The · operator denotes a matrix multiplication. With X being a matrix (defined in Equa-
tion 3.3) and µx a scalar value, X − µx is a matrix produced by subtracting µx from
every element in X. The heatmap variance in the y-direction Hvar[cy] can be defined
analogously.

µx = E[cx] is the predicted x-coordinate from the DSNT layer that was produced based
on probabilities from the heatmap Ẑ as explained in Section 3.4.2. cx is the random
variable for the x-coordinate. Equation 3.9 is the expectation of (cx − E[cx])2 with the
probability distribution Ẑ. It can be interpreted as the expected squared distance between
the predicted location cx and any other location that has a probability greater than zero.
Hvar[cx] is 0 when the normalized heatmap Ẑ is 0 in each x location except x = µx (where
it is 1). In this case the probability is concentrated at one pixel and thus the variance is
0. The variance is higher than 0 when there are probabilities greater than 0 in positions
different than µx. The variance grows with the distance between µx and locations with high
probability values because the expectation of the square of the difference between the mean
µx and all possible locations cx is computed. Hence, when the heatmap is 0 everywhere
except a small region, the variance is lower than when the heatmap has positive values
spread far apart. Thus, the heatmap variance is suited to define a confidence measurement
πx (πy is defined analogously):

πx(Hvar[cx]) =
1

a ∗Hvar[cx] + b
(3.10)

a and b are hyper-parameters that control the range of the possible confidence values. b
should be positive to avoid dividing by zero when Hvar[cx] is zero. The confidence mea-
surement is low when the variance is high and vice versa. Using this confidence definition
does not add trainable parameters to the model, but two hyper-parameters a and b. They
are the same for πx and πy and all landmarks. The reason is to minimize the number
of hyper-parameters that have to be set, although better results may be possible with
individual values for each landmark.

3.5.7 Initializer for the latent vectors

The PDM inference procedure as presented in Section 3.5.5 initializes the latent vectors
zi randomly. The transformation parameters ti are initialized to represent the identity
transformation (no scale, rotation or translation). Due to the random initialization, the
PDM needs many iterations to converge. This process can be sped up by training a
small feed-forward neural network that maps 2D coordinates to a latent vector and a
transformation parameter vector. This network is called the initializer. These vectors
can then be used to initialize the PDM inference process rather than doing the default
initialization.

The initializer is trained after the PDM training has finished. The training samples for
the initializer are the 2D coordinates of the facial landmarks in the PDM training dataset

40

3. Methods

and the ground-truth are the latent vectors and transformation parameters that the PDM
learned for the training samples during training. In other words, the initializer can ap-
proximate the iterative process of the PDM in one forward pass, but it can’t replace it.
There are still some iterative updates needed in order to have the PDM converge. The
effectiveness of the initializer is evaluated in Section 4.6.4.

3.5.8 Learning rate scheduling

During inference the latent vectors and transformation parameters are updated using an
optimizer that requires a learning rate. Rather than using the same learning rate for all
iterations it can be useful to use a learning rate scheduler. Using learning rate scheduling
allows to start with a higher learning rate that is decreased on a plateau of the reconstruc-
tion error. This can result in faster convergence and more accurate reconstructions.

The PDM inference can process multiple samples in one batch at the same time to speed
up the inference of many samples. Samples are independent from each other since no
network weights are updated as opposed to the training process. The inference goal is
to minimize the reconstruction loss between xi and c2Di (Equation 3.8). Using a constant
learning rate for each sample could cause ending up in a plateau. Therefore, the learning
rate is reduced when a plateau is reached. As samples are independent from each other,
it is not possible to use a single optimizer and scheduler for all samples. Doing so would
cause the learning rate to be reduced for all samples simultaneously whenever one sample
reaches a plateau. Instead, each sample must have its own optimizer and its own scheduler
to be truly independent.

In addition to individual schedulers there must be a separate optimizer for each sample.
This is necessary because some optimizers like Adam [33] use momentum. Since samples
are processed in batches, not each sample should be updated in each iteration. When
processing a batch, only the samples in this batch should get updated and the other
batches should remain unchanged until they are processed. However, even if there is no
gradient for samples outside the batch, they still receive updates due to momentum. The
only way to avoid this is to have one single optimizer for each sample that only operates
on this sample.

41

4. Evaluation

The system proposed in Chapter 3 is evaluated in this chapter. We first describe the
datasets that were used to train and evaluate the models in Section 4.1. Next, a definition
of the error metric is given in Section 4.2. The evaluation results are reported for samples
in different categories. These categories are introduced in Section 4.3. Details about how
the models were trained are outlined in Section 4.4. In Section 4.5 different architecture
options for the stacked Hourglass (HG) are evaluated and the performance is compared to
state-of-the-art algorithms. In Section 4.6 we analyze in which cases the Point Distribution
Model (PDM) is able to reduce the prediction error by the stacked HG. We furthermore
compare the whole pipeline consisting of a stacked HG and a PDM in that section. To
complete the evaluation, qualitative results are shown in Section 4.7.

4.1 Datasets

There are multiple facial landmark datasets that are annotated with different sets of facial
landmarks [5, 28, 36, 52, 55, 56, 57]. These datasets differ in the number of landmarks,
constrained or in the wild settings, indoor or outdoor scenes, degree of head pose (frontal,
semi-frontal or profile faces), and occlusion. For example, Multi-PIE [28] contains only
images in controlled indoor settings where pictures of many persons with different facial
expressions were taken in different camera angles. Since we want to have an algorithm
that is robust and works in uncontrolled settings, we use another dataset.

A common dataset used to train and evaluate facial landmark detection models is 300-W
[55, 56, 57]. It is a combination of four different facial landmark datasets: Annotated
Faces in the Wild (AFW) [52], iBUG [56] LFPW [5] and Helen [36]. Since all four datasets
use a different annotation scheme, the authors of 300-W have unified them using a scheme
consisting of 68 landmarks [22, 28] and published it as a new dataset. This annotation
scheme was originally defined for the Multi-PIE dataset [28] and is visualized in Figure 4.1.
All images used to train and evaluate the models in this work are annotated using this
scheme. 300-W contains uncontrolled images of faces in the wild: people of different ages
and gender, in indoor and outdoor environments, under varying illuminations, in presence
of occlusions, under different poses and from cameras of different quality. All faces in 300-
W are frontal or semi-frontal. The latter means that a face is shown from a non-neutral
angle but all landmarks are still visible. Since frontal faces are also semi-frontal faces, we
only use the term semi-frontal from now on. Profile faces, which have invisible landmarks
due to head pose or camera angle, are not included in 300-W.

Note that the original 300-W dataset also contains the XM2VTS dataset [45] that con-
sists of face images in controlled settings. Many publications [53, 79, 86] that train and

42

4. Evaluation

Figure 4.1: The Multi-PIE [28] annotation scheme used in this work consists of 68
landmarks (with outline) and 49 landmarks (without outline: 1-17 and 61,65 removed).
Image from [22]

evaluate on 300-W do not include the XM2VTS part for two reasons: Images in controlled
settings are easy to predict and the 300-W authors do not provide the images but only the
annotations for XM2VTS. Therefore including the XM2VTS dataset requires to download
the images manually, but some of them are not available anymore. For these reasons we
ignore the XM2VTS part as well.

Consistent with many other works [24, 44, 53, 66, 79, 86], we use the Helen training set
(2000 images), LFPW training set (811 images) and the whole AFW dataset (337 images)
from 300-W to train the model (3148 images in total). The test is a combination of the
full iBUG part (135 images) and the test partitions of LFPW (224 images) and Helen
(330 images). In the test set, the iBUG part is considered more difficult and thus, we will
evaluate our models in two categories: easy (LFPW + Helen) and difficult (iBUG). This
distinction is also done in various other papers [6, 24, 44, 79]. We do not use the original
annotations from these datasets but the unified ones from 300-W.

To demonstrate that our models can be used to produce accurate predictions even on a
completely different dataset, we conduct a cross-dataset evaluation on the Menpo dataset
[22, 82]. This means that we train the model on the training part of 300-W (described
above) and evaluate it on the Menpo dataset in addition to the test part of 300-W. In
contrast to 300-W, Menpo includes both profile and semi-frontal faces and is annotated
with the same scheme as 300-W (Figure 4.1). Since the models are trained on 300-W (no
profile faces included), we only use the semi-frontal faces from Menpo to do the evaluation
and ignore the profile faces. Menpo is split into a train set and a test set. However,
annotations are only provided for the train set. Therefore we ignore the test set and
evaluate our model on the semi-frontal faces in the train set (6679 images), which is
consistent with other works [44, 79]. To make it clear: Our models are trained on the
300-W train set in all cases and evaluated on the 300-W test set and the Menpo train set

43

4.2. Metrics

separately. The best results for our implementations of the stacked HG are presented in
Section 4.5.5 and for the HG-PDM pipeline in Section 4.6.6.

In addition to the face images and landmark annotations, the 300-W dataset also contains
bounding boxes for the faces in each image. However, since we want to train the model
on 300-W and evaluate it on both 300-W and Menpo, we need consistent bounding boxes
for all datasets. Another problem with the provided bounding boxes is that they often are
too tight and do not contain all 68 landmarks. Thus, we use artificial bounding boxes as
described in Section 3.2.

4.2 Metrics

In order to evaluate and compare facial landmark detection systems, an error measurement
is required. A common metric used for this purpose is the point-to-point normalized Root
Mean Squared Error (RMSE) [60]. There are multiple possible normalization strategies
and a frequently used one is the Inter-Ocular Distance (IOD) normalized RMSE EIOD [44,
60, 79]:

EIOD(xp, yp, xg, yg) =

∑N
i=1 ‖(x

p
i , y

p
i)− (xgi , y

g
i)‖2

N ∗ douter
=

∑N
i=1

√
(xpi − x

g
i)2 + (ypi − y

g
i)2

N ∗ douter
(4.1)

where xp, yp, xg, yg ∈ RN contain the coordinate components of the N landmarks of the
prediction (xp, yp) and ground-truth (xg, yg). The IOD douter is the distance between the
outer eye corners shown in Figure 4.2. The error EIOD is the average distance between
predicted and ground-truth locations, normalized by the IOD.

The motivation behind normalizing the error by the IOD is that images of different sizes
and different face sizes can be compared to each other. However, normalizing by the IOD is
not possible for profile pictures where only one eye is visible because the IOD is undefined
in this case. If profile faces should also be evaluated, alternative normalization factors
can be used instead of douter in Equation 4.1. Some works use the mean of the width
and height of the face bounding box [52, 79], others use the face diagonal [76, 79, 82] or
the square root of the bounding box area [10]. The bounding box is always the smallest
axis-aligned rectangle that includes all ground-truth landmarks.
We use two different normalization factors for the evaluation datasets presented in Sec-
tion 4.1.

300-W [55, 56, 57]: The IOD normalized RMSE is used for the 300-W evaluation. This
is possible since only semi-frontal faces are used in this work. The main reason for this
normalization strategy is that our results are compared to other papers that use this metric
for this dataset.

Menpo [82]: As stated in Section 4.1 we remove the profile pictures from Menpo and
only evaluate on the semi-frontal faces. Thus, the IOD normalization could be used for
Menpo as well. However, we use the mean of width and height of the bounding box as
a normalization factor because we compare our results to other works [44, 79] that use
this normalization for Menpo. Many authors use this normalization factor because Menpo
includes both frontal and semi-frontal images, even if only the semi-frontal images are
used.

44

4. Evaluation

Figure 4.2: Different landmark types shown in the Multi-PIE [28] annotation scheme.
Red points: 49 landmarks (without outline), green points: 19 landmarks (outline + inner
mouth corner). Green + red points: 68 landmarks (with outline). douter is the IOD used
for normalized error computation. Image from [60]

4.3 Evaluation categories

Some applications might require only a subset of the 68 landmarks (e.g. lip reading or
eye tracking). It is possible to train models on only the landmarks that are required by
the those applications. To demonstrate this, we train separate models for 49 landmarks
(without outline) and 68 landmarks (with outline). The landmarks on the outline are
generally more challenging than inside the face because the appearance is more ambigu-
ous. Moreover, the labels are less accurate [44]. See Figure 4.2 for a visualization of the
with/without outline cases. The 49 landmarks (without outline) are a subset of the 68
landmarks (with outline). The 49 landmarks for the without outline case are drawn in
green and the 19 landmarks on the outline and the inner mouth corner are drawn in red.
The green and red landmarks combined form the full set of 68 landmarks, denoted as the
with outline case. We trained separate models for 68 landmarks (with outline) and 49
landmarks (without outline) because we want to find out if a model that is trained only
on 49 landmarks can achieve lower errors on 49 landmarks than a model that is trained
on 68 landmarks but only evaluated on 49 landmarks.

For the 300-W test set (consisting of the easy and difficult sets described in Section 4.1),
there are four possible combinations that are evaluated separately. We report the IOD

45

4.4. Training details

normalized RMSE for these four categories, following common literature [44, 79, 86].

• easy (49): easy samples from 300-W with 49 landmarks (without outline)

• easy (68): easy samples from 300-W with 68 landmarks (with outline)

• difficult (49): difficult samples from 300-W with 49 landmarks (without outline)

• difficult (68): difficult samples from 300-W with 68 landmarks (with outline)

In order to be able to analyze the models in depth, we store the best model of these
four categories and the best model for the averages of the following combinations of these
categories during training. These averages are defined as follows:

• easy average: The average error of easy (49) and easy (68)

• difficult average: The average error of difficult (49) and difficult (68)

• 49 average: The average error of easy (49) and difficult (49)

• 68 average: The average error of easy (68) and difficult (68)

• overall average: Avg. error of easy (49), easy (68), difficult (49) and difficult (68)

Storing these models separately allows to determine the best model for arbitrary scenarios.
For example, it is possible that a model has the lowest error on easy (49) in a different
epoch than on easy (68). If we want to know how the model performs on easy samples in
general it is not possible to just average the errors of both categories (easy (49) and easy
(68)) because most likely the error is higher for the one category when it is the lowest for
the other category. For this reason we compute the aforementioned averages after each
epoch and save the model if the average has improved compared to the current best one.
This is useful in case the best model for a subset of all samples, e.g. the easy samples,
is of interest. Due to the inference complexity of the PDM it is not possible to evaluate
the performance in each epoch. Thus, we evaluate the PDM only every 500 epochs and
the stacked HG every epoch. In Section 4.5.5 and Section 4.6.6 the errors for all nine
categories (the four categories and their averages) are reported for the stacked HG and
the PDM.

Since there is no distinction between easy and difficult samples in Menpo, we only evaluate
the 49 and 68 landmark categories separately on Menpo.

4.4 Training details

All models were implemented using PyTorch 1.0 [51] and Python 3.6 [50]. The Adam
optimizer [33] was used to minimize the losses. The models were trained on various GPUs:
NVIDIA GeForce 1080 Ti, NVIDIA Tesla K40c, NVIDIA Tesla V100 and NVIDIA GeForce
GTX TITAN X.

To be able to efficiently train and evaluate a large number of models, a training framework
was implemented and used for all experiments. It includes a config generator that processes
a list of hyper-parameters and all possible values for each hyper-parameter. It generates a
config file for each of the hyper-parameter combinations. A so-called model trainer reads
a folder with these config files and distributes it on an arbitrary number of GPUs. For

46

4. Evaluation

each GPU a process is started that obtains the configs from a queue, trains the model and
returns the results to the trainer which writes them to a result file.

In order to get reproducible results, the random seed of the used libraries was set 0 in all
experiments.

The code written during this thesis is available at https://github.com/simonhessner/

masters-thesis-final. It includes scripts to train and evaluate both the stacked HG and
the PDM. In addition to that there are scripts to visualize the predictions and heatmaps
produced by the stacked HG.

4.5 Stacked Hourglass Network

The stacked HG as presented in Section 3.4 is evaluated in this section. First we describe
the methods used to augment the training samples in Section 4.5.1. Next all hyper-
parameters for the stacked HG are listed in Section 4.5.2. The hyper-parameters related to
the HG architecture are analyzed in Section 4.5.3. Section 4.5.4 gives an analysis of hyper-
parameters that determine how the network is trained and how coordinates are regressed.
Our best models are compared to state-of-the-art methods in Section 4.5.5. Since a lot of
effort was invested in experiments with Spatial Transformer Networks (STNs) which did
not succeed, we outline reasons for the failure in Section 4.5.6.

4.5.1 Data augmentation

The input to the stacked HG are cropped images of human faces as described in Section 3.4.
The images are were augmented using the following methods:

• Random horizontal flip: With a probability of 50% the image is flipped hori-
zontally. Since there are fixed indices for each landmark, the annotations are also
flipped.

• Color jitter transform: The brightness, contrast and saturation are randomly
changed by up to 40% and the hue up to 10%.

• Random rotation: Images are randomly rotated by a certain maximum degree.
To find out how much rotation works best, this was made a hyper-parameter that
was explored during grid-search. The results are shown in Section 4.5.4.5.

Data augmentation was only performed during training. The samples were augmented
individually in each epoch rather than augmenting them only once and using the same
version in each epoch. Data augmentation was only used for the stacked HG and not for
the PDM.

4.5.2 Hyper-parameter overview

In Section 3.4.1 multiple design choices were mentioned. The hyper-parameters for the
stacked HG are explained in the following. The section where the effects of the parameters
are studied are shown in brackets unless they were only analyzed empirically.

47

https://github.com/simonhessner/masters-thesis-final
https://github.com/simonhessner/masters-thesis-final

4.5. Stacked Hourglass Network

Network architecture (Section 4.5.3)

• n hgs (Section 4.5.3.1): Number of HGs to be stacked

• n res modules (Section 4.5.3.2): Number of residual modules in a residual sequence

• n features (Section 4.5.3.3): Number of features in a residual module

• hg depth (Section 4.5.3.4): Number of downsampling steps in a single HG

• n lm (Section 4.5.3.5): Number of facial landmarks to predict: 49 (without outline)
or 68 (with outline), see Figure 4.2 for a visualization. When set to 49, the stacked
HG is trained to predict only 49 landmarks. This is different from training the model
on 68 landmarks and just using the 49 landmarks during evaluation.

The architecture parameters are the same for each HG in the stack. However, it could be
further investigated if individual parameter choices for each HG can help to improve the
accuracy. In addition to the hyper-parameters listed above we also investigate the effect
of the model complexity in terms of trainable parameters in Section 4.5.3.6.

Training and regression (Section 4.5.4)

• loss function (Section 4.5.4.1): L1, L2 or Wing loss [24] with different parameteri-
zations

• normalize loss (Section 4.5.4.2): Whether to normalize the loss to always have a
magnitude of 1

• regression (Section 4.5.4.3): Method to convert heatmaps into numerical coordi-
nates: Fully-connected or Differentiable Spatial To Numerical Transform (DSNT)
[48]

• heatmap sigma (Section 4.5.4.4): Standard deviation for Gaussians used in Jensen-
Shannon divergence for heatmap regularization (DSNT only)

• augment rotation (Section 4.5.4.5): Maximal angle to randomly rotate the faces
during training (can be disabled by setting to zero)

• predict distances (Section 4.5.4.6): Whether to add another loss that analyzes the
pair-wise distances between the predicted landmarks. If yes, weight for this loss is
specified.

• intermediate loss: Whether to apply the loss after each HG in the stack. If set to
false, only the last HG output is fed into the loss function. This hyper-parameter is
discussed together with the loss function in Section 4.5.4.1.

• n epoch: Maximum number of epochs to train a model

• batch size: Number of samples in each mini-batch

• lr: Initial learning rate for the Adam optimizer [33]

• lr scheduler patience: Number of epochs to wait on a plateau before reducing the
learning rate

• lr decay factor: Factor to decrease the learning rate on a plateau

To find out which hyper-parameters have which impact, an extensive grid search was
performed.

48

4. Evaluation

Since there are many hyper-parameters to explore, the grid search was split into multiple
grid searches. It is unfeasible to train a model for all combinations of hyper-parameters
when resources (number of GPUs and time) are limited. The first grid search was focused
on the architecture of the stacked HG. The results are shown in Section 4.5.2.

However, in order to get good results, suitable values for the other hyper-parameters had
to be found first. For this, some empirical experiments were conducted to find good values
for the learning rate, patience and decay factor of the learning rate scheduler, number of
epochs and batch size. We found that a good initial learning rate value is 0.001. The
learning rate was reduced by a factor of 0.5 when the validation error did not change
significantly for more than 15 epochs (reduce on plateau). To speed up training, an early
stopping criterion was used and the training was stopped when the validation error did
not decrease by at least 2.5% within 31 epochs (so that the learning rate scheduler was
able to decrease the learning rate at least two times before stopping training). For cases
where the loss oscillated or did not reach a plateau, the maximum number of epochs was
set to 200. The training set was split into mini-batches of 32 samples that were randomly
shuffled in each epoch. These values were used for the entire evaluation of the stacked HG.

Since empirical experiments have shown the power of the DSNT layer, it was used through-
out the first grid search. The Gaussian standard deviation for the Jensen-Shannon diver-
gence was set to 1.0 and the maximum rotation degree for the augmentation was set to 0°.
As these values worked well in general, we fixed these in all experiments unless stated oth-
erwise. These and other hyper-parameters were further investigated in later grid searches
and the results are shown in Section 4.5.4.

Note that due to a misunderstanding the first grid search was done using a train set that
slightly differs from the original 300-W train set. The difference is that the AFW [52] part
was replaced by a fraction of Multi-PIE [28]. This mistake only affects the training set.
The test set was the correct 300-W test set in all experiments. The mistake leads to slightly
worse results compared to using the correct 300-W train set because Multi-PIE contains
only images in controlled settings while AFW consists of in-the-wild images. However, the
general trends are still valid for the correct dataset. As soon as we noticed this mistake, we
fixed the dataset and used the correct one for all further experiments, i.e. all experiments
in Section 4.5.4.

4.5.3 Effect of architecture hyper-parameters

In this section we analyze the effects of HG-specific hyper-parameters on the prediction
performance on the 300-W test set. To analyze the impact of one specific hyper-parameter
we group the grid search results by all possible values for this parameter and determine
the lowest IOD normalized RMSE within each group.
The HG architecture parameters were tested in all combinations of these parameters:

• n hgs: 1, 2, 3, 4 (Section 4.5.3.1)

• n res modules: 1, 2, 3, 4 (Section 4.5.3.2)

• n features: 64, 128, 256, 512 (Section 4.5.3.3)

• hg depth: 1, 2, 3, 4, 5 (Section 4.5.3.4)

• n lm: 49, 68 (Section 4.5.3.5)

49

4.5. Stacked Hourglass Network

In total 640 models 1 have been trained and compared. The values reported in the next
subsections are the median of the IOD normalized RMSE of all samples in each category.
The median is more robust to outliers than the mean, thus we use it. For better readability
the value is multiplied by 100 as it is done in other works [44, 79]. It can be interpreted
as the average error relative to the IOD in percent.

Our best models presented in Section 4.5.5 sometimes were trained with parameters that
were not the best ones from this first grid search. The reason for that is that many hyper-
parameters influence each other. Since the first grid search only varied the architecture
hyper-parameters while the second grid search varied the other hyper-parameters it is
possible that the best values determined here turned out to be not the best ones in different
settings. Nevertheless, the results presented in this section still help to get a general
understanding of the rough effects of these hyper-parameters.

4.5.3.1 Number of stacked HGs

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.3: Lowest error for each category depending on the number of stacked HGs. Due
to different error ranges in each category and small variations between different
parameter choices there is a separate plot for each category to better visualize the trends.

The results of the grid-search were grouped by the number of stacked HGs. In each group
the best performing model was chosen for each of the categories easy (49), difficult (49),

1Product of number of options for each parameter: 4 ∗ 4 ∗ 4 ∗ 5 ∗ 2 = 640

50

4. Evaluation

easy (68) and difficult (68) as described in Section 4.3.

The lowest error that was achieved using a certain number of stacked HGs is shown in
Figure 4.3 for each category. Interestingly stacking more HGs helps especially in the easy
categories, for both 49 and 68 landmarks. Here, four stacked HGs had the lowest IOD
normalized RMSE. For the difficult categories, a stack of one HG worked best for 49
landmarks and two for 68 landmarks. However, it should be noted that the differences in
all four categories are very small, especially for the easy categories.

4.5.3.2 Length of residual sequence

The results were grouped by the number of residual modules in a residual sequence. In
each group the best performing model was chosen. Figure 4.4 shows that only one residual
module in a residual sequence performs worst in all four categories. The best length of
residual sequences is three in all categories except difficult (49). In that case four residual
modules in a residual sequence had the lowest error. The fact that the error for the easy
categories is higher when using 4 residual modules compared to only using 3 suggests that
the model overfits when too many residual modules are used.

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.4: Lowest error for each category depending on the number of residual modules
in a residual sequence.

51

4.5. Stacked Hourglass Network

4.5.3.3 Number of features

The results were grouped by the number of features in a residual module and in each group
the best performing model was chosen.

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.5: Lowest error for each category depending on the number of features in a
residual module.

An interesting trend can be seen in Figure 4.5: The error for the easy samples is the lowest
when using 256 features in residual modules for both 49 and 68 landmarks. This supports
the assumption made in Section 4.5.3.2 where we found that three residual modules work
better than four for easy samples, namely that the model can overfit when the model gets
too complex.

When looking at the difficult samples, the more features are used, the lower the error gets.
This is most likely due to the higher appearance variance in difficult images. It is possible
that using more than 512 features could improve the error rate even more, but in that
case the models get too large to be trained on a single GPU and the improvement would
probably be relatively small. Since 256 and 512 features seem to be the best number of
features, these two values will be used for various further experiments.

4.5.3.4 Number of downsampling steps

The results of the grid-search were grouped by the depth of a single HG, i.e. the number
of downsampling steps. In each group the best performing model was chosen.

52

4. Evaluation

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.6: Lowest error in each category depending the on the depth of a HG.

While the original stacked HG implementation [47] uses a fixed HG depth of 4, we investi-
gated how the error changes depending on the depth. The results are shown in Figure 4.6.

All four categories have in common that the error is by far the highest when the network
has a depth of 5 which means that the image is downsampled 5 times, resulting in a
bottleneck of only 1 × 1 px. A possible explanation is that the network is using the
bottleneck to pass important information from the downsampling part to the upsampling
part of the network. Having only 1 × 1 px is possibly not enough to store all relevant
details. However, the shortcut connection could also be used for this task. It is possible
that the shortcut connection has not enough capacity and hence the network has to use
the bottleneck as well. A depth of 4 has a much lower error than a depth of 5 in all
categories. This depth results in a bottleneck of 2× 2 px, so it can can store information
with some degree of spatial consistency (top-left, top-right, bottom-left, bottom-right).
Section 4.5.3.6 contains more plots that clearly show that a depth of 5 performs much
worse in all categories.

For both 49 and 68 landmarks even a HG that downsamples only one time performs
already well for the easy categories (plots a and c). For 49 landmarks, the error is the
lowest with three downsampling steps, for 68 with two. However, the difference between
the errors with one, two, three or four downsampling steps is very small. This means
that for applications that require a low memory footprint or fast processing times, a lower

53

4.5. Stacked Hourglass Network

depth should be chosen for these categories.

For difficult samples the situation is different. A depth of four has the lowest error for
both the 49 and 68 landmark category. An intuitive explanation is that the network does
not need to analyze the image on a large scale when processing easy images as the faces
are mostly frontal and landmarks can be predicted with a smaller receptive field. Difficult
samples, however, often have strong head poses and require a deeper analysis.

4.5.3.5 Separate models for 49 and 68 landmarks

As already mentioned in Section 4.3, there are applications that require only a subset of
the 68 facial landmarks. We want to see if a model that is trained on only 49 landmarks
achieves a lower error on these 49 landmarks than a model that was trained on 68 land-
marks. The results of the grid-search were grouped by the number of landmarks. In each
group the best performing model was chosen.

Figure 4.7 reveals that training a separate model for 49 landmarks helps for easy samples,
although the performance gain is minimal. For difficult samples models trained on 68
landmarks have a lower error also when evaluated on 49 landmarks. Again, the difference
here is minimal, but an intuitive explanation is that the model is able to learn better
features when it is forced to not only focus on the 49 landmarks inside the face but also
on the outline. This relates to a common strategy in many machine learning applications
called multi-task learning [11, 38, 85]. A model is trained to solve multiple tasks at one
time and each task benefits from the features that are learned for other tasks. Here,
predicting the outline can be seen as an auxiliary task that helps accurately predicting the
inner landmarks in difficult samples.

(a) Category: easy (49) (b) Category: difficult (49)

Figure 4.7: The error without outline (49 landmarks) for models that were trained on 49
or 68 landmarks.

4.5.3.6 Number of network parameters

This section investigates which effect the network capacity, i.e. the number of trainable
parameters, has on the localization error. The more parameters a model has, the more
memory it requires during training and inference. Moreover, the inference time also de-
pends on the number of parameters. Therefore, for applications that require a low memory

54

4. Evaluation

footprint and/or fast processing times, one should use the smallest model that has a small
enough error.

The previous sections have shown trends for the error rate depending on different HG
architecture parameters. However, these sections only examined the effect of one single
parameter at a time. By looking at the number of network parameters, we can see the
effects of increasing the network capacity regardless of one specific parameter. For example,
a stack of only one HG can still have a high capacity when the number of features or residual
modules is high.

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.8: In (a)-(d) there is one point for each of the 640 models. The figures show the
relationship between the number of trainable network parameters and the error. The
x-axis has a scale factor of 1e8. The red, blue, green and pink points show models with
hg depth < 5 and the black points show models with hg depth = 5.

Figure 4.8 shows the relationship between the number of parameters and the error rate.
In contrast to the previous sections, the plots show all 640 models at the same time rather
than only the best model for one parameter choice. One can see that networks with
a depth of 5 generally perform much worse than others, regardless of the category. This
observation is consistent with Section 4.5.3.4 where the effect of the HG depth was studied.

55

4.5. Stacked Hourglass Network

This confirms that downsampling until the feature maps are only 1× 1 px small hurts the
performance. Therefore we restrict all following experiments to a maximum depth of 4.

Another observation is the trend that more trainable parameters lead to a lower error.
However, not in every category the model with the most parameters has the lowest error,
see for example Figure 4.8b. A possible explanation is that models tend to overfit when
there is too much capacity.

Nevertheless, the trend shown in Figure 4.8 explains the low variance between different
architecture choices shown in Section 4.5.3.1, 4.5.3.2, 4.5.3.3, 4.5.3.4 and 4.5.3.5. For
example, picking a lower number of features in a residual module can be compensated to
a certain degree by using more residual modules.

4.5.4 Effect of training and regression hyper-parameters

Besides the architecture of the stacked HG there are other factors that can have a big
impact on the prediction accuracy. A detailed evaluation of many hyper-parameters that
define how the network is trained and coordinates are regressed is given in this section.

Section 4.5.4.1 contains a comparison of different loss functions. Whether or not loss
normalization can improve the results is examined in Section 4.5.4.2. Methods to convert
heatmaps into numerical coordinates are compared in Section 4.5.4.3. In Section 4.5.4.4 the
effect of heatmap regularization is investigated. Next, Section 4.5.4.5 covers the effect of
using rotation augmentation during training. Finally, an additional loss on inter-landmark
distances is evaluated in Section 4.5.4.6.

4.5.4.1 Loss function

In this section, we examine the effect of the loss function that is used to train the stacked
HG. The goal is to validate if the Wing loss (Section 3.4.3) helps training more accurate
models compared to the L1 and L2 losses.

After the initial grid search (Section 4.5.3) we analyzed the parameters of the three best
models for each category and picked the smallest set of parameter choices that covered at
least one model in each top 3. Due to resource and time restrictions it was not possible to
train all combinations of the parameters of the best models. The chosen parameters are:

• n lm: 49, 68

• n hgs: 3, 4

• n res modules: 3

• n features: 256, 512

• hg depth: 2, 4

These parameters are combined with the loss function hyper-parameters:

• loss function: L1, L2, wing 5 (Wing loss with w = 5, ε = 0.5), wing 10 (Wing loss
with w = 10, ε = 1.0)

• normalize loss: True, False (see Section 4.5.4.2 for an explanation and evaluation)

56

4. Evaluation

Figure 4.9: The lowest IOD normalized RMSE for each category and each loss function.
Wing loss has the lowest error rates in all categories.

There are 128 possible parameter combinations. We decided to use wing 5 and wing 10
because they correspond to a function with a smooth transition between the logarithmic
and linear part, see Figure 3.10.

The lowest IOD normalized RMSE for each of the loss functions is shown for each category
in Figure 4.9. For a complete analysis we provide the results not only for the main
categories easy (49), difficult (49), easy (68) and difficult (68), but also the average error
for both easy and difficult, 49 and 68 and the overall average error.

Wing loss wing 10 achieves the lowest error in easy (49), difficult (49), easy (68), easy,
difficult and in the overall average. Wing loss wing 5 achieves the lowest error in difficult
(68), average 49 and average 68. Neither L1 nor L2 have the lowest error in one category.

Therefore we conclude that using the Wing loss is beneficial when training a stacked HG
for facial landmark detection. The difference between the two tested Wing loss parame-
terizations is small in most categories. However, since wing 10 is the best loss function in
6 categories and wing 5 only in 3 categories, we use wing 10 for the following experiments.

Intermediate supervision

We also conducted an experiment to examine the effect of using intermediate supervi-
sion. To this end, we applied the same loss function to all heatmaps that the HGs in
the stacked HG predict instead of only to heatmaps of the last HG. Intermediate super-
vision did neither help nor hurt the prediction accuracy significantly. This suggests that
the architecture of the stacked HG already has a structure that enables efficient gradient

57

4.5. Stacked Hourglass Network

flow. Various shortcut branches within each HG (Section 3.4.1.2 and between HGs (Sec-
tion 3.4.1.3) allow gradients to flow from the final prediction back to the image without
the vanishing gradient problem, making intermediate supervision obsolete.

4.5.4.2 Loss normalization

Figure 4.10: The blue bars show the error rates for each category without loss
normalization and the orange bars with loss normalization. In many categories,
normalizing the loss hurts the performance.

When the training progresses and the predictions get more accurate, the gradients decrease.
The consequence is that the network weights receive smaller updates in later epochs. To
avoid small gradients, we implement loss normalization to ensure that the loss is always
1. This is done by dividing the loss by its scalar value: loss′ = loss

value(loss) . In the case

58

4. Evaluation

of PyTorch [51] the loss is divided by its detached version because otherwise the gradient
would be 0.

We investigate whether or not loss normalization can help achieving lower error rates.
The grid search performed to determine the best loss function already includes the nor-
malize loss parameter as shown in Section 4.5.4.1. The results in this section are obtained
by grouping the previous grid search output by the loss normalization value rather than
the loss function.
The lowest error rates for all categories are shown in Figure 4.10. We found that loss
normalization does not help to get significantly more accurate predictions and in some
categories even leads to worse models. Therefore we disable loss normalization for all
following experiments.

4.5.4.3 Regression method

In this section regression via DSNT is compared to a fully-connected regressor as intro-
duced in Section 3.4.2. We have trained and evaluated 8 models for all combinations of
these hyper-parameter:

• n lm: 49,68

• n hgs: 3

• n res modules: 3

• hg depth: 2,4

• regression: DSNT, linear

Figure 4.11: Error achieved by DSNT and linear regression for each category.

59

4.5. Stacked Hourglass Network

All models were regularized using the Jensen-Shannon divergence with a standard devi-
ation of 1.0 (other values are evaluated in the next section). The performance difference
between using fully-connected regression and the DSNT layer is shown in Figure 4.11. The
DSNT layer clearly outperforms the linear regression in all four categories and also in all
averages. Therefore, DSNT is used for all further experiments.

4.5.4.4 Heatmap regularization using Jensen-Shannon divergence

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.12: The best error for each variance value for the Gaussian used in the
Jensen-Shannon heatmap regularization. -1 means that no regularization was used. A
variance of 0.5 works best for the easy samples (a,c) and 1 for the difficult samples (b,d).

Heatmap regularization using the Jensen-Shannon divergence is introduced in Section 3.4.2.
So far all experiments were done using Jensen-Shannon regularization with a Gaussian
variance σ = 1.0. Now we compare the model performance using different variances. To
analyze the general benefit of the regularization, we also train models where it is disabled.

These hyper-parameters were tested in all combinations (20 models in total):

• n lm: 49,68

• n hgs: 3

• n res modules: 3

• hg depth: 2,4

60

4. Evaluation

• heatmap sigma: -1 (disabled), 0.25, 0.5, 1.0, 2.0

Both the errors of models trained without regularization and the ones with different vari-
ance values are shown in Figure 4.12. The easy samples are best predicted by models that
were trained with σ = 0.5 For these categories, σ = 1.0 also works well with just a very
small drop in accuracy. At the same time, σ = 1.0 is the optimal value for the difficult
categories. In comparison, disabling the heatmap regularization (σ = −1) leads to higher
error rates in all categories.

The conclusion from this experiment is that heatmap regularization helps and σ = 1.0 is
a good value. This value used for all previous experiments and will be used for all further
experiments as well.

4.5.4.5 Rotation augmentation

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.13: Error rates for each category depending on maximum angle used for rotation
augmentation.

All experiments so far were done without using random rotations as data augmentation.
In this experiment we test if rotation augmentation can improve the error rates and in
which categories. We run a grid search using these parameters, totaling 40 combinations:

• augment rotation α: 0, 15, 30, 60, 90 degrees

• n lm: 49,68

61

4.5. Stacked Hourglass Network

• n hgs: 3,4

• n res modules: 3

• n features: 512

• regression: DSNT

• loss function: wing 10

The augment rotation parameter specifies the maximal magnitude of the angle α that is
used to randomly rotate the faces either left or right in each epoch. The specific angle is
randomly computed independently for each sample in each epoch to ensure a large variety
of rotations.

Figure 4.13 shows that random rotations with a maximum angle α = 90° are too much to
train a model with low error rates. Rotating a face by such a large angle flips it on one
side so that the eyes are in one vertical instead of horizontal line. If the original face was
already slightly tilted (due to head pose), it can be rotated so far that the landmark labels
get wrong. This is because the annotation scheme has fixed indices for example for the
left eye. If the left eye becomes the right eye because of the random rotation, the indices
would also have to be switched correctly. For this purpose, the rotation of the face in the
original image would have to be determined. However, since faces that are rotated by such
a large angle do not occur in the test sets, we did not further experiment with this.

In all four categories, α = 30° corresponds to models with low errors. In the 68 landmark
categories α = 15° even works slightly better and the difficult (49) category benefits from
α = 60°. All categories have in common that using α = 15° or α = 30° leads to lower
errors than using α = 0° or α = 90°. Since α = 30° is a good choice for all categories, we
choose this value for the following experiments.

4.5.4.6 Loss on inter-landmark distances

In all previous experiments the loss between the predicted location and the ground-truth
location was computed for each landmark independently. The spatial relationship between
the different landmarks was not directly included in the loss.

In this section, we explore the effects of an additional loss on the distance between all
pairs of landmarks. It is based on the predicted locations of the landmarks pi, pj and the
ground-truth locations gi, gj . We compute the distance between all pairs of landmarks
i, j ∈ {1...nlm}: dpij = pi − pj and dgij = gi − gj . dp and dg are vectors that contain the
signed x and y distance between two landmarks. We use the L1 loss between these distance
vectors:

Edist(p, g) =

nlm∑
i=1

nlm∑
j=1

|dpij − d
g
ij | (4.2)

This loss is added to the normal loss Ecoord that was used in the previous experiments
and minimized through back-propagation. The intuition behind this loss is that there are
some constraints on the possible locations of landmarks depending on the location of other

62

4. Evaluation

landmarks. When the predictions violate these constraints, this error can be directly used
to back-propagate and update the model so that they are respected in further predictions.

As Edist uses L1 loss instead of Wing loss and the input to the loss function are distances
rather than points, the magnitude if this error is expected to be different from the actual
prediction error. Therefore a new hyper-parameter λdist is introduced and the final error
is computed as follows:

E = Ecoord + λdist ∗ Edist (4.3)

This hyper-parameter was subject to a grid search with the following parameters:

• n lm: 68

• n hgs: 3

• n res modules: 3

• n features: 512

• loss function: wing 10

• normalize loss: False

• pd weight λdist: 0, 0.01, 0.1, 0.25, 0.5, 1.0

(a) Category: easy (49) (b) Category: difficult (49)

(c) Category: easy (68) (d) Category: difficult (68)

Figure 4.14: The lowest error for each weight λdist (pd weight) used by the distance loss
for each category.

63

4.5. Stacked Hourglass Network

The influence of the distance loss on the final prediction error is depicted in Figure 4.14.
The λdist values are shown as pd weight in the plots. λdist = 0 means that the distance
loss is not used.

In all categories, using the distance loss lowers the error a little. While λdist = 0.25 is the
best choice for easy (49), difficult (49) and difficult (68), using this weight for easy (68) is
worse than not using the distance loss at all. λdist = 0.01 is the best choice for easy (68)
and works well for easy (49) and difficult (68), however it is worse than not using the loss
for difficult (49). If only 49 landmarks are required by the application, λdist = 0.25 is the
best pick and if 68 landmarks are desired, λdist = 0.01 the best option.

Because it is not clear which value to choose, the error for the model that had the lowest
average error on all four categories is plotted in Figure 4.15. λdist = 0.01 is the optimal if
the average error for all categories should be as low as possible.

Figure 4.15: The lowest error for each weight λdist (pd weight) used by the distance loss
is shown for the average of all four categories.

4.5.5 Comparison with state-of-the-art methods

Now that most hyper-parameters for the stacked HG have been analyzed, we compare its
performance to current state-of-the-art solutions on two datasets: The 300-W [55, 56, 57]
test set and the Menpo [82] train set. The datasets are presented in Section 4.1. For 300-W
we use the IOD normalized RMSE as error metric and for Menpo the RMSE normalized
by the bounding box size (mean of the width and height of the bounding box). Both
metrics are described in Section 4.2.

An introduction to the baseline methods used to compare our method to can be found in
Section 2.3. The median errors of the baselines and our models are listed in Table 4.1.
The median of the errors is used instead of the mean because the mean is more sensitive
to outliers. The lowest error of the baselines in each category is written cursively. The
ticks in the table mean that the error is lower than all shown baselines in this column.
The lowest value in each column is printed bold.

The results of our models are split into four sections. The first section contains the errors
of the models that performed best in one of the categories. The following sections report
the errors of models that were the best in the average categories as described in Section 4.3.

64

4. Evaluation

Method

Dataset Helen [36]+LFPW [5] iBUG [56] Menpo [82]

easy (49) easy (68) diff (49) diff (68) 49 68

CLNF [3] H u 2.51 3.47 4.93 6.37 2.10 2.66
SDM [74] H u 3.31 - 10.73 - 2.54 -
CFAN [83] H u - - 6.99 8.38 2.34 2.87
DRMF [2] H u 4.22 4.97 8.64 10.36 3.44 -
CFSS [86] H u 2.46 3.20 4.49 5.97 1.90 2.32
TCDCN [85] H u 3.32 4.11 5.56 6.87 2.81 3.32
3DDFA [87] H u 5.17 7.27 8.34 12.31 3.59 4.51
LAB [73] - 2.98 - 5.19 - -
DU-Net [65] - 2.82 - 5.07 - -
YANG-HG [76] - - - 4.90 - -
PO-CR [67] H u 2.67 - 3.33 - 2.03 -
AWL [72] - 2.72 - 4.52 - -
CE-CLM [79] 2.30 3.15 3.86 5.31 1.74 2.23
FC-LGCN [44] 2.21 2.86 4.18 5.29 1.79 2.14

A1: easy 49 1.95 4 - 3.35 - 1.63 4 -
A2: easy 68 2.03 4 2.66 4 3.50 4.53 1.66 4 1.95 4

A3: difficult 49 2.05 4 - 3.15 4 - 1.69 4 -
A4: difficult 68 2.05 4 2.74 3.38 4.34 4 1.66 4 1.94 4

B1: average easy 2.01 4 2.66 4 3.37 4.59 1.67 4 1.95 4

B2: average difficult 2.08 4 2.80 3.20 4 4.35 4 1.69 4 2.03 4

C1: average 49 2.02 4 - 3.16 4 - 1.66 4 -
C2: average 68 2.05 4 2.74 3.38 4.34 4 1.66 4 1.94 4

D: average all 2.00 4 2.72 (4) 3.19 4 4.41 4 1.64 4 1.99 4

Table 4.1: Comparison of our models to state-of-the-art baselines. The error value for
Helen [36], LFPW [5] and iBUG [56] is the median IOD normalized RMSE. The error
value for Menpo [82] is the median of the bounding box size normalized RMSE. All
values are multiplied by 100 for better readability. Bold numbers are the lowest in one
category. 4 means that the value is lower than the baselines. (4) means that it is as low
as the best baseline. H: Numbers taken from Zadeh et al. [79]. u: Numbers taken from
Merget et al. [44]. The other numbers are taken from the original papers.

In section A we picked the best model for each of the four categories on 300-W: easy with 49
landmarks (A1) easy with 68 landmarks (A2), difficult with 49 landmarks (A3) and difficult
with 68 landmarks (A4). Rather than only showing the performance of each model in the
category where it has the lowest error, we also report its errors for the other categories.
This reveals that a model that has the lowest error in one category has a higher error in the
other categories when compared to the best ones in these categories. For example, model
A1 has an error of 1.95 on easy (49) but an error of 3.35 on difficult (49) while model A3

has only an error of 3.15 on difficult (49) but 2.05 on easy (49). In scenarios where it is
known beforehand if a sample is easy or difficult this would be valid as one could just use

65

4.5. Stacked Hourglass Network

the respective model. Yet this is an unrealistic scenario unless it is guaranteed that only
near-frontal images without strong occlusions are used in the case of model A1 or only
images with stronger head poses or occlusions in A3. Although it is unrealistic to pick the
best suited model based on the difficulty of a sample, we show the best average models on
both easy (B1) and difficult samples (B2) for completeness.

In many applications, a model that performs well on both easy and difficult samples for
49 or 68 landmarks is desired. Therefore, Section C shows the model that has the lowest
average error on easy and difficult samples for 49 landmarks (C1) or 68 landmarks (C2).
The assumption here is that a model can be picked based on what the detected facial
landmarks will be used for, i.e. if the application requires 49 or 68 landmarks. This is
more reasonable since for most applications this is known beforehand. The best average
49 model is better than all baselines for 49 landmarks. The best average 68 model is
better than all landmarks on difficult (68) and easy (49) but slightly worse on easy (68)
and difficult (49).

We furthermore investigated which model has the lowest average error on all four cate-
gories. This is shown in Section D. This model achieves an error that is lower or equal
to the best baseline in all categories. Thus, our stacked HG D achieves state-of-the-art
results on the 300-W dataset.

Cross-dataset evaluation on Menpo

A good indicator for the generalization capabilities of a model is the prediction accuracy
on a dataset that was never seen during training, neither to compute the gradients, to
update the learning rate or to perform early stopping. More importantly, the performance
on this dataset must also not be used to select the best model among a few candidates.
For these reasons we also report the errors on Menpo [82] in Table 4.1. Menpo was never
used during training and the models listed in the table were not selected based on the
Menpo errors. The models in the table were selected based on the error on the 300-W test
set, so this can be seen as the validation set while Menpo is the real test set. Note that
the error values reported for Menpo are the RMSE normalized by the mean of width and
height of the bounding box.

All nine models beat the state-of-the-art baselines on Menpo for both 49 and 68 landmarks.
The best predictions for 49 landmarks were obtained using A1, which is also the best
model for easy (49). 68 landmarks on Menpo were best located with both A4 (best in
difficult (68)) and C2 (best average for 68 landmarks). However, all of our models have
errors which range from 1.53 to 1.69 for 49 landmarks and 1.94 and 2.03 for difficult
landmarks and therefore are all good options.

General observations for all datasets

The errors for 49 landmarks are lower than the errors for 68 landmarks in easy, difficult
and Menpo for all of our models and all baselines. This is not due to the fact that more
landmarks are used to compute the 68 landmarks error, because the error is normalized
by the number of landmarks and thus represents the average error. This indicates that
predicting landmarks on the outline is generally more challenging than inner face land-
marks. A reason for that is the ambiguity of the landmark appearance on the outline.
Inner landmarks like the corner of the eye or the mouth are well defined because they lie

66

4. Evaluation

in areas with an unique texture. However, landmarks on the outline can not be located
this accurately because multiple points on the outline have a very similar appearance.
Thus, both human annotators and landmark predicting models make bigger mistakes for
landmarks on the outline than compared to the inner face.

Hyper-parameters of the best stacked HGs

The hyper-parameters that were used to train the models from Table 4.1 are listed in
Table 4.2. All hyper-parameters that are not listed are the same for all the models: DSNT
for the coordinate regression, Gaussian σ = 1.0 for the heatmap regularization, Wing loss
(wing 10) as the loss function, no loss normalization, no distance loss and no intermediate
loss. The batch size is 32 for all models, the optimizer is Adam [33] with learning rate
0.001 and a learning rate scheduler with patience 15 and a decay factor of 0.5.

Model n lm n hgs n res mod. n feat. hg depth rot. α epochs

A1: easy 49 49 3 3 512 2 30° 118
A2: easy 68 68 3 3 512 2 0° 95
A3: difficult 49 49 3 3 512 2 60° 162
A4: difficult 68 68 4 3 512 4 15° 104

B1: average easy 68 4 3 512 2 0° 83
B2: average difficult 68 4 3 512 4 60° 157

C1: average 49 49 3 3 512 2 60° 161
C2: average 68 68 4 3 512 4 15° 104

D: average all 68 4 3 512 4 60° 179

Table 4.2: Hyper-parameter values used to train the models in Table 4.1. The epoch with
the lowest error is shown in the last column.

It can be observed that the best model on the difficult (49) category (A3) was trained
on 49 landmarks although a finding of Section 4.5.3.5 was that training a model on 49
instead of 68 landmarks does only help with easy samples but hurts with difficult samples.
However, A3 was also trained with 60°random rotations while all models in Section 4.5.3.5
were trained without rotations. This demonstrates the complex interplay between different
hyper-parameters. Training on 49 landmarks becomes beneficial for difficult samples when
using rotation augmentation while it increases the error when the augmentation is not used.

The same observation can also be made for other hyper-parameters, e.g. the number of
features. All of our best models use 512 features while we found that 256 is a better choice
for easy images in section Section 4.5.3.3. The combination with other hyper-parameters
makes 512 a better choice for our best models.

4.5.6 Unsuccessful experiments with Spatial Transformer Networks

During the implementation of the stacked HG we investigated if Spatial Transformer Net-
works (STNs) [32] can help to improve the accuracy. STNs can be used as part of a
Convolutional Neural Network (CNN) to detect if the input image was rotated, scaled or
translated. The STN regresses a set of affine parameters that can be used to revert the

67

4.6. Point Distribution Model

rotation, scaling or translation before the main network (e.g. a (stacked) HG) analyzes
the image. By doing this the main network does not have to learn features for transformed
images but only for normalized images, i.e. faces that have no rotation, were not scaled
and not translated. This results in less network parameters and thus to faster training
and inference. It can also improve accuracy for some tasks [32]. A STN can be seen as
a pre-processing step that transforms objects in an image to a neutral pose. The STN is
trained jointly with the main network.

We conducted a few experiments to find out if STNs can also help in the task of facial
landmark detection. During training we augmented the samples with a random rotation
augmentation between −45 and 45 degrees. The first try was to have a single STN before
the first HG. Unfortunately the STN always learned to predict the identity transformation
(no scale, translation and rotation) after a few epochs, regardless of the complexity of the
STN, causing the HG to handle transformations itself. This lead to the assumption that
the HG is learning faster than the STN and that the STN thus learns to do nothing. To
help the STN learning faster the learning rate was adjusted. However, setting the STN
learning rate higher or lower than the HG learning rate did not change the behaviour.

The next assumption was that the STN is not able to detect if a human face was trans-
formed since the STN is only a small CNN with a small receptive field. Therefore the
next experiment used a separate HG before the STN and a stack of HGs after the STN.
The first HG should be able to deliver useful information to the STN which could then
revert the transformation and the stack of HGs could be trained on neutral images. As
the STN again only learned the identity transformation, it seemed that the STN is simply
not needed because the HG is already powerful enough to handle transformations.

Hence, the final architecture implemented in this master’s thesis does not include a STN,
but still is trained using rotation augmentation to allow the HG to handle rotated faces.

4.6 Point Distribution Model

In this section the PDM as presented in Section 3.5 is evaluated. The PDM is trained
on the landmark annotations of the training split of 300-W [55, 56, 57]. The images are
ignored and only the landmark coordinates are used since the PDM does not depend on
appearance information. The final performance of the pipeline consisting of stacked HG
and PDM is reported on both the 300-W test set and the Menpo [82] training set as
introduced in Section 4.1.

A list of all relevant hyper-parameters for both the PDM training and inference is presented
in Section 4.6.1. The optimal latent vector size is discussed in Section 4.6.2. Various
decoder architectures are compared in Section 4.6.3. Different initialization strategies
for the latent vectors and transformation parameters are assessed in Section 4.6.4. The
best performing stacked HGs are compared to the best performing HG-PDM pipelines in
Section 4.6.5. Finally, the best combinations of stacked HG and PDM with the lowest
evaluation errors are compared to state-of-the-art methods in Section 4.6.6, similarly like
presented for the stacked HG in Section 4.5.5.

68

4. Evaluation

4.6.1 Hyper-parameter overview

Compared to the stacked HG, the PDM has relatively few hyper-parameters that are
directly related to the architecture:

Decoder architecture

• n lm: 49 (without outline) or 68 (with outline), see Figure 4.2 for a visualization

• decoder layers: The architecture of the decoder network. The size of the first layer
determines the size of the latent vector.

The input to the decoder network is the latent vector. Thus, there is no separate hyper-
parameter that specifies the size of the latent vector. Instead, the number of neurons in the
first layer of the decoder network determines the number of elements in the latent vector.
The last layer of the decoder has nlm ∗ 3 neurons because it outputs the 3D coordinates
of all landmarks. The minimal decoder consists of just the input layer and the output
layer that maps the latent vector to the 3D coordinates. However, to be able to model
complex non-linear mappings, deeper decoder networks can be used. Different decoder
architectures are compared in 4.6.3. The choices for n lm and the decoder architecture
that were used for the models with the lowest errors are listed in Section 4.6.5. The rest
of the hyper-parameters configures the training and inference process.

Hyper-parameters used in both training and inference

• lr shape: Learning rate for the latent vectors z and the transformation parameters t

• loss function: Loss function for PDM training and inference

Wing loss [24] (Section 3.4.3) is used with the same parameters as to train the stacked HG.
The learning rate for the shape parameters (latent vector and transformation parameter)
was subject to a grid search. The value that was used for the best models is reported in
Section 4.6.5.

Training hyper-parameters

• epochs train: Number of epochs to train the PDM decoder

• lr net: Learning rate for the decoder network weights

• batch size: Number of samples per mini-batch

We empirically found a batch size of 64 to work well. The optimizer used for the PDM
decoder is Adam [33] with a 0.001 as learning rate. Which number of epochs worked well
in our experiments is shown in Section 4.6.5.

Inference hyper-parameters

• epochs inference: Number of epochs for the PDM inference

• confidence parameters [a,b]: Hyper-parameters for the conversion between heatmap
variance and confidence (see Section 3.5.6)

• variance threshold Only apply the PDM to samples that have at least one land-
mark with a higher heatmap variance than the threshold. If the threshold is set to
0.0, the PDM is applied to all samples.

69

4.6. Point Distribution Model

• use initializer: If set to true, an initializer network determines starting values for
the latent vectors z and transformation parameters t. Otherwise the latent vectors
are initialized randomly and the transformation parameters are set to the identity
transformation.

• lr scheduler: Whether to use a sample-specific learning rate scheduler to reduce
the learning rate (lr shape) on a plateau of the reconstruction error. If yes, both the
patience and decay factor are specified.

The values for these hyper-parameters are reported for the best models in Section 4.6.5.

During inference, the batch size is set to the highest possible value that fits on one GPU.
This is possible because all samples are independent and can hence be processed in parallel.
Since the PDM inference runs iteratively this saves time when processing a large number
of samples. As the PDM decoder network is small, the whole test data in this work set
fits on the GPU in one batch.

4.6.2 Latent vector size

As discussed in Section 3.5.2, using a too large number of dimensions for the latent vectors
allows the network to learn a mapping that directly stores the landmarks in the vector
without learning their correlations. In this case the PDM is able to find a latent repre-
sentation that gets decoded to the original shape almost perfectly, i.e. the reconstruction
error will be very small. In this section we analyze how the number of dimensions relates
to the reconstruction error. The input shape can be interpreted as the ground-truth and
the reconstructed shape as the prediction which allows to use the same metric that was
used for the stacked HG: IOD normalized RMSE.

Figure 4.16: Reconstruction error on the test set for 68 landmarks depending on latent
vector dimensionality. To better see the trends, the y axis is log10-scaled.

Figure 4.16 shows the reconstruction error of a PDM that was trained with a certain latent
vector size. The decoders trained for this experiment all consist of only two layers: The

70

4. Evaluation

input layer (which size is varied in this experiment) and the output layer that outputs
68 3D coordinates. The reconstruction error is determined by inferring latent vectors
and transformation parameters for the 300-W test samples (easy and difficult combined),
decoding and projecting them to 2D. The IOD normalized RMSE between the original
test samples and their reconstructed shapes is the reconstruction error.

It can be observed that the error reduces with the increasing vector size until 144 dimen-
sions are reached. At this point the reconstruction error is about 0.139 which means that
the mean error among samples is only 0.139% of the IOD. In other words, the vector can
encode the input shape almost perfectly. With further increasing vector sizes the error
slowly grows again. This is most likely due to overfitting of the decoder. The error for
136 dimensions is 0.144 and only slightly higher than for 144 dimensions. In theory the
expectation would be that the error is the smallest for 136 dimensions because that is
enough to encode 68 2D coordinates without a loss. However, this might require longer
training.

For the use case of fixing wrong predictions it is not desired to be able to encode the shapes
without a loss as this does not force the PDM to learn a model of the human face and its
variations. Therefore the latent vector dimension should be smaller than 136 dimensions
for the case of 68 landmarks and 98 dimensions for the case of 49 landmarks.

4.6.3 Decoder architecture

In the previous experiment only decoders with two layers were compared. This effectively
means that these decoders learned a linear mapping between the latent vector and the 3D
coordinates. To model complex variations of a human face it might be helpful to use more
layers which allow to learn a non-linear mapping. In this section many different PDM
decoder architectures are compared. In contrast to the previous section, we focus on the
error rate the PDM achieves when it is run on the output of a stacked HG. The error that
was achieved by a PDM with a particular decoder architecture is shown in Figure 4.17.

As it is difficult to visualize the errors of different decoder architectures with different
numbers of layers we grouped the results by the latent vector size (which is the size of the
first layer) and report the lowest error for each group. The labels in the plots indicate
which exact architecture achieved the lowest error. The label [48,64] means that the
decoder had an input layer with 48 neurons followed by a hidden layer with 64 neurons
and an output layer which has 3 ∗ 68 = 204 elements (68 3D coordinates). All decoders
used in this experiment were trained on 68 landmarks.

A latent vector with 32 dimensions had the highest error for all four categories. Thus, 32
dimensions are too small to model the complex variations seen in facial landmarks. For
easy (68) 64 neurons followed by the output layer performed best. For both easy (49) and
difficult (49) the architecture [96] worked best. For difficult (68) layers with 64, 96 and 128
neurons followed by the output layer lead to the lowest error. However, the architecture
[96] is almost as good as [64,96,128]. Consequently, for all four categories an architecture
with two layers works well. This indicates that it is sufficient to model the dependencies
between the different landmarks linearly.

Unfortunately, it is not possible to fully explore the space of all possible decoder archi-
tectures. Arbitrarily deep and wide architectures are possible and is not clear if different

71

4.6. Point Distribution Model

(a) easy (49) (b) easy (68) (c) difficult (49) (d) difficult (68)

Figure 4.17: The lowest IOD normalized RMSE for different decoder architectures
grouped by the latent vector size (number of neurons in the first layer).

architectures than we tested would work better. For the following experiments, the best
performing decoders from this experiment are further analyzed.

4.6.4 Pre-initialization of latent vector

In this section we examine the effectiveness of initializing the latent vector by an initializer
as described in Section 3.5.7. For this purpose many different PDM architectures were
trained (see Section 4.6.3) and in a grid search the best PDMs were run on the predictions
of the stacked HGs that achieved state-of-the-art results (see Section 4.5.5). For each
pair different optimizers, schedulers and number of inference epochs were evaluated. Each
combination was run both with randomly initialized latent vectors and using the initializer.
In total over 11,000 combinations were tested and the results were grouped by the number
of test epochs and the type of initialization. For each group the lowest IOD normalized
RMSE was determined. This error is not the reconstruction error between the output of
the PDM and stacked HG but the error between the ground-truth and the shape that the
PDM reconstructed. We show the results for the easy (68) and difficult (68) categories
in Figure 4.18. The 49 landmark categories are omitted because what is described in the
following holds for them as well.

There are two plots for each category in Figure 4.18 to be able to observe the error
behaviour. The left plots show the errors for PDMs that were run for 5-1000 epochs and
the right plots only show the error rates for the range between 50 and 1000 epochs. Yet
both the left and right plots are based on the same data. The top row shows the results
for easy (68) and the bottom row for difficult (68).

In both categories the errors are very high when the latent vectors and transformation pa-
rameters are initialized randomly and the PDM is run for only five epochs. Five epochs are
not enough to find latent vectors and transformations that can reconstruct the predictions
from the stacked HG. When using the initializer, the error is much smaller even when

72

4. Evaluation

(a) easy (68): 5 - 1000 epochs (b) easy (68): 50 - 1000 epochs

(c) difficult (68): 5 - 1000 epochs (d) difficult (68): 50 - 1000 epochs

Figure 4.18: Error depending on the number of PDM inference epochs for both random
initialization and using an initializer. Both figures in a row show the error for same
category. The right plot is a zoomed version of the left plot that focuses on epoch
numbers greater than 50 to better visualize the differences.

only five epochs are used since the inference procedure starts off a better position and is
able to faster converge to a more accurate reconstruction. Nevertheless, five epochs are
not enough to produce small errors in none of the two categories. The general trend that
can be observed from the left plots is that the error decreases as the number of inference
epochs increases in both initialization cases. Moreover, the difference between the errors
of both initialization methods shrinks with a growing number of inference epochs.

To better see the exact behaviour of errors with a higher number of epochs the right

73

4.6. Point Distribution Model

plots are shown. Although the gap between the two initialization methods is small with
a number of epochs greater than 100, there is a difference in the error rates. When an
initializer is used, the error of easy (68) is slightly larger than with random initialization.
For difficult (68) the initializer leads to a lower error than random initialization. From
these observations it can be concluded that the initializer is generally beneficial when fast
predictions are desired and the number of epochs is 50 or less. If 100 or more epochs
are used, using the initializer leads to worse results on easy samples and improves the
predictions on difficult samples.

Moreover, a general trend can be seen: If too many epochs are used, the error starts
to increase again. The reason lies in the nature of the iterative inference process which
minimizes the reconstruction loss using back-propagation as described in Section 3.5.5.
The reconstruction loss is weighted by the confidence measurement. As long as there
are reconstruction errors for landmarks with high confidence, the inference process will
be dominated by these until they are reconstructed (almost) exactly. The loss for these
landmarks will then be very small and the landmarks with a lower confidence but a higher
reconstruction error will dominate the loss. However, since their confidence is small, their
predicted locations are likely to be wrong, but the PDM will find a shape that better
matches them. In turn, the error for the high confidence landmarks will increase until
these dominate the overall error again. Therefore it is crucial to pick a suitable number
of test epochs. Reducing the learning rate of a sample when a plateau is reached can also
be helpful. An interesting extension would be to implement early stopping that stops the
inference as soon as the reconstruction error of high-confidence landmarks falls below a
threshold.

4.6.5 Error comparison between Stacked Hourglass Network with and
without Point Distribution Model

In this section the best stacked HGs are compared to the best pipelines consisting of a
stacked HG and a PDM. Before the error values are presented, the models that lead
to these are introduced. The stacked HGs are the ones shown in Section 4.5.5. The
landmarks predicted by these HGs were used as the input of the PDMs listed in Table 4.3.
The inference hyper-parameters that were used to produce the results for this section are
outlined at the end of this section.

PDM architecture nlm epochstrain

PDM1 [64, 147] 49 3000
PDM2 [96, 204] 68 3000
PDM3 [64, 204] 68 1500
PDM4 [96, 204] 68 2000

Table 4.3: The PDMs that were used on top of the stacked HGs and have lead to the
best predictions. [a,b] represents a two-layer network with a and b neurons.

Although we have also evaluated PDMs with deeper architectures, the best results were
obtained with two-layer decoder networks. The size of the first layer is the latent dimension
and the size of the output layer is 3nlm. In the following we will refer to a pipeline consisting

74

4. Evaluation

of a HG and a PDM as HG-PDM. For example, A2 - PDM4 is the combination of HG
A2 and PDM PDM4.

Lowest errors of stacked HGs with and without a PDM

In Table 4.4 the errors on 300-W [55, 56, 57] are shown for each of the categories that were
introduced in Section 4.3. The errors of the stacked HG are denoted as HG in the table and
are the same as in Section 4.5.5. Next to the lowest HG errors we report the lowest error
that a HG-PDM pipeline could achieve. Analogously to the comparison between stacked
HG and state-of-the-art methods in Section 4.5.5, we picked pipelines with the lowest error
for each of the four main categories easy (49), easy (68), difficult (49), difficult (68) as
well as for the averages in easy, difficult, 49 and 68 landmarks and overall average.

Dataset Helen [36] + LFPW [5] iBUG [56]
Category easy (49) easy (68) diff. (49) diff. (68)

HG | HG-PDM | Best in HG PDM HG PDM HG PDM HG PDM

A1 | A1 - PDM1: easy (49) 1.95 1.94 - - 3.35 3.33 - -
A2 | A2 - PDM4: easy (68) 2.03 2.04 2.66 2.65 3.50 3.44 4.53 4.54
A3 | D - PDM4: diff. (49) 2.05 2.00 - 2.72 3.15 3.11 - 4.41
A4 | B2 - PDM2: diff. (68) 2.05 2.08 2.74 2.80 3.38 3.24 4.34 4.30

B1 | B1 - PDM3: avg. easy 2.01 2.00 2.66 2.66 3.37 3.43 4.59 4.60
B2 | B2 - PDM4: avg. diff. 2.08 2.08 2.80 2.80 3.20 3.18 4.35 4.33

C1 | D - PDM4: avg. 49 2.02 2.00 - 2.72 3.16 3.11 - 4.41
C2 | C2 - PDM4: avg. 68 2.05 2.05 2.74 2.74 3.38 3.36 4.34 4.34

D | D - PDM4: avg. all 2.00 2.00 2.72 2.72 3.19 3.11 4.41 4.41

Table 4.4: Comparison of the lowest IOD normalized RMSE of HGs with and without a
PDM. Results are reported for each category of the 300-W [55, 56, 57] test set. In each
category the error of a HG is shown in the HG column. The PDM columns show the
values of a HG-PDM pipeline. Each row shows the performances of the HG and PDM
with the lowest error in one (average) category. For example, the models shown in the
first row had the lowest errors in easy (49) while the ones in the last row had the lowest
overall average error. In each category the lower error is underlined. The lowest error in
each category is written in bold type.

These models have also been evaluated on Menpo [82]. We do not report the Menpo
results in a separate table because the difference between the stacked HG error and the
PDM error is less than 0.01 for all categories. The PDM did neither improve nor worsen
the predictions from the stacked HG. An explanation for this could be that the stacked
HG was already able to predict the samples for Menpo accurately.

Best HG-PDM in a single category

When considering only the performance in one category (first four rows in the table),
the HG-PDM pipeline achieves lower errors than a stacked HG alone. For easy 49 (A1 -
PDM1) and easy 68 (A2 - PDM4) the HG-PDM error is 0.01 lower than the stacked HG
error. For difficult (49) and difficult (68) the difference is 0.04.

75

4.6. Point Distribution Model

The HG-PDM with the lowest error in easy 49 is also better than the best stacked HG
in difficult (49). There are no values for the categories with 68 landmarks because the
models were trained on only 49 landmarks. A2 - PDM4 has the lowest error in easy (68)
and is also better than the HG in difficult 49 but is worse than the HG in easy (49) and
difficult (68). D-PDM4 is better than the best HG in the 49 landmark categories. Note
that the HG used to compare to D-PDM4 in the difficult (49) row is not D but A3. This
is because A3 had a lower error than D when not combined with a PDM. However, the
combination D-PDM4 is better than A3-PDM4. The HGs used in the difficult (68) row
also differ. B2-PDM2 is better than the best HG in the difficult categories but worse in
the easy ones.

Best HG-PDM in the average categories

The HG-PDM with the lowest average error in the easy categories is only able to improve
the results from the HG in easy (49) by a small margin. In easy (68) there is no difference
and in difficult (49) and difficult (68) the results get worse when using the PDM. An
explanation is that it is hard to improve predictions for easy samples because the stacked
HG already has a low prediction error. Achieving a slightly lower error in easy (49) comes
at the cost of having worse predictions on the difficult samples. The situation for B2 -
PDM4 is different. It improves the errors in both difficult (49) and difficult (68) without
leading to worse predictions on easy samples.

D-PDM4 beats the corresponding HG C1 in both easy (49) and difficult (49) and therefore
improves the average 49 error. C2-PDM4 has the lowest average 68 error but does not
improve the individual 68 landmark categories. Surprisingly it improves difficult (49)
instead. For the other categories there is no difference.

Finally, the HG-PDM with the lowest average error on all four categories (D-PDM4) does
neither improve or worsen the HG error in easy (49), easy (68) and difficult (68). However,
in difficult (49) there is a significant improvement from 3.19 to 3.11.

Conclusion on the effectiveness of the PDM

The first thing to notice is that the HG used in a HG-PDM pipeline that achieved the
lowest error in one category is not necessarily the same HG that had the lowest error
without a PDM in this category. Examples are the rows difficult (49), difficult (68) and
average 49 in Table 4.4. A reason for this could be that the heatmaps of the HG in the
pipeline have different variances that lead to more accurate confidence measurements.

The biggest performance gain was accomplished in difficult (49). The HG-PDM pipeline
had a lower error in all cases except average easy where it increased the error by 0.06. In
the case of difficult (49) the error decreased by even 0.14 and in average all by 0.08. This
is a remarkable improvement compared to using only the stacked HG alone. Interestingly
these observations are not transferable to the difficult (68) category. The differences are
much smaller in this category. The biggest improvement was achieved in the case of
difficult (68) where the error decreased by 0.04. In average difficult there also was a small
improvement, but in all other cases the PDM did not help.

In the easy (49) category the HG-PDM combination dropped the error by 0.01 in the case
of the best easy (49) model, by 0.05 in the difficult (49) case, by 0.01 in average easy and

76

4. Evaluation

average 49. There is no improvement in easy (49) for any case that includes 68 landmarks.
The performance in these cases either got worse (easy (68) and difficult (68)) or the was
no difference. For the easy (68) category the same can be observed even stronger: Only
the best easy (68) HG-PDM combination could improve the error in this category. For all
other models there is no error difference, except for difficult (68) which worsened the error
from 2.74 to 2.80.

Two main conclusions can be made based on this information. First, the difficult
categories benefit more than the easy categories when the PDM is used. This can be
explained by the low errors that the stacked HG has on these samples. It is hard to
improve the predictions even more and it is also possible that there is a natural limit in the
theoretical error that can be achieved because of small errors in the annotations, especially
on the face outline. Second, the 49 landmark categories received a bigger improvement
by using the PDM than the 68 landmark categories. This suggests that the PDM fails at
learning a mapping between the latent vectors and the coordinates on the face outline. One
possible explanation for this could also be imprecise annotations of the outline which cause
the PDM to learn the variations in the annotations rather than the actual variations in the
shape of the face outline. Another explanation could be the outline prediction accuracy of
the stacked HG. If the confidence of too many landmarks on the outline is low, the PDM
has no clue of the general face shape. This is because it is not possible to guess the face
outline from the inner of the face (for example, the same inner facial landmarks can belong
to a person with a round or slim face). The PDM will then reconstruct an outline that is
based on predictions with low confidence and will therefore be erroneous. To confirm this,
we have computed the average variances of the heatmaps of each landmark and the ones
on the outline are higher than the inner landmarks on average. Hence, the corresponding
confidences are lower and the inference is dominated by the inner landmarks.

Inference hyper-parameters of the best PDMs

HG-PDM init. epochs thresh lrshape schpat schfac confa confb

A1 - PDM1 initializer 1000 0.0 0.025 5 0.75 1.0 0.1
A2 - PDM4 randomly 100 0.0 0.025 10 0.25 0.1 0.1
D - PDM4 initializer 50 2.0 0.025 5 0.75 0.1 0.1
B2 - PDM2 randomly 100 3.0 0.025 10 0.5 1.0 0.1
B1 - PDM3 randomly 250 0.0 0.025 10 0.25 1.0 0.1
B2 - PDM4 randomly 1000 2.0 0.025 10 0.25 0.1 0.1
D - PDM4 initializer 50 2.0 0.025 5 0.75 0.1 0.1
C2 - PDM4 randomly 250 2.0 0.1 25 0.1 1.0 0.1
D - PDM4 initializer 50 2.0 0.025 5 0.75 0.1 0.1

Table 4.5: For each HG - PDM combination that was used in the PDM evaluation, the
table shows the inference hyper-parameters. thresh is the variance threshold and lrshape
the learning rate for the shape parameters. schpat and schfac are the patience and decay
factor of the learning rate scheduler for lrshape. confa and confb are parameters that are
used to compute the confidence from the heatmap variance.

After a PDM has been trained, there are still some hyper-parameters that influence the

77

4.6. Point Distribution Model

inference. These hyper-parameters were introduced in Section 4.6.1. Table 4.5 shows the
parameters that were used to produce the results in this section and Section 4.6.6.

Unfortunately it is not easy to draw conclusions for the optimal values of the inference
parameters. Small changes in the values lead to big differences in the final prediction. If the
error of the final prediction is described as a function of the hyper-parameters, this function
is highly non-convex and there is a complex interplay between the hyper-parameters. It is
therefore very difficult to find optimal values. This could be an explanation why the value
for the number of test epochs is so different between the models.

4.6.6 Comparison with state-of-the-art methods

Similar to Section 4.5.5 where the stacked HG was compared to state-of-the-art methods,
this section provides a comparison for the whole system, namely the stacked HG combined
with the PDM.

Table 4.6 shows the errors on the test set of 300-W [55, 56, 57] and the train set of Menpo
[82] of our models and a selection of the baselines presented in Section 2.3. In the table
we list only the best baselines that were listed in Section 4.5.5 to make the table more
clear. If a model is better than one of these baselines, than it is also better than all other
baselines. We report our results for nine models: The best per category, the best average
models for easy, difficult, 49 and 68 landmarks and the overall best model. These models
are described in detail in Section 4.6.5.

Method
Dataset Helen [36]+LFPW [5] iBUG [56] Menpo [82]

easy (49) easy (68) diff (49) diff (68) 49 68

PO-CR [67] H u 2.67 - 3.33 - 2.03 -
AWL [72] - 2.72 - 4.52 2.12
CE-CLM [79] 2.30 3.15 3.86 5.31 1.74 2.23
FC-LGCN [44] 2.21 2.86 4.18 5.29 1.79 2.14

A1-PDM1: easy 49 1.94 4 - 3.33 (4) - 1.64 4 -
A2-PDM4: easy 68 2.04 4 2.65 4 3.44 4.54 1.66 4 1.95 4

D-PDM4: diff. 49 2.00 4 2.72 (4) 3.11 4 4.41 4 1.65 4 2.00 4

B2-PDM2: diff. 68 2.08 4 2.80 3.24 4 4.30 4 1.69 4 2.03 4

B1-PDM3: avg. easy 2.00 4 2.66 4 3.43 4.60 1.67 4 1.95 4

B2-PDM4: avg. diff. 2.08 4 2.80 3.18 4 4.33 4 1.69 4 2.03 4

D-PDM4: avg. 49 2.00 4 2.72 (4) 3.11 4 4.41 4 1.65 4 1.99 4

C2-PDM4: avg. 68 2.05 4 2.74 3.36 4.34 4 1.66 4 1.95 4

D-PDM4: avg. all 2.00 4 2.72 (4) 3.11 4 4.41 4 1.65 4 1.99 4

Table 4.6: Comparison of our models to state-of-the-art baselines. The models are
denoted as HG-PDM. The error values are the median IOD normalized RMSE,
multiplied by 100 for better readability. Bold numbers are the lowest in one category.
4 means that the error is lower than the baselines. H: Numbers taken from Zadeh et al.
[79]. u: Numbers taken from Merget et al. [44]. The other numbers are taken from the
original papers.

78

4. Evaluation

All our HG-PDM models achieve lower errors than the state-of-the-art methods in easy
(49), Menpo (49) and Menpo (68). To focus on the relevant information, we only discuss
the models average 49, average 68 and average all in the following because in practice it
is unlikely to know beforehand if the system will be applied to easy or difficult images.

The best average (49) HG-PDM is as good as AWL [72] on easy (68) and better than
all baselines in all other categories. The best average (68) HG-PDM is better than all
baselines in all categories except easy (68) and difficult (49), where it is slightly worse.
The overall best HG-PDM has an error that is lower than all baselines in all categories
except easy (68), where it is as good as AWL. The biggest error difference between our
models and the baselines can be observed in the easy (49) and difficult (49) categories.

79

4.7. Qualitative results

4.7 Qualitative results

After the system has been evaluated using a lot of numbers, we finally show some landmark
predictions that were created by the system developed in this work in Figure 4.19.

Figure 4.19: Predictions on the difficult 300-W test set [55, 56, 57]

80

5. Conclusion

5.1 Summary

This work aimed at improving state-of-the-art results for the task of facial landmark de-
tection on unconstrained frontal and semi-frontal face images. To this end, a system
consisting of two main parts has been designed, implemented and evaluated. As stacked
Hourglass Networks (HGs) have already proven their effectiveness for other landmark pre-
diction problems such as human pose estimation, we chose to use a stacked Hourglass (HG)
to produce initial predictions for each facial landmark. In order to further refine these pre-
dictions, we designed a Point Distribution Model (PDM).

We found that training the stacked HG using Wing loss and transforming the regressed
heatmaps into numerical coordinates using a Differentiable Spatial To Numerical Trans-
form (DSNT) is very effective for the task at hand. Various design choices for the stacked
HG were evaluated. Regularizing the heatmaps using the Jensen-Shannon divergence
proved to be helpful. Augmenting the training data by randomly rotating the face images
lowered the prediction error especially for difficult images by a large factor. By applying
the findings of the evaluation, our stacked HG is able to produce state-of-the-art results
in terms of the point-to-point normalized error on both the 300-W and Menpo datasets.
The error on Menpo was determined by a cross-dataset evaluation on a model that was
only trained on 300-W.

The second part of this work focused on the PDM. We found that simple decoder networks
with only two layers are able to model a mapping from a latent vector to the face shapes
that can be used to improve the predictions made by the stacked HG. We furthermore
have shown that initializing the shape parameters using a separate initializer network
can lead to faster and more accurate predictions. Combining the stacked HG with the
PDM further improves the prediction accuracy, especially for the inner facial landmarks
on difficult images that show faces with strong head poses.

The stacked HG achieves state-of-the-art results on 300-W and Menpo both with and
without the PDM. While adding the PDM does not lower the prediction error of the
stacked HG for landmarks on the outline, it improves the localization accuracy on the
inner facial landmarks of the difficult samples from 300-W. Our overall system is able to
produce accurate predictions for faces in unconstrained settings, which includes faces with
partial occlusions.

5.2 Outlook

Although good results have been achieved in this thesis, there are a lot of ideas that could
lead to even better predictions.

81

5.2. Outlook

The stacked HG and the PDM were trained separately in this work. As the PDM relies
on the confidence measurement that is determined based on the variance of the heatmaps
from the stacked HG, this is a critical point that should be further investigated. A possible
improvement over the current solution could be the end-to-end training of both the stacked
HG and the PDM. This would enable a more complex confidence measurement. For
example, an additional confidence estimation network could be employed between the
stacked HG and the PDM. This would make determining a suitable mapping function
between heatmap variance and confidence obsolete and would furthermore allow to learn a
different mapping for each of the landmarks. Since we observed that the typical variances
lie in different ranges depending on the individual landmarks, this is an interesting direction
to follow in the future.

We used the same topology for each of the individual HGs in the stack. In order to improve
the stacked HG in terms of speed, model size and accuracy, different topologies for the
individual HGs could be tested. Modifying the pre-processing network so that it outputs
a higher resolution could also be beneficial for the accuracy of the stacked HG.

Finally, this work was restricted to semi-frontal images. An useful extension would be to
modify the system to also work for profile images.

82

Bibliography

[1] Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. “Face recognition with lo-
cal binary patterns”. In: European conference on computer vision. Springer. 2004,
pp. 469–481.

[2] Akshay Asthana, Stefanos Zafeiriou, Shiyang Cheng, and Maja Pantic. “Robust dis-
criminative response map fitting with constrained local models”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2013, pp. 3444–
3451.

[3] Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency. “Constrained local
neural fields for robust facial landmark detection in the wild”. In: Proceedings of the
IEEE international conference on computer vision workshops. 2013, pp. 354–361.

[4] Ankan Bansal, Anirudh Nanduri, Carlos D Castillo, Rajeev Ranjan, and Rama Chel-
lappa. “Umdfaces: An annotated face dataset for training deep networks”. In: 2017
IEEE International Joint Conference on Biometrics (IJCB). IEEE. 2017, pp. 464–
473.

[5] Peter N Belhumeur, David W Jacobs, David J Kriegman, and Neeraj Kumar. “Lo-
calizing parts of faces using a consensus of exemplars”. In: IEEE transactions on
pattern analysis and machine intelligence 35.12 (2013), pp. 2930–2940.

[6] Matteo Bodini. “A review of facial landmark extraction in 2d images and videos
using deep learning”. In: Big Data and Cognitive Computing 3.1 (2019), p. 14.

[7] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A training algo-
rithm for optimal margin classifiers”. In: Proceedings of the fifth annual workshop on
Computational learning theory. ACM. 1992, pp. 144–152.

[8] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[9] Adrian Bulat and Georgios Tzimiropoulos. “Binarized convolutional landmark local-
izers for human pose estimation and face alignment with limited resources”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision. 2017, pp. 3706–
3714.

[10] Adrian Bulat and Georgios Tzimiropoulos. “How far are we from solving the 2d &
3d face alignment problem?(and a dataset of 230,000 3d facial landmarks)”. In: Pro-
ceedings of the IEEE International Conference on Computer Vision. 2017, pp. 1021–
1030.

[11] Adrian Bulat and Georgios Tzimiropoulos. “Super-FAN: Integrated facial landmark
localization and super-resolution of real-world low resolution faces in arbitrary poses
with GANs”. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2018, pp. 109–117.

83

Bibliography

[12] Xavier P Burgos-Artizzu, Pietro Perona, and Piotr Dollár. “Robust face landmark
estimation under occlusion”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2013, pp. 1513–1520.

[13] Xudong Cao, Yichen Wei, Fang Wen, and Jian Sun.“Face alignment by explicit shape
regression”. In: International Journal of Computer Vision 107.2 (2014), pp. 177–190.

[14] Dong Chen, Gang Hua, Fang Wen, and Jian Sun. “Supervised transformer network
for efficient face detection”. In: European Conference on Computer Vision. Springer.
2016, pp. 122–138.

[15] Joon Son Chung and Andrew Zisserman. “Lip reading in the wild”. In: Asian Con-
ference on Computer Vision. Springer. 2016, pp. 87–103.

[16] Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. “Active appear-
ance models”. In: IEEE Transactions on Pattern Analysis & Machine Intelligence 6
(2001), pp. 681–685.

[17] Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham. “Ac-
tive shape models-their training and application”. In: Computer vision and image
understanding 61.1 (1995), pp. 38–59.

[18] Timothy F Cootes, Gareth J Edwards, Christopher J Taylor, et al. “Comparing
active shape models with active appearance models.” In: Bmvc. Vol. 99. 1. Citeseer.
1999, pp. 173–182.

[19] David Cristinacce and Timothy F Cootes. “Feature detection and tracking with
constrained local models.” In: Bmvc. Vol. 1. 2. Citeseer. 2006, p. 3.

[20] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human de-
tection”. In: international Conference on computer vision & Pattern Recognition
(CVPR’05). Vol. 1. IEEE Computer Society. 2005, pp. 886–893.

[21] Matthias Dantone, Juergen Gall, Gabriele Fanelli, and Luc Van Gool. “Real-time fa-
cial feature detection using conditional regression forests”. In: 2012 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE. 2012, pp. 2578–2585.

[22] Jiankang Deng, Anastasios Roussos, Grigorios Chrysos, Evangelos Ververas, Irene
Kotsia, Jie Shen, and Stefanos Zafeiriou. “The Menpo Benchmark for Multi-pose 2D
and 3D Facial Landmark Localisation and Tracking”. In: International Journal of
Computer Vision 127.6 (June 2019), pp. 599–624. issn: 1573-1405. doi: 10.1007/
s11263-018-1134-y. url: https://doi.org/10.1007/s11263-018-1134-y.

[23] C. Fabian Benitez-Quiroz, Ramprakash Srinivasan, and Aleix M. Martinez. “Emo-
tioNet: An Accurate, Real-Time Algorithm for the Automatic Annotation of a Mil-
lion Facial Expressions in the Wild”. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2016.

[24] Zhen-Hua Feng, Josef Kittler, Muhammad Awais, Patrik Huber, and Xiao-Jun Wu.
“Wing loss for robust facial landmark localisation with convolutional neural net-
works”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 2235–2245.

[25] Yoav Goldberg. “A primer on neural network models for natural language process-
ing”. In: Journal of Artificial Intelligence Research 57 (2016), pp. 345–420.

84

https://doi.org/10.1007/s11263-018-1134-y
https://doi.org/10.1007/s11263-018-1134-y
https://doi.org/10.1007/s11263-018-1134-y

Bibliography

[26] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[27] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition
with deep recurrent neural networks”. In: 2013 IEEE international conference on
acoustics, speech and signal processing. IEEE. 2013, pp. 6645–6649.

[28] Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade, and Simon Baker. “Multi-
pie”. In: Image and Vision Computing 28.5 (2010), pp. 807–813.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning
for Image Recognition”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2016.

[30] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In: Neural
computation 9.8 (1997), pp. 1735–1780.

[31] Sergey Ioffe and Christian Szegedy.“Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167
(2015).

[32] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. “Spatial transformer
networks”. In: Advances in neural information processing systems. 2015, pp. 2017–
2025.

[33] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[34] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information pro-
cessing systems. 2012, pp. 1097–1105.

[36] Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, and Thomas S. Huang.
“Interactive Facial Feature Localization”. In: Computer Vision – ECCV 2012. Ed.
by Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia
Schmid. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 679–692. isbn:
978-3-642-33712-3.

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324.

[38] Sijin Li, Zhi-Qiang Liu, and Antoni B Chan. “Heterogeneous multi-task learning for
human pose estimation with deep convolutional neural network”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition workshops. 2014,
pp. 482–489.

[39] Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, and Fuad E
Alsaadi. “A survey of deep neural network architectures and their applications”. In:
Neurocomputing 234 (2017), pp. 11–26.

[40] David G Lowe et al. “Object recognition from local scale-invariant features.” In: iccv.
Vol. 99. 2. 1999, pp. 1150–1157.

85

Bibliography

[41] Diogo C Luvizon, Hedi Tabia, and David Picard.“Human pose regression by combin-
ing indirect part detection and contextual information”. In: arXiv preprint arXiv:1710.02322
(2017).

[42] Iacopo Masi, Stephen Rawls, Gerard Medioni, and Prem Natarajan. “Pose-Aware
Face Recognition in the Wild”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2016.

[43] Uwe Meier, Rainer Stiefelhagen, Jie Yang, and Alex Waibel. “Towards unrestricted
lip reading”. In: International Journal of Pattern Recognition and Artificial Intelli-
gence 14.05 (2000), pp. 571–585.

[44] Daniel Merget, Matthias Rock, and Gerhard Rigoll. “Robust Facial Landmark De-
tection via a Fully-Convolutional Local-Global Context Network”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2018.

[45] Kieron Messer, Jiri Matas, Josef Kittler, Juergen Luettin, and Gilbert Maitre.“XM2VTSDB:
The extended M2VTS database”. In: Second international conference on audio and
video-based biometric person authentication. Vol. 964. 1999, pp. 965–966.

[46] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. “Head pose estimation in
computer vision: A survey”. In: IEEE transactions on pattern analysis and machine
intelligence 31.4 (2008), pp. 607–626.

[47] Alejandro Newell, Kaiyu Yang, and Jia Deng. “Stacked hourglass networks for hu-
man pose estimation”. In: European Conference on Computer Vision. Springer. 2016,
pp. 483–499.

[48] Aiden Nibali, Zhen He, Stuart Morgan, and Luke Prendergast.“Numerical coordinate
regression with convolutional neural networks”. In: arXiv preprint arXiv:1801.07372
(2018).

[49] Panagiotis Perakis, Georgios Passalis, Theoharis Theoharis, and Ioannis A Kaka-
diaris. “3D facial landmark detection under large yaw and expression variations”.
In: IEEE transactions on pattern analysis and machine intelligence 35.7 (2012),
pp. 1552–1564.

[50] Python. 2019. url: https://www.python.org/ (visited on 06/13/2019).

[51] PyTorch. 2019. url: https://pytorch.org/ (visited on 06/13/2019).

[52] Deva Ramanan and Xiangxin Zhu. “Face detection, pose estimation, and landmark
localization in the wild”. In: Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Citeseer. 2012, pp. 2879–2886.

[53] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. “Face alignment at 3000
fps via regressing local binary features”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2014, pp. 1685–1692.

[54] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning repre-
sentations by back-propagating errors”. In: Cognitive modeling 5.3 (1988), p. 1.

[55] C. Sagonas, E. Antonakos, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “300
faces In-the-wild challenge: Database and results”. In: Image and Vision Computing
(IMAVIS), Special Issue on Facial Landmark Localisation ”In-The-Wild”. 2016.

86

https://www.python.org/
https://pytorch.org/

Bibliography

[56] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. “300 Faces in-the-Wild
Challenge: The first facial landmark localization Challenge”. In: 300 Faces in-the-
Wild Challenge (300-W). Proceedings of IEEE International Conf. on Computer
Vision (ICCV-W). Dec. 2013.

[57] C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic.“A semi-automatic method-
ology for facial landmark annotation”. In: 5th Workshop on Analysis and Modeling
of Faces and Gestures (AMFG 2013). Proceedings of IEEE International Conf. Com-
puter Vision and Pattern Recognition (CVPR-W). June 2013.

[58] M Saquib Sarfraz and Olaf Hellwich. “Head Pose Estimation in Face Recognition
Across Pose Scenarios.” In: VISAPP (1) 8 (2008), pp. 235–242.

[59] M Saquib Sarfraz and Olaf Hellwich. “On head pose estimation in face recognition”.
In: International Conference on Computer Vision and Computer Graphics. Springer.
2008, pp. 162–175.

[60] Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kossaifi, Georgios Tzimiropou-
los, and Maja Pantic. “The first facial landmark tracking in-the-wild challenge:
Benchmark and results”. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops. 2015, pp. 50–58.

[61] Rainer Stiefelhagen, Jie Yang, and Alex Waibel. “Estimating focus of attention based
on gaze and sound”. In: Proceedings of the 2001 workshop on Perceptive user inter-
faces. ACM. 2001, pp. 1–9.

[62] Rainer Stiefelhagen, Jie Yang, and Alex Waibel. “Tracking eyes and monitoring eye
gaze”. In: Proc. Workshop on Perceptual User Interfaces. 1997, pp. 98–100.

[63] Yi Sun, Xiaogang Wang, and Xiaoou Tang. “Deep convolutional network cascade for
facial point detection”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2013, pp. 3476–3483.

[64] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. “Deepface: Clos-
ing the gap to human-level performance in face verification”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2014, pp. 1701–1708.

[65] Zhiqiang Tang, Xi Peng, Shijie Geng, Lingfei Wu, Shaoting Zhang, and Dimitris
Metaxas. “Quantized densely connected u-nets for efficient landmark localization”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 339–354.

[66] George Trigeorgis, Patrick Snape, Mihalis A Nicolaou, Epameinondas Antonakos,
and Stefanos Zafeiriou. “Mnemonic descent method: A recurrent process applied for
end-to-end face alignment”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 4177–4187.

[67] Georgios Tzimiropoulos.“Project-out cascaded regression with an application to face
alignment”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 3659–3667.

[68] Paul Viola, Michael Jones, et al. “Rapid object detection using a boosted cascade of
simple features”. In: CVPR (1) 1 (2001), pp. 511–518.

87

Bibliography

[69] Alexander Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and
Kevin J Lang. “Phoneme recognition using time-delay neural networks”. In: Back-
propagation: Theory, Architectures and Applications (1995), pp. 35–61.

[70] Robert Walecki, Ognjen Rudovic, Vladimir Pavlovic, and Maja Pantic. “Copula Or-
dinal Regression for Joint Estimation of Facial Action Unit Intensity”. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[71] Nannan Wang, Xinbo Gao, Dacheng Tao, Heng Yang, and Xuelong Li.“Facial feature
point detection: A comprehensive survey”. In: Neurocomputing 275 (2014), pp. 50–
65.

[72] Xinyao Wang, Liefeng Bo, and Li Fuxin. “Adaptive Wing Loss for Robust Face
Alignment via Heatmap Regression”. In: arXiv preprint arXiv:1904.07399 (2019).

[73] Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai, and Qiang Zhou.“Look at
boundary: A boundary-aware face alignment algorithm”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 2129–2138.

[74] Xuehan Xiong and Fernando De la Torre. “Supervised descent method and its ap-
plications to face alignment”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2013, pp. 532–539.

[75] Jiaolong Yang, Peiran Ren, Dongqing Zhang, Dong Chen, Fang Wen, Hongdong Li,
and Gang Hua. “Neural Aggregation Network for Video Face Recognition”. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

[76] Jing Yang, Qingshan Liu, and Kaihua Zhang. “Stacked hourglass network for robust
facial landmark localisation”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops. 2017, pp. 79–87.

[77] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. “Recent
trends in deep learning based natural language processing”. In: ieee Computational
intelligenCe magazine 13.3 (2018), pp. 55–75.

[78] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by dilated convolu-
tions”. In: arXiv preprint arXiv:1511.07122 (2015).

[79] Amir Zadeh, Tadas Baltrusaitis, and Louis-Philippe Morency. “Convolutional Ex-
perts Constrained Local Model For Facial Landmark Detection”. In: Proceedings of
the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2017.

[80] Amir Zadeh, Yao Chong Lim, Tadas Baltrusaitis, and Louis-Philippe Morency.“Con-
volutional Experts Constrained Local Model for 3D Facial Landmark Detection”. In:
The IEEE International Conference on Computer Vision (ICCV) Workshops. Oct.
2017.

[81] Amir Zadeh, Yao Chong Lim, Paul Pu Liang, and Louis-Philippe Morency. “Vari-
ational Auto-Decoder”. In: CoRR abs/1903.00840 (2019). arXiv: 1903.00840. url:
http://arxiv.org/abs/1903.00840.

[82] Stefanos Zafeiriou, George Trigeorgis, Grigorios Chrysos, Jiankang Deng, and Jie
Shen. “The menpo facial landmark localisation challenge: A step towards the so-
lution”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops. 2017, pp. 170–179.

88

http://arxiv.org/abs/1903.00840
http://arxiv.org/abs/1903.00840

Bibliography

[83] Jie Zhang, Shiguang Shan, Meina Kan, and Xilin Chen. “Coarse-to-fine auto-encoder
networks (cfan) for real-time face alignment”. In: European conference on computer
vision. Springer. 2014, pp. 1–16.

[84] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. “Joint face detection
and alignment using multitask cascaded convolutional networks”. In: IEEE Signal
Processing Letters 23.10 (2016), pp. 1499–1503.

[85] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. “Facial landmark
detection by deep multi-task learning”. In: European conference on computer vision.
Springer. 2014, pp. 94–108.

[86] Shizhan Zhu, Cheng Li, Chen Change Loy, and Xiaoou Tang. “Face alignment by
coarse-to-fine shape searching”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 4998–5006.

[87] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan Z Li. “Face alignment
across large poses: A 3d solution”. In: Proceedings of the IEEE conference on com-
puter vision and pattern recognition. 2016, pp. 146–155.

89

List of abbreviations

CNN Convolutional Neural Network

SVM Support Vector Machine

PDM Point Distribution Model

DSNT Differentiable Spatial To Numerical Transform

HG Hourglass

AAM Active Appearance Model

ASM Active Shape Model

CLM Constrained Local Model

PCA Principal Component Analysis

FCNN Fully Convolutional Neural Network

STN Spatial Transformer Network

VAE Variational Auto Encoder

VAD Variational Auto Decoder

IOD Inter-Ocular Distance

RMSE Root Mean Squared Error

90

	Title
	Contents
	1 Introduction
	2 Related Work
	2.1 Classic approaches for facial landmark detection
	2.1.1 Active Shape Models (ASMs)
	2.1.2 Active Appearance Models (AAMs)
	2.1.3 Constrained local models (CLMs)
	2.1.4 Regression and cascaded regression

	2.2 Deep learning based facial landmark detection
	2.2.1 Neural Networks
	2.2.2 Convolutional Neural Networks
	2.2.3 State-of-the-art approaches

	2.3 Evaluation baselines

	3 Methods
	3.1 High-level system overview
	3.2 Input images
	3.3 Coordinates
	3.4 Stacked Hourglass Network: Computing initial facial landmark predictions
	3.4.1 Stacked Hourglass Network architecture
	3.4.1.1 Residual modules
	3.4.1.2 Hourglass
	3.4.1.3 Stacked Hourglass Network

	3.4.2 Differentiable Spatial to Numerical Transform
	3.4.3 Wing loss function
	3.4.4 Recap: Initial predictions

	3.5 Point Distribution Model: Refining predictions
	3.5.1 Relation to other shape models
	3.5.2 Overall concept
	3.5.3 Latent vector size
	3.5.4 Training: Learning a shape model
	3.5.5 Inference: Improving predictions
	3.5.6 Confidence estimation
	3.5.7 Initializer for the latent vectors
	3.5.8 Learning rate scheduling

	4 Evaluation
	4.1 Datasets
	4.2 Metrics
	4.3 Evaluation categories
	4.4 Training details
	4.5 Stacked Hourglass Network
	4.5.1 Data augmentation
	4.5.2 Hyper-parameter overview
	4.5.3 Effect of architecture hyper-parameters
	4.5.3.1 Number of stacked HGs
	4.5.3.2 Length of residual sequence
	4.5.3.3 Number of features
	4.5.3.4 Number of downsampling steps
	4.5.3.5 Separate models for 49 and 68 landmarks
	4.5.3.6 Number of network parameters

	4.5.4 Effect of training and regression hyper-parameters
	4.5.4.1 Loss function
	4.5.4.2 Loss normalization
	4.5.4.3 Regression method
	4.5.4.4 Heatmap regularization using Jensen-Shannon divergence
	4.5.4.5 Rotation augmentation
	4.5.4.6 Loss on inter-landmark distances

	4.5.5 Comparison with state-of-the-art methods
	4.5.6 Unsuccessful experiments with Spatial Transformer Networks

	4.6 Point Distribution Model
	4.6.1 Hyper-parameter overview
	4.6.2 Latent vector size
	4.6.3 Decoder architecture
	4.6.4 Pre-initialization of latent vector
	4.6.5 Error comparison between Stacked Hourglass Network with and without Point Distribution Model
	4.6.6 Comparison with state-of-the-art methods

	4.7 Qualitative results

	5 Conclusion
	5.1 Summary
	5.2 Outlook

	Bibliography
	List of abbreviations

