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Abstract:

This bachelor’s thesis incorporates the recent advances achieved in deep learning, to model the dynamics
of deformable objects. The capability of a novel statistical deep learning approach to model deforma-
tion in a data driven manner is examined. We propose the Dynamical Deformation Network (DDN)
which is able to learn key features of deformable objects in time series. This framework is based on the
Kalman variational auto-encoder network and extends it to handle sequential 3D voxel data. The DDN is
a deep generative model, which ia able to learn latent variables in an unsupervised fashion that describe
the deformation characteristics of 3D objects and can capture the appearing deformation dynamics in a
hidden space over time. It allows to interpolate missing data in time sequences and predict the future
shape of deformable objects. We train this model end-to-end and validate it in simulation for a variety of
simple modelling tasks. Experimental results are shown for two different slow recovering elastic foam
objects, for which deformation datasets were generated by using a Universal Robot 5 robotic arm and an
Intel Realsense camera. These experiments verify the DDN‘s capability to model elastic deformation of
noise and partially observed 3D voxel objects. This work takes the first step to data driven deep learning
modelling in application areas that classical parametric deformation modelling approaches can not fully
cover.
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1. Introduction

The goal of this thesis is to develop and evaluate a system that reduces the dimensionality of a voxel
representation of a soft object, learns the deformation dynamics in this reduced space over time, and
allows to make predictions about the deformation in the next time-steps by means of a full-resolution
voxel representation.
One of the most basic skills all humans have is the ability to forecast changes in our surrounding envi-
ronment with knowledge about the present and past state. We reason between action and reaction and
start to learn at an early age to predict the trajectory of a ball and how to utilize this knowledge to catch
or dodge the ball. Rational reasoning is one of the main reasons why humans are superior to all other
forms of life on earth in terms of cognitive abilities. Forecasting the future helps us choose the right
action in short and long term to reach a desired result. We extended our human capabilities to forecast
the future by creating all kinds of complex models, utilizing maths and modern computers, to make
precise predictions of the real world. Modelling is a key challenge in all fields of engineering ranging
from simulating car crashes or calculating payloads of bridges to describing the structure of complex
proteins in order to gain a clearer understanding of how the human body works. One important subfield

Fig. 1.1.: Finite element method car crash deformation simulation. Data Source [44]

of modelling regards deformation. Deformation in material science refers to changes in shape or size of
objects [63], and is of significant importance in daily life. Deformation can be observed when folding
clothes, handling food, or even shaking the hand of another person. Nowadays the majority of structural
analysis including deformation is performed by Finite Element Methods (FEM), which were invented
70 years ago. With this methods complex analytic problems which include boundary value problems for
partial differential equations can be simplified to a system of algebraic equations. By describing defor-
mation with classical mechanical differential equations, constrained by additional boundary conditions,
deformation can be converted into a mathematical problem. The basic idea behind applying FEM is to
divide this large problem into simpler parts, called finite elements, which are easier to solve. Solving
these algebraic equations approximates a solution for the analytic large-scale problem. Astonishingly
precise results can be achieved by FEM, nearly perfectly describing the real world, when exact material
properties, environmental constrains and enough time or computational power is available. For most
applications where real time calculation is not required, computational power is not the limiting factor of
this method.

The bigger limitation of FEM is knowing all exact material properties and other constraints of the sce-
nario and environment. This is not a problem when calculating a car crash, where all the parts and
material, with exact properties can be determined in advance, but in a lot of scenarios these properties
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cannot even be measured or are simply not available. The development in structural analysis is mainly
driven by mechanical engineers and material scientists. This leads to the fact that most problem scenarios
where material properties cannot be acquired or are not available got neglected, because these scenarios
are out of scope of these specific research fields.

With modern robotics expanding from pick and place jobs in carefully designed and limited industrial
environments, to interacting in for-humans-made environments, new challenges arise. One of these chal-
lenges is how to manipulate and interact with deformable objects, for which it is hard or even not feasible
to fully parameterize them. The goal of this new challenge is to model deformable objects, so the correct
next motion or action, that the robot should perform, to reach a desired target can be calculated while
taking the behavior of the deformable object into account. This abstract formulation can be simplified by
looking at some actual scenarios, in which humans must deal with deformable objects.
One category of these objects are food related items. Tasks like preparing meals and helping old or
disabled people to eat might be performed by robots soon. Another even more critical scenario where
deformation is necessary to be modeled is for operating a robotic surgical system, where the behavior of
the human body must be known to perform precise movements. For a successful operation it is necessary
to model different tissues, the heart or other organs like the lungs which are constantly deforming and
can‘t be easily parameterized by FEM.
The classic approach to deal with these problem scenarios is to at first simplify the objects so they can be
captured by FEM or similar models, which underly the same basic constrains of parameterization. If this
simplification is not precise enough to capture the object, the next step is to extend the applied modelling
method in order to capture a more complex behavior of the deformable object, which can be extremely
challenging or not even possible.

In this work we want to investigate the capability of a novel deep learning approach to model defor-
mation. We propose the Dynamical Deformation Network, for which detailed object parameterization
is not required. Instead it is capable to model deformation in a fully data-driven manner. This network
intuitively learns the dynamics that underly the apparent deformation. Our proposed method is not meant
to be competing with or be an alternative to other methods in the application area of classical deforma-
tion modelling. Instead our network shows that applying deep learning combined with the benefits of a
statistic model is capable of modelling deformation without the parameterization boundary conditions,
and therefore marks the first step to opening a new application field for deep learning.
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2. Fundamentals

This section is for readers who are new to the topic of deep learning and deformations. It provides a short
introduction to neural networks, 3D spatial data representations and deformation.

2.1. Neural Networks

"Artificial neural networks (ANNs) or connectionist systems are computing systems vaguely inspired by
the biological neural networks that constitute animal brains. Such systems "learn" to perform tasks by
considering examples, generally without being programmed with any task-specific rules." [62]
The concept of interconnected artificial neurons building a computational network, can be dated back to
1943. Neurophysiologist Warren McCulloch and logician Walter Pitts showed that a network consisting
of a discrete number of simple units is able to compute complex functions [39]. This concept is inspired
by the human brain, in which nerve cells in the brain (neurons) transmit information via electro-chemical
signals. One neuron can be connected to up to 10.000 different neurons over synaptic connections.

This principle was adopted to computer science by Frank Rosenblatt and Charles Wightman with the
building of the first neuron computer named Mark I Perceptron [34]. The idea of developing a network
based on an architecture inspired by the brain structure slowly became less interesting over the next 50
years. One reason for this is the high computational cost that comes with implementing a neural network,
and inevitably lead to limited application areas. Another cause was the rapid development and success
in other classical electrical engineering disciplines at the time, which attracted most researchers and de-
velopment budget.

The latest development in parallel computing and cheap consumer GPUs allowed applying neural net-
works to a variety of different tasks and became the leading force in machine learning. The applied
neural networks strongly differed from the brain structure and could achieve outstanding performance on
different tasks. In this context the term "deep learning" that will be explained in the next paragraph was
introduced. The goal of deep learning is to train a network, which defines the relation ship between a set
of input and output values. The network is defined by multiple parameters (weights) that can be modified,
in order to achieve the best performance on modelling the intended input/output relation. The cost func-
tion is a measurement of error e.g. in classification or reconstruction tasks, and the network weights are
tuned to minimize this cost function. Deep learning can be performed supervised, semi-supervised and
unsupervised. After the time-consuming training phase is finished correctly, the parameterized network
can abstractly solve complex tasks, with very low computational power required.

A neural network can generally be split into different layers. The simplest neural network consists of
an input and output layer, connected by a hidden layer. Each neuron in the hidden and output layer
performs an operation on the input data, provided by the previous neurons, and passes the result to the
next neurons. The performed operation can be a weighted summation of the input neurons (including
a bias) or a nonlinear function, e.g. tanh, ReLu or sigmoid. Nonlinear functions are in the context of
deep learning often called activation function and allow the network to respond nonlinear to the given
input data which is necessary to solve non trivial problems. In this structure of the neural network the
origin of the term "deep learning" can be found. The depth of a network is defined by the number of
interconnected layers. With the increasing number of layers the applied network gained in depth and the
term deep learning for training these deep neural networks was created.
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Deep learning networks were successfully applied in computer vision, speech recognition, machine trans-
lation, social network filtering, playing board games, video games and medical diagnoses [62]. With the
fast-growing number of application fields of deep learning different types of network structures were
proposed. The most common network structures are feed-forward neural networks, recurrent neural
networks and convolutional neural networks. For more information about deep learning in general and
network structures we refer the reader to the appendix A.1 and the book "Deep Learning" by Goodfellow,
Bengio, and Courville [19].

2.2. 3D Data Representation

In the past ten years smart phones developed from a luxury item to an essential tool in daily life. In
January 2018 the estimated number of smartphone users was around 2.5 billion [40]. Most of these
smartphones are equipped with a camera and so the sheer number of low-cost cameras accelerated de-
velopment in the fields of image processing, recognition and segmentation. The same trend can be seen
in 3D scanning technology. Recently devices able to capture 3D data became available, ranging from
smartphones with built-in stereo cameras, game consoles (most revolutionary the Microsoft Kinect),
Light Detection And Ranging (LIDAR) systems in modern cars and much more.

(a) Point cloud. Data Source [60] (b) Voxel. Data Source [3] (c) Polygon mesh Data Source [47]

Fig. 2.1.: Illustration of different 3D data representations

To understand the acquired 3D data it is necessary to gain a brief overview of the most common available
3D data representations.

2.2.1. Point Cloud Data

A point cloud consists of a list containing points. Each point is defined by its geometrical position, most
common the cartesian coordinates in correspondence to a reference coordinate system. A individual
point can contain additional information e.g. color data, surface normal or measurement accuracy. Most
3D scanners’ unprocessed output data is a point cloud. The key goal of 3D data processing is extracting
higher level features from raw data represented in a high dimensional space e.g. given by the parameters
of multiple points. The unorganized point cloud data structure includes a high amount of redundancy,
because e.g. one flat table surface is described by hundreds of points. The classical approach for extract-
ing higher level features out of this data is to perform filtering, noise reduction and down sampling on the
raw point cloud. Point clouds are also hard to manipulate and handle, so this data format is commonly
converted to one of the following different 3D data representation to perform additional processing.
One example how higher level visual features are extracted form real world data is given by Kaiser
et al. [28]. The authors introduced a perceptual pipeline that provides a robust and reliable perceptual
mechanism for affordance-based action execution starting from raw point cloud data provided by LIDAR
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systems and RGB-D cameras. It is important to keep in mind, that every one of the briefly introduced
data representations comes with unique strengths and drawbacks when applied to different tasks.

2.2.2. Voxel Data

A normal image can be described by a two-dimensional grid of pixels. Each pixel stores one value
(greyscale) or multiple values for different channels (RGB). This principle can be intuitively extended to
a three-dimensional uniform cartesian grid, where we divide the observed space into smaller segments
(voxels), with each voxel representing a discrete volume located by its cartesian grid coordinates. By
sorting the voxel into a three-dimensional grid we keep the spatial relationship between the voxels and
achieve an organized 3D data format. A voxel can contain information such as color, density or other
data. The voxel representation comes with two major limitations. First the reconstruction loss for curved
shapes and objects is very high. Secondly the computational complexity rises cubically (N3) with the
voxel resolution. Despite these disadvantages voxels are commonly used in medical imaging methods
and computer games. The structural similarity of voxel and image data allows the usage of similar
algorithm and applying previously established image processing methods can be done easily. In the
following we will refer to voxels as volumetric units that are either filled (on) or empty (of).

2.2.3. Polygon Mesh Data

Another approach to building 3D models is to use polygons to describe surfaces. A polygon mesh is
defined by a set of vertices, edges and faces. The research on polygon meshes is a large subfield of com-
puter graphics with a variety of applications. The advantage of polygon meshes is the low reconstruction
loss for curved objects and the excellent hardware acceleration, especially available for triangle meshes.
This fast rendering makes polygon meshes the method of choice for real-time computer graphics and
is used in computer aided design or video games, just to name a few out of many areas of application.
For more technical details about polygon meshes we refer to "A Mesh Data Structure for Rendering and
Subdivision" [58], where a brief introduction about polygon meshes is provided in a clear and graphically
sophisticated way.

2.2.4. Other Methods

The field of computer graphics is an active research topic including different approaches and methods
that have been applied to spatial data. It is difficult to give a complete overview about this big topic. But
in the context of deep learning and data acquisition these 3 data representations cover a high percentage
of the recent publications. Still worth mentioning are methods based on Partial Differential Equations
(PDEs) to describe surfaces [59], Level-set methods (LSM) [41] used for numerical analysis of surfaces
and shapes, surfels [43], Green functions and NURBS1 [35].

1Non-Uniform Rational B-Spline
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2.3. Deformation

Fig. 2.2.: Schematic deformation caused by different
forces. Data Source [52]

Deformation in material science describes
the change in shape or size of objects
caused by an externally applied force or a
shift in temperature [64]. We only need
to consider deformation due to an exter-
nally applied force for this thesis and there-
fore we will neglect thermally caused de-
formations in this summary. The applied
force can be classified by its point of con-
tact and direction in tensile (pulling), com-
pressive (pushing), shear, bending or tor-
sion(twisting) (Fig. 2.2). Material behaviors
can be divided to in elastic and plastic. Elas-
tic deformation recovers to its original shape
after the force responsible for the deformation of the object is released. This deformation behavior is re-
ferred to as reversible. Plastic deformation on the other hand appears when the force applied to the object
is the reason for constant deformation (irreversible), even when the external force is released. When the
deformation of a material is neglectable under a certain force, then the object can be described as rigid
and there is no need to model or to take deformation into account.

Materials can show elastic and plastic behaviors at different ranges of load. There are many factors, that
decide which type and form of deformations occurs to an object. Therefore different material behaviors
can be observed for rubbers, plastics or metals. A classic deformation example is a tension test, in which
a certain pulling force is applied to a probe (often a metal rod) in order to measure the deformation of the
object and thus calculate unknown material properties. A schematic example for this can be seen in the
graphic 2.3.

Fig. 2.3.: Tension test schematic. Stress/strain graph. Based on [10]

To describe deformation, defining stress and strain is necessary. Stress is the force per area applied to
an object, while strain is the relative deformation in relation to the equilibrium state of the object. In
figure 2.3 the schematic results of a tension test for a ductile metal can be seen. At first in the elastic
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phase the object deforms nearly proportionally to the applied stress. This can be described by Hook’s
law [2, Chapter 2.2.1 Page 16], and the object is able to recover to its original shape if the force is
released (this region is marked in red and partially blue in the graph). After exceeding a certain force,
non-reversible deformation (plastic deformation) occurs until the mechanical stress is too high and the
probe breaks apart. Different behaviors can be observed for other materials. There are different laws and
material constants that help to describe the change in shape or size of objects in continuums mechanics.
Since our research is clearly focused on statistical deep learning and investigating a novel approach for
deformation modelling more knowledge about classical material science in the engineering context is not
necessary. Herakovich [24] provides more information about elastic materials in his book "A Concise
Introduction to Elastic Solids".

Dynamical Deformation Network
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3. Related Work

Despite all the efforts spent in modelling deformation over the past decades, all proposed approaches
underly certain limitations or restrictions. As a result, deformation modelling remains an active research
topic with open issues and unsolved problems. This chapter introduces the motivations behind the pro-
posal of our new method by giving an overview of the recent related work in modelling deformation.
Since we want to incorporate the recent advances made in the field of 3D deep learning, we introduce
different concepts that have been successfully applied to processing 3D objects.

3.1. Deformation Modelling

Several different methods have been presented in the literature to capture the dynamics of deformation of
non-rigid objects. One popular category of models to achieve this are mass-spring-damper models. Here
the 3D object is split into smaller parts that are interconnected by springs and dampers. The parameters
of the springs and dampers are adjusted to best fit the real-world deformation behavior. In [73] and [37]
parameterization of mass-spring models was performed by applying external forces to an unknown de-
formable object and thus generating the necessary reference deformation data. The parameterized model
then allowed performing further motion planning for robotics grasping and manipulation application,
while taking the deformation of the 3D object into account. A similar approach was taken by Burion
et al. [8] to identify different stiffness properties by particle filters. The downside of the mass-spring
models is that the stiffness and spring parameters do not describe actual material properties and are not
intuitively understandable.

In contrast, Finite Element Methods describe physical properties of objects. They utilize elastic theory
between small finite parts of an object and only few parameters are necessary to describe the actual
behavior of homogeneous objects. With solving numerical differential equations between these finite
elements, the computational costs are higher and real-time or closed loop control methods are not easily
implementable [5, Chapter 5, 12]. Frank et al. [15] were able to learn elastic parameters by comparing
simulation FEM results to real robot data, and adjusting the simulation parameters to minimize the error
between simulation and the real acquired data. A finite element model was fitted to pre-segmented point
cloud data recorded by an RGB-D sensor to model elasticity in real-time by the authors of [42]. A similar
approach was applied by Frank et al. [16]. In their research they focused on utilizing the deformation
modelling method to navigate a wheeled robot and manipulate objects in real deformable environments.
Another application and research field of deformation is modelling human tissues for surgical assistant
systems. Haouchine et al. [22] applied a linear tetrahedral co-rotational FEM model to heterogeneous
tissue deformation of the liver surfaces. In medical technology a variety of other methods to model de-
formation have been investigated in order to perform successful operations.

Non-uniform rational B-splines (NURBS) can also be applied to model geometry representation and Lau
et al. [35] were able to implement a collision detection framework which takes deformable object into
account by rendering them as NURBS. Meshless shape matching (MSM) is widely used in computer
graphics and Giiler et al. [17] verified its capability to estimate the deformability of elastic materials by
this method. A very new approach incorporating deep learning in a novel way is presented by Tawbe
and Cretu [57]. They used Recurrent Neural Networks (RNN) to map force-torque data acquired while
probing an elastic object to the actual spatial deformation and could predict based on a neural gas fitting
approach the shape of the object under a certain applied force.
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3.2. 3D Deep Learning

Deep learning has made tremendous progress and achieved outstanding results in the past decade. AlexNet
[32], developed by the SuperVision group at the University of Toronto, was the first convolutional neural
network (CNN) that set new benchmark records in the ImageNet large Scale Visual Recognition Chal-
lenge in 2012 [49]. In this challenge a dataset containing 10.000.0000 images labeled into over 10.000+
categories was provided. The task is to reliably classify the given image into the corresponding category.
In 2015 ResNet [23], developed by Microsoft, even outperformed human image classification capabili-
ties on this dataset.
Researchers at Princeton University brought the same challenge to 3D models with the ModelNet dataset.
They gathered 127.915 voxel CAD models categorized into over 662 classes with annotated orientation.
Because of this dataset 3D deep learning has focused on voxel representation processing. Zhirong Wu’s
[67], 3D ShapeNet, a convolutional deep belief network, maps the ModelNet dataset to binary propabil-
ity distributions and is capable of shape completion. The authors of [7] have applied a VAE network to
learn a discriminative representation for the ModelNet 3D objects. Extending a 3D VAE network with
an CNN to handle voxel and image data allowed extraction of additional information into a generative
vector representation of 3D objects in [18] and [38]. A similar idea has been applied to detecting land-
ing zones for autonomous helicopters [38]. "Generative Adversarial Networks"(GANs) proposed in [20]
have been successfully applied to 2D image data and Wu et al. [66] extended this idea to 3D voxel data.
They showed the capability of GANs to generate 3D objects from a probabilistic space.

Yumer and Kara [71] utilized an approach that is based on object deformation data to learn deformation
handles for mesh data representation, which was later extended by Yumer et al. [72]. Tan et al. [56]
applied a mesh based autoencoder with the goal of robust intuitive extraction and interpretation of de-
formation components applicable to large scale deformations. In [70] the challenge to find deformation
flows in volatilized objects was examined. The authors were able to tune the appearance of 3D voxel
objects and find novel shape representation of the initial object. These approaches clearly show that it is
feasible to find a meaningful low dimensional representation of complex voxel objects and varieties in
shape. For an extensive and general state of the art overview of shape analysis and processing methods
we refer to the report by Xu et al. [69].
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4. Dynamical Deformation Network

Through the recent development and advances made in deep learning, extending the application areas
of 3D deep learning to model deformation seems feasible. To achieve this we will at first introduce the
Variational Auto-Encoder (VAE) and Kalman Variational Auto-Encoder (KVAE) frameworks. These two
frameworks build the foundation for the proposed "Dynamical Deformation Network" (DDN) that is able
to capture deformation over time in voxel data. We decided to represent 3D object as voxels since the
recent work made by the 3D deep learning community focused on this data structure, and the similarity
to image data allows us to apply methods developed for image processing. In the following we will
clarify the benefits and limitations of the VAE and KVAE framework. Utilizing the knowledge about
both networks and the constraints of deformation will lead us to the implementation of the DDN. We
will explain how this novel network benefits from the recent advantages achieved in deep learning and
provide an overview over the concerns, that came up, while implementing the network. The DDN should
not be seen as an alternative to the existing modeling methods previously introduced. It is supposed to
take the first step in applying deep learning to the field of deformation modelling and with additional
future work, deep learning might be able to complement the classical existing deformation modelling
methods.

4.1. Introduction to Variational Auto-Encoders

"VAEs are appealing because they are built on top of standard function approximators (neural networks),
and can be trained with stochastic gradient descent. VAEs have already shown promise in generating
many kinds of complicated data, including handwritten digits [30, 51], [30, 48, 33], house numbers [31,
21], CIFAR images [21], physical models of scenes [33], segmentation [55], and predicting the future
from static images [61]." [11]
Images and voxel data include a high amount of redundancy and unimportant information. If we take a
16x16x16 voxel scene, with every voxel being either on or off, there are 216x16x16 possible combinations
of this scene appearing, but only a few of interest. Humans are great at understanding the semantics
in this complex representation. This stays a simple task even if the shape or appearance of objects dif-
fer. We are able to extract semantically meaningful data out of these data structures and simplify the
high dimensional voxel or image space intuitively. The variational auto-encoder tackles the same task
of dimensionality reduction and is able to extract low dimensional features out of the original data in an
unsupervised manner. It belongs to the categories of "Generative Models", which try to fit a probability
representation to a given dataset. To introduce this framework, we follow the derivation presented in [11,
30, 36].

We make the assumption, that an observed datapoint x 2 X , is drawn from a distribution P(x). The
lower dimensional features of x can be described by latent variables a 2 A. The latent variables are
unobserved and able to describe the important information in the original data. This latent representation
is referred to as the bottleneck of the autoencoder.
For the VAE, we describe the latent space by a vector of random gaussian variables a ⇠ N (µ,S)1. We
can sample from the latent space by its probability density function P(a) over A .
A noisy sample of the latent space is mapped by the decoder network fq (x|a), implemented as a neural
network, parameterized by f , from the latent space A to the space Q, which is similar to X .

fq : A x Q ! X (4.1)
1N (µ,S) ia a Gaussian Distribution with mean = µ and standard deviation = S
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Fig. 4.1.: Variational Auto-Encoder schematic structure. fq and ff are implemented as neural networks.
The last layer of the encoder network represents the mean and variance of the latent space. A random
sample of the latent space is provided as the input to the decoder network. Data Source [36, Page 18,
Fig. 3.2]

The encoder is a deterministic non-linear function ff (a|x), parameterized by f , and implemented as a
neural network. Its function is to map the input X to the latent space A. The joint probability of the
model is given by P(x,a) = P(x|a)P(a). According to Bayes law the posterior is given by the following
equation:

P(a|x) = P(x|a)P(a)
P(x)

(4.2)

P(a) is the prior belief about the distribution. P(x|a) the likelihood and P(a|x) is the posterior. With the
law of total probability we can obtain P(x) by the following equation:

P(x) =
Z

P(x|a;f)P(a) da (4.3)

To train the model we maximize the log-likelihood of P(x). The logarithm is a monotone function and
so by maximizing the log-likelihood instead of only P(x) the same results are obtained.

logP(x) =
Z

log P(x|a;f)P(a) da (4.4)

Integrating over the marginalized joint probability distribution P(x,a) is computationally not feasible,
since we have to integrate over the latent space A. This problem can be solved by applying the method of
variational inference proposed in [30] and modelling the true distribution P(a|x) by a simpler Gaussian
distribution Q(a|x). Minimizing the difference between both distributions can be achieved by using the
Kullback-Leibler (KL)-divergence as a metric of similarity between the distributions. In the following
we summarize the derivation given in [30].
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The KL-divergence is defined by:

KL( Q(a|x) k P(a|x) ) = E[ logQ(a|x) � logP(a|x) ] 2 (4.5)

By applying Bayes’ rule 4.2 to 4.5, the KL-divergence can be rewritten as:

KL( Q(a|x) k P(a|x) ) = E[ logQ(a|x) � logP(x|a) � P(a) ] + logP(x) (4.6)

E[ logQ(a|x)� logP(x|a) ] on the right hand side of equation 4.1 is another KL-divergence. This leads
us to the following equation:

logP(x) � KL( Q(a|x) k P(a|x) ) = E[ logP(x|a)] � KL( Q(a|x) k P(a) ) (4.7)

Q(a|x) is the encoder network and P(x|a) is the decoder network of the VAE. The original goal was to
maximize P(x) in relation to the encoder and decoder parameter. Maximizing the equation on the right
side correspondences to finding the lower bound of P(x), because KL(Q(a|x) kP(a|x) ) is always greater
than zero. Maximizing over E[logP(x|a)] is a common maximum likelihood estimation. For this the loss
function can be evaluated e.g. by log-loss, regression-loss or cross-entropy and is referred to as the
reconstruction loss. We also have to maximize over KL( Q(a|x) k P(a) ). The reason why we previously
chose to set the latent space to be Gaussian distributed can be obtained in this step. Calculating the
KL-divergence between two multivariate Gaussian results in another multivariate Gaussian. It is worth
mentioning that setting the latent space to other probability distributions is possible, but not common.

KL( Q(a|x) k P(a) ) = KL( N (µ(x),S(x) k N (0,1) ) =
1
2 Â(exp(S(x))+µ2(x)�1�S(x)) (4.8)

The derivation for this can be found in [38]. The KL-divergence is referred to as the regularization term
of the VAE. The main advantage of this method is that it allows us to apply back propagation. Therefore
calculating the gradient of the network with respect to the loss function is possible. This allows us to
apply stochastic gradient descent to the network and find the optimal network parameters.

The VAE has been successfully applied to a variety of different applications. The ability of the VAE,
implemented with the correct decoder and encoder structure, to find a low dimensional meaningful rep-
resentation of the training data has been shown in multiple previous works. Of course, this network
comes with limitations and restrictions. Since this is a completely unsupervised learning method we are
not able to choose which features we want to extract out of the data, and often the latent space does not
encrypt data in a way that is semantically meaningful to humans. Another issue related to implementation
of the decoder and encoder function as highly expressive neural networks, is the potential of over-fitting
the given training dataset.
In summary the VAE allows learning latent variables of a voxel scene. Since we want to investigate
deformation over time and focus on the appearing dynamics, a more complex model is necessary to learn
the dynamics and map the appearance and shape of the object over time. For this we will introduce the
Kalman Variational Auto-Encoder network in the next section.

4.2. Introduction to Kalman Variational Auto-Encoder

To understand the concept of the Kalman Variational Auto-Encoder framework (KVAE), it is important
to understand Linear Gaussian State Space Models (LGSSM), Variational Auto-Encoders (VAE) and
Kalman filtering. Since Kalman filtering is a more complex topic which cannot be briefly and at the
same time mathematically adequately summarized, we would refer someone new to the topic to the
tutorial provided by Bishop, Welch, et al. [6]. The KVAE tries to incorporate the benefits of a statistical
framework and deep learning by reducing high dimensional input space with a VAE to a latent space,

2E denotes expected value
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which then can be modeled over time by the LGSSM. In figure 4.2 we can see four different vectors over

Fig. 4.2.: A KVAE is formed by stacking a LGSSM (dashed blue), and a VAE (dashed red). Shaded
nodes denote observed variables. Solid arrows represent the generative model (with parameters q )
while dashed arrows represent the VAE inference network (with parameters f ). Data Source [14,
Page 2, Fig. 1]

time. x1:T
3 is a sequence of high dimensional observed input data, normally captured by a sensor. In

our case, this will be the voxel data observed by a depth camera. The VAE relates the latent variable at ,
also referred to as the pseudo-observation, to the observed input xt . The decoder network pq (xt |at) and
encoder network qf (xt |at) are constant over time. The emission matrix Ct establishes the connection
between the pseudo-observation at and the hidden state zt . The state transition matrix, given by At ,
connects the hidden variables zt over time, and therefore is the key element to describe dynamics in the
latent space. ut can be observed and interpreted as an action or control input to the model. When we later
apply this model to deformation, the action input might be the force or the location of the force applied
to an object. Referring to ut as the control signal is justified, because ut is able to directly influence zt
by the control matrices Bt . The LGSSM is parameterized at time t by gt = [At , Bt , Ct ]. By adding the
covariance matrices Q and R which represent the noise of the process and measurement, we obtain the
two following important equations for the LGSSM:

pgt (zt |zt�1,ut) = N (zt ;Atzt�1 +Btut ,Q), pgt (at |zt) = N (at ;Ctzt ,R) (4.9)

The joint probability of this model is given by:

pg(a,z|u) = pg(a|z)pg(z|u) =
T

’
t=1

pgt (at |zt)p(z1)⇤
T

’
t=2

pgt (zt |zt�1,ut) (4.10)

By mapping xt to at , Ct does not scale with the dimension of xt . This becomes especially useful when
performing inference. To do this, only inversion of a low dimensional matrix Ct instead of a high di-
mensional matrix, scaling with the dimension of x

t

, is required. With this structure we can now perform
Kalman filtering and smoothing algorithms to the latent space. The LGSSM allows us to reconstruct
imputed data of unobserved time-frames. Also, prediction of future time-steps can be performed. For

3time dependet variables are subscripted with a time-index
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more information about how to actually perform the inference for KVAE and how backprorogation is
effectively implemented we refer to the original paper [14].

A key feature of this model is handling nonlinear dynamics in the latent space. Since learning the correct
parameters for gt for every time-step, becomes computationally infeasible for longer sequences. The
proposed idea to solve this is to only learn a set of K time independent different matrices instead of t
time dependent ones. A dynamic parameter network is able to find weights a(k)

t for each matrix A

(K) for
every time step. We can describe the time dependent matrix At , Bt and Ct by:

At =
K

Â
k=1

a(k)
t (a0:t�1) A

(k), Bt =
K

Â
k=1

a(k)
t (a0:t�1) B

(k), Ct =
K

Â
k=1

a(k)
t (a0:t�1) C

(k) (4.11)

The network, calculating at , is implemented as recurrent neural network RNN, consisting of long Long
Short-Term Memory (LSTM) cells. For more details about LSTM cells the reader is referred to Hochre-
iter and Schmidhuber [25].

In summary, the KVAE framework allows us to learn complex dynamics in a latent pseudo observed
space and computationally efficiently perform back propagation in the network, even for long time-
series. The network is not only able to handle linear dynamics, it has the potential to perform well under
non-linear boundary conditions, by its dynamical network. It includes the advantages of the VAE frame-
work to efficiently reduce the dimensionality of the input space for fast performance and also common
advantages of LGSSM including reconstruction of missing frames by applying inference, or performing
prediction of the future state of z.
Fraccaro et al. [14] provide an implementation of the KVAE in Googles deep learning framework Tensor-
flow and made it publicly accessible under https://github.com/simonkamronn/kvae [54].
This implementation is able to process sequential image data and was tested for mini computer games
with hidden physical dynamics (pong game and others).

4.3. Overview and Implementation of Proposed Network

The implementation of the DDN is based on Fraccaro et al. [14] implementation of the KVAE. We extend
this framework to handle 3D sequential voxel data, in order to model deformation processes.
The proposed VAE has the function to find meaningful latent variables of 3D voxel objects. The DDN
is able to capture deformation dynamics appearing in the voxel input space by learning hidden variables
that include dynamical deformation information. The action input allows the network to utilize additional
information about the deformation. This model, with the ability to predict or infer missing time-frames
is capable of reconstructing the behavior of real non-rigid objects.

Fig. 4.3.: Dynamical Deformation Network Structure with simplified convolutional VAE
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For the VAE we propose a volumetric CNN structure. Girdhar et al. [18], showed that CNN VAE struc-
tures are able to handle shape deformation in voxel data. We parameterize 3D convolution layers by its
number of output channels, filter size and stride. While performing convolution we apply zero padding
to keep fixed dimensions. For more details about convolution and its implementation we refer to the
tutorial by Dumoulin and Visin [12]. In our architecture every 3D convolution layer is followed by a
batch normalization layer.
We use leaky relu nonlinearity, proposed in [68] and applied to voxel data by Yumer and Mitra [70], with
a negative slope of 0.2. For down-sampling we apply max-and average pooling on the same input layer.
This is inspired by the voxception architecture introduced in [7], with the idea of providing the network
with a higher expressiveness and allow multiple pathways of dataflow.
For both pooling operations we use a kernel size and stride of [2,2,2]. This results in the doubled amount
of channels and reduces the voxel dimensionality by the factor of two. The 16x16x16 architecture in-
cludes only two 3D convolutional layers. Since the DDN operates on this restricted resolution and should
be able to reconstruct small shape varieties, we set the filter size of the first convolutional layer to [3,3,3]
and for the second layer to [2,2,2]. The output of the last convolutional layer is provided to a fully con-
nected layer with 256 neurons with sigmoid activation function. This layer is then mapped by a other
fully connected layer to the latent space amu with no additional activation function and also to avar by a
fully connected layer with a sigmoid non-linearity.

The decoder implements the same 3D spatial convolutional structure as the encoder. We first added two
fully connected layers then sequentially applied 3D upsampling and 3D upconvolution to the data. For
the second upconvolution we doubled the amount of filters compared to the encoder, since we are not per-
forming max and average "uppooling", which doubles the amount of filters. All layers are connected by
leaky rule non-linearities and batch normalization. After the last convolutional layer two fully connected
layers with 4096 neurons and leaky-relu activation function are added. One fully connected layer with
sigmoid activation function followed by an additional Bernoulli function projects back to the 16x16x16
voxel space.

The reconstruction loss function for the VAE to compute voxel data is normally provided by the BCE.
The authors of [7] discovered that weighting false-negative4 and false-positive5 reconstruction errors
improved the performance of the VAE. Normally in the voxel space only a very small amount of the
possible voxels are filled. So a static empty voxel space is already a good and easyly producible solution
for the VAE. They introduced the following modified BCE with the hyper-parameter l to avoid this:

L =�x̂ l log( x )� (1�l ) (1� x) log( 1� x̂ ) (4.12)

Here x is the original encoder input and x̂ reconstructed decoder output. The implementation of the
decoder and encoder structure in Tensorflow can be found in the appendix A.3.

4False-negative voxel: Wrongly classified voxel in the reconstruction sequence. In the original sequence this voxel is filled
5False-positive voxel: Wrongly classified voxel in the reconstruction sequence. In the original sequence this voxel is empty
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5. Evaluation

In this chapter a detailed analysis of the DDN, split into two sections is given. The simulation section
helps the reader to gain a clearer understanding of the problems that the DDN structurer faces and what
the effect of certain parameters are. We also introduce different metrics for performance analyzing. In
the following robot experiment section we apply the acquired knowledge to real world data and evaluate
the network in two different experiments. This evaluation should test the basic capability of the network
to model elastic deformation. Since we propose a complete novel strategy for this challenge, compared
to the application area of FEMs and others, only simple experiments are validated.

5.1. Simulation

The simulation section of this thesis is not providing quantitative evaluation results of the proposed
network. Instead this section is meant to help explaining and understanding the behaviour of the DDN, its
limitations and possibility. There are two major reasons for this uncommon presentation of the simulation
section. The first one is the lack of comparable fully data driven methods with the consequence that there
are no standardized datasets available. The second reason for this is the iterative implementation of the
DDN, in which we focused on different network tasks and behaviors for different simulations.
The first goal of the simulation phase was to extend the KVAE to voxel data. Fraccaro et al. [14] verified
the capabilities of the KVAE via the “bouncing ball experiment”. In this experiment a video sequence,
consisting out of a two dimensional planar ball movement with random starting position and direction,
is given to the KVAE as an input. The results showed that the KVAE is capable of learning smooth
dynamics in time-series and the ability of the network to handle non-linear dynamics.
In the first simulation we extend this experiment to the "3D bouncing ball" experiment with the challenge
of learning non-linear dynamics that occur when the ball bounces off a wall in three dimensions. We
modified and added a variety of different behaviours to this simulation game, to incrementally investigate
the capabilities of this model . In preparation for real world deformation data modelling, in the second
simulation we created a cube and deformed its surface on different faces over time. In the simulations
we either used 8x8x8 or 16x16x16 voxel data. This reduced the training time and we were able to iterate
and validate hyper-parameters faster. The structure of the 8x8x8 and 16x16x16 network only differs by
the number of convolutions performed. The VAE structure changed in the development of the simulation
phase, but the proposed model is capable of reproducing similar results.

5.1.1. 3D Bouncing Ball

We first introduce and visualize the generated dataset. Afterwards we discuss the influence of individual
parameters to the training results, and introduce further evaluation methods for the network.

Dataset

The moving 3D ball represented by 3x3x3 voxels can be described by a position vector xt = [x,y,z] and
velocity vector vt = [vx,vy,vz]
The position x is initialized randomly at the beginning of every sequence. To capture the same dynamics
that can be found in the 2D bouncing ball game we set vz = 0 and vx,vy 2 [+1,0,�1]. To learn dynamics,
vx and vy cannot be zero in the same sequence. Otherwise this would result in a constantly still-standing
ball.
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While the ball has no contact with the wall it follows a classic linear movement equation:

xt+D = xt +vt ⇤D (5.1)

When it hits the wall the velocity vector vt is updated, mimicking a fully elastic impact. The training
dataset consists of of 10000 random sequences with 20 time steps per sequence, to provide at least one
nonlinearity in every sequence. This training dataset includes no noise.

Training Parameters

Fig. 5.1.: 3D bouncing ball heatmap of sample se-
quence movement over 20 time-steps

For training the model we used the Adam opti-
mizer [29] with an initial learning rate = 5�5,
beta1 = 0.9, beta2 = 0.999 and epsilon = 10�8.
The batch size is fixed to 10 sequences over
the whole training process, which consisted of
roughly 100 epochs until the model converged.
The total loss function of the DDN can be writ-
ten as the sum of the VAE reconstruction loss, de-
scribed by the edited Binary Cross-Entropy 4.12,
the VAE regularization function 4.8 and the ev-
idence lower bound of the Kalman Filter intro-
duced in [14].

Ltotal = recscale LREC(l )+LBCE +LKVAE (5.2)

Adding the hyper-parameter recscale for weighting
the reconstruction loss helps training the model. If
recscale is set to a high value, the network focuses
on adjusting the weights in order to minimize the
VAE reconstruction loss. By setting the recscale to
lower 1, the network updates the weights in favour
of minimizing the KVAE loss and forces the latent
space A to take the form of a unit Gaussian distribution. The l parameter adjusts if the VAE is more
likely to favor false-positive oder false-negative voxels. For this simulation setting lambda to 0.8 helped
the network to learn the position of the ball. With this setting false-negative voxels are penalized stronger
and learning to just reconstruct a static empty voxel space is avoided in the training process. Learning an
empty voxel space is often a problem. In particular, for this experiment reconstructing an empty voxel
space only results in 27 out of 163 false classified voxels.

Reconstruction

To measure the reconstruction performance of the DDN we have to compare the output sequence of the
DDN to the original input sequence. One simple metric to measure the difference between these two
sequences is to count the amount of wrongly classified voxels. This metric obviously doesn’t actually
capture how "wrong" the shape is displayed. It dosen’t take into account where the voxel is wrongly
classified. A wrongly classified voxel next to the surface of an object dosen’t change its appearance, but
a wrong voxel very far away from the object may do and so should be considered a worse mistake . Still
this computational inexpensive and easy implementable metric gives a rough estimation of the network
performance. Separating between false-positive and false-negative voxels also helps tune the parameters
of the network.
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The calculation of this reconstruction metric can be performed by the following python code: ⇠
def error_between_sequences(self, _orginal, _test):

orginal = _orginal.astype(float)
test = _test.astype(float)

#only false voxels are marked
wrong_voxels = np.absolute(orginal[:,:,:,:] - test[:,:,:,:])

#calculate sum of all false negative voxels
total_fn= np.sum(np.logical_and(wrong_voxels, orginal) )
#calculate sum of all false positive voxels
total_fp= np.sum(np.logical_and(wrong_voxels, test) )

total_wrong = np.sum(wrong_voxels)

print "Number Wrong Voxels: ", total_wrong
print "Number False Positive Voxels: ", total_fp
print "Number False Negative Voxels: ", total_fn

return total_wrong, total_fp, total_fn⇢
The reconstruction performance can also be seen in the reconstruction loss while training. In 5.2 the
VAE reconstruction and regularization loss are plotted over the training period with recscale set to 0.5.
Figure 5.2 illustrates three reconstruction samples at different reconstruction losses. Comparing the re-
construction loss to the average number of wrongly classified voxels per sequence in table 5.1 a common
trend can be observed, despite the relationship between the two error functions not being linear.

Table 5.1.: Reconstruction error in comparision to average wrong voxels per sequence
Rec loss 78 39 21

Avg. wrong vox. 1207 821 16

The learning behavior seen in 5.2 is typical for the VAE. First the reconstruction loss decreases very fast,
and the regularization loss increases. By increasing the regularization loss the VAE is able to specify
more in the latent space and e.g. reduce the noise. By setting recscale very high the VAE structure can
even converge to a normal auto-encoder, because the noise S would be able to nearly decrease to zero.
When the reconstruction loss converges the VAE tries to reduce the reconstruction loss. This can be seen
as generalization of the VAE.
For the bouncing ball experiment we compare different settings of network hyper-parameters. We found
a good reconstruction error and smooth latent space for dim_a = 5. In [14], the authors adjusted the
dimensions according to the problem scenario. In the 2D bouncing ball game, they set dim_a = 2 to
encrypt information about the ball location x and y. They also set the dim_z = 4 to additionally store the
information about the velocity of the ball. In the 3D bouncing ball game, we could not find these low
dimensional latent space setting that directly describe the real world problem scenario.

An important property for latent space, which is the fundament for the modelling capability of the DDN,
is the arrangement in the latent space. The smooth moving ball in the voxel space X should lead to
an smooth space A. According to this, two very similar voxel configurations should produce similar
multivariate Gaussian. A first impression can be obtained by plotting all dimensions of a single sequences
latent space over time. In figure 5.3, we can clearly see the smooth movement in the latent space which
corresponds to the smooth movement of the ball in the voxel space.
Another often used validation tool is to visualize the latent space by random sampling in the latent space
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Fig. 5.2.: 3D bouncing ball reconstruction loss compared for different learning stages. In the voxel scene
the orange voxels stand for false-positive and the yellow voxels for false negative reconstruction
errors.

and plotting the reconstruction results to the corresponding 1D or optional 2D A-plane. With this method
only two dimensions can be varied and evaluated at the same time. If existing, the correlation between A
and X can be directly observed in the A-plane. Similar to this for low dimensional latent spaces we can
cluster the training dataset to the A-plane. Still both methods are not attractive, because plotting a single
view point of a 3D voxel space does not properly illustrate on paper the whole scene with all interesting
features in it.
Linear interpolation of the latent space can be used for higher dimensions of A. For this we set a start and
stop "voxel scene" and calculate the corresponding a-configuration. We can now generate a sequence of
the linear interpolation between those two a-configurations. If, for the trained network, this results in a
smooth movement, it suggests that the VAE learned to correctly sort the features into the latent space.
A sample of this linear interpolation can be seen in figure 5.4. Here the ball is moving linearly from
one side of the voxel space to the other. In the middle of the interpolation sequence is one jump at the
wall, which still supports the assumption that the VAE learned a smooth latent space for this experiment.
The reason for this is that the start and stop ball are on different heights and because we only trained for
2D movement, this is exactly what we would expect to see. A direct 3D movement of the ball cannot
be expected since sorting the latent space in this way would not provide additional benefits to learn the
appearing dynamics in the scene.
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Fig. 5.3.: 3D bouncing ball latent space A sample over time

Although we will not apply Principal Component Analysis (PCA)in this thesis, it is often used in ma-
chine learning data visualization and worth mentioning. Shlens [53] describes PCA as "a simple, non-
parametric method of extracting relevant information from confusing data sets". An implementation of
this tool is directly provided in Googles Tensorboard deep learning visualization tool. The same methods
and visualization tools introduced for the latent space A can be applied to the hidden space Z.

Fig. 5.4.: 3D bouncing ball linear interpolation in latent space A
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Dynamics

After we are familiar with the VAE and its evaluation tools, we can have a closer look at the KVAE. Two
important parts of the KVAE configuration have shown to determine whether the DDN is able to learn
the hidden dynamics, and is able to utilize the full potential of the network. The first part is the dimension
of Z, which can be evaluated with the same methods as A for the VAE. The correct configuration of the
dynamical network, is the second major influence factor. As a short reminder, the dynamical network
has the function to produce coefficients ak

t . ak
t sets the percentage of each individual transition matrix

Ak 2 AK , Bk 2 BK , and Ck 2CK , to be used for transition to the next time step. Learning the correct set
of matrices and dynamical network configuration, can be interpreted as learning the underlying physical
dynamics.
There are two scenarios where the DDN has to recourse to the learned dynamics: Imputation1 and predic-
tion. This network is especially useful for imputation, since the KVAE is able to perform inference on all
observed time-steps. We can define imputation by its starting point tstart and the amount of unobserved
frames tsteps. The same can be applied for prediction where tstart is the last observed frame and ngen the
total amount of frames to generate. This is graphically illustrated in 5.5.

Fig. 5.5.: Imputation [5-15] and prediction [5-20] schematic illustration

For the bouncing ball game setting dim_z to 7 or higher achieved the best results. For imputation the
KVAE is able to apply Kalman smoothing or filtering on the hidden space Z. In our experiments apply-
ing filtering to the hidden space does not show better results than smoothing, since there are multiple
nonlinearities which filtering only blurs. The setting of K shows high impact on the performance of the
network. With the setting of K = 4 the DDN wasn‘t able to handle the non-linear dynamics in the scene.
Providing a higher expressibility of the dynamical networks and allowing to learn nine different sets of
matrices led to good overall performance. The network learned to choose the correct transition matrices
for the linear movement appearing in the middle of the box and special constraints for the bounce of the
wall. The resulting network performance can be seen in figure 5.6. In this figure 5.6, REC stands for the
direct reconstruction result of the VAE. The average number of wrongly classified voxels per sequence
needs to be set into perspective to the 16x16x16 voxel space. There is a total of 16⇤16⇤16⇤ time-steps
= 81920 possible wrongly classified voxels in one sequence. 100 wrongly classified voxels corresponds
to an error rate of 0.122%. The achieved results show that the VAE is able to reconstruct the scene. Since
no noise and only little variety was included in the training data these results can be expected. Further-
more a 3D cube is very simple object which can be easily reconstructed by the highly expressive decoder
and encoder function. When we later attempt to apply this network on real data, we have to concern
ourselves with over-fitting issues and the performance difference of operating on test or training data.

1Imputation in statistics describes a method to reconstruct missing data.
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Fig. 5.6.: 3D bouncing ball imputation [5-15] and prediction [5-20] performance bar chart

The BAS bar provides an error baseline. This is computed by freezing the last observed time-step and
comparing it, for the rest of the sequence, to the original input. Since the dynamical deformation network
was able to learn the dynamics, prediction (PRE bar) results in a good result as well. Here we can see
that filtering (FIL bar) in hidden space produces worse results than smoothing (SMO bar). This can
be explained by the concepts of the Kalman-Filter. On the first few time-steps and after non-linear
dynamics the error rate for filtering is higher than for smoothing. The blurred non-linearities in the
hidden space, which influence the reconstructed voxel space, are the reason for bad performance after
non-linear movements. The high initial uncertainty of the Kalman filter in the first few time-steps of
every sequence is the reason for worse reconstruction results in the beginning when applying filtering.
The prediction results are obviously worse than the imputation because less information is available for
the DDN, but still outperforms the baseline by far.
As a next step for we tried to extend the movement of the ball to three dimensions. We could not learn
these more complicated dynamics with the given network. Instead of applying further parameter tuning
we created the next game, which is more related to deformation. Nevertheless we could show the abilities
of the DDN to handle voxel data and learn dynamics even under non-linearities.
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5.1.2. Box Deformation

We created the next game with the intention to clarify the ability of the DDN to handle local shape variety
and learn the dynamics over time. We added a control signal which allows the network to incorporate
additional information about the scene into the modelling process.

Dataset

Fig. 5.7.: Box deformation sample sequence with touch point size of 2x2 and depth of 4. The green
voxels in the first time-step mark the touch point.

For this simulation, we lowered the voxel-resolution to 8x8x8. This allowed us to train the model faster.
We created three surfaces of a cube and applied different deformations to it. The deformation shape
applied should mimic a force pushing a certain amount of voxels next to each other into the object on
one surface. The size of the touch point is randomly set between 1 and 5 for both coordinate axes and
only refers to the amount of hollow voxels. This touch point can be localized anywhere on the cubes
outer surface. The touch depth is randomly set between 1 and 4. After "pushing" into the box, the shape
of the box recovers to its original state. One example sequence can be seen in figure 5.7. This time, to
also utilize the full capabilities of the KVAE we applied an additional control signal to the network. We
will discuss the setting for this control signal later. A total amount of 2000 sequences with 10 time-steps
were generated for this simulation.

Network Parameters and Training

As previously mentioned, by changing the network voxel resolution adjustment of the number of con-
volution layers for the VAE framework is necessary. Changing the number of convolutions was the
only major change applied to the DDN. To successfully train the model on the new data we have to
perform hyper-parameter cross validations. Tuning the reconstruction cost function parameterized by l
and recscale to avoid finding static solutions of empty or completely filled voxel spaces, showed to be
the fastest way of tuning the parameters. We previously adjusted l = 0.9, to penalize the network if it
did not reconstruct the ball, which only consisted out of 3 ⇤ 3 ⇤ 3 = 27 voxels. Now with more voxels
always being on in the scene, lowering this factor to 0.6 showed increase in learning performance. We
also lowered the reconstruction error factor to 0.2 so the network focuses clearly on simplifying the latent
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Fig. 5.8.: Box deformation control input U of sequence shown in 5.7

space and learning the best configuration for the DDN, while at the same time being able to lower the
reconstruction cost continuously.
For dim_a = 10, dim_z = 16 and K = 9 we could achieve the best overall performance. The reduced
number of network parameters allowed us to increase the Adam Optimizer learning rate to 0.0005. We
trained the network for a total of 300 epochs.

Results

Fig. 5.9.: Box deformation imputation 3-8 and prediction 3-10 performance bar chart

We performed the same tests, previously introduced for the 3D bouncing ball game, on this dataset. We
imputed the time-steps 3-8 and predicted time-steps 3-10. The control signal was provided at all time-
steps to the DDN. The network learned to utilize the control signal 5.8 and could tell when the box begins
to recover back to the initial state. By providing this additional knowledge about the scene good results
that can be seen in 5.9 were achieved. The control signals had three dimensions (one for every surface
of the half box). The value of each signal corresponded to the depth of deformation. Without applying
the control signal, the network could only "guess" when the box would start to recover back to its initial
state. So for a very good reconstruction result, it was essential for the DDN to learn how to utilize the
given control signal.
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By having a closer look at the VAE latent space reconstruction of the sequence 5.7, the property of sym-
metry can be found in the latent space 5.10 and the original sequence. This can obviously be suspected
because of the symmetrical input sequence provided to the DDN.

Fig. 5.10.: Box deformation latent space A of sequence shown in 5.7

By visualizing the hidden space in figure 5.11 for the same sequence, we can see that the property
of symmetry is lost. This is exactly what we expect since the DDN has to encrypt information about
the deformation movement into the hidden space. Nevertheless some lines in this sequence seem to
be nearly symmetrical, and might encode the spatial symmetrical information of the scene. We cannot
clearly interpret the hidden space to actual movement or the original voxel scene.

Fig. 5.11.: Box deformation hidden space Z of sequence shown in 5.7
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5.1.3. Conclusion

In this simulation section we verified the capability of the DDN to reconstruct different object shapes.
We showed that learning smooth and also non-linear dynamics can be achieved. The foundation for
this was the capability of the convolutional voxel VAE to extract a meaningful latent space. Finding the
right hyper-parameters for this network structure was not a simple task. We could not learn intuitively
interpretable latent and hidden spaces. In the simulation phase only noise free data was applied and
over-fitting the dataset wasn‘t investigated. To challenge this network on more complex data in the next
section we will record real-world deformation data of multiple objects and show the capability of the
DDN to capture real object deformation behavior.

5.2. Robot Experiments

Fig. 5.12.: UR5 probing foam material to generate
reference deformation data

To validate the DDN found in simulation, we per-
form real experiments on non-rigid objects. Since
this is a completely data driven approach, large
training and test datasets are required. To deform
different object, we use the Universal Robot 5
(UR5) equipped with an Optoforce 3D force sen-
sor. We choose to deform objects made out of
materials, that recover there original shape within
3 � 6s. To capture the spatial deformation, we
use an Intel Realsense SR300 depth camera, with
which we are able to capture a point cloud of the
scene.
To capture a large datasets, required for deep
learning, integrating the robot and sensors into a
high level abstraction framework helps to manage
all the different tasks and data flow at the same
time. For this we use the open source Robot Operating System (ROS), which allows us to easily deform
the objects with UR5 and store the data of interest. For more information about ROS the reader is referred
to the appendix, where a quick overview of the general structure is given.
To gain a better understanding of this experimental setup, a brief overview of every component and its
specifications is provided in the following.

5.2.1. Robot Setup

Universal Robot 5

UR5 was developed by the Danish company Universal Robot. They specified on building collaborative
robot arms, marketed as light weight, safe and easy to use. UR5 has 6 degrees of freedom through 6
revolute joints. Every joint can rotate from –360 to +360 degrees. The specified payload is 5kg and more
important for our use case is repeatability of +/- 0.1mm. The main focus, while engineering this robot,
was to develop a safe robot, which does not require to be separated from humans by a classic safety cage.
This makes UR5 ideal for research and in particular for our experiment.
Controlling a robot arm can mainly be separated in two levels of control problems. On the one hand
the low level controllers of the robot, which are implemented normally for every single joint separately.
Their function is to set the right power for the motor to hold or move to a given angle or with certain
required torque. This problem only concerns a individual actor unit and every controller operates at a high
frequency between 100Hz�1kHz. The implementation of these low level controllers is fully provided
by the robot manufacturer. The high-level control has to calculate trajectories for the robot arm and find
the right joint values needed to move to a given position. To plan trajectories for the UR5 the open source
motion planning framework MoveIt! is used. It was developed in October 2011 for mobile manipulation,
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Fig. 5.13.: MoveIt! open source motion planing framework structural overview diagram.
Data Source [26]

incorporating the latest advances in motion planning, manipulation, 3D perception, kinematics, control
and navigation. [27]
In the MoveIt! overview figure 5.13, the robot is abstracted as a move_group and provides a wide
range of user interfaces. The RobotSensors provide information about the robot joint values and joint
torques. The RobotController is the interface to the manufacturer robot software. In our case we us
the ur_modern_driver package to implement the bridge between the move_group and UR5. To find
the relationship between the euclidean space, the robot is operating in, and the joint values (position or
angle of each actor) we have to solve the inverse kinematics (IK) problem [9]. MoveIt! directly provides
different IK-solvers, which are able to handle given constraints, and can be configured through the user
interface. With this setup we are able to manipulate the shape of the probing object.

Intel RealSense Camera SR300

The SR300 is a low-cost active Infrared Radiation (IR) 2.5D depth-sensing camera. With the active-
IR distance measurement this camera is able to capture highly precise depth images in the range of
0.2m ⇠ 1.5m. This camera is designed for gesture tracking, facial expression recognition, 3D scanning
and dynamic background segmentation. [46]
The basic principle of active-IR cameras is to project, with an IR-diode, a certain pattern to the scene.
The reflected pattern can then be captured by the camera. With the knowledge of the projected pattern
and the captured warped pattern, triangulation can be applied to calculate the depth image of the scene.
These sensors are referred to as 2.5D depth sensors, because they only can gather limited information
about the visible side of objects in their range of view. The operating range is mainly limited by the low
emission power of the IR-diode to prohibited health risks for humans and animals. The depth image is
acquired by the Intel Realsense SDK. [45]
A stable ROS compatible driver is directly provided by Intel. The depth data is available as an RGB point
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(a) Depth image of robot workspace (b) RGB image of robot workspace

Fig. 5.14.: SR300 side by side comparision of RGB and depth image

cloud captured with 30 fps. We use the Point Cloud Library (PCL)[50], a standalone large scale, open
project 2D/3D image and point cloud processing library, to crop the provided point cloud to the region of
interest and down sample the point cloud with a voxel grid in real-time. After this we off-line smoothed
the point cloud over time and transformed the data to voxels.

OnRobot OMD - 3 Axes Force Sensor

Fig. 5.15.: Function Principle On-
Robot OMD - 3 Axes Forcesensor.
Data Source [1]

This 3D force sensor was developed by Optoforce and is
able to measure the direction and magnitude of external
forces applied to the sensor’s surface with a high reso-
lution and up to 1kHz sample rate. They use a unique
approach to measure the applied force, by emitting light
to a deformable silicon surface and sensing the reflection.
These sensors are very common in the field of robotics and
are available in multiple types to measure different force
ranges. For our experiment we have chosen the 40 Newton
version.

5.2.2. Experimental Foam Deformation

The first experiment is designed to find simple dynamics and test the VAE performance on real data. The
object is a small consumer pillow with dimensions 50cm x 50cm x 7cm. We glued the pillow case to the
interior foam material to capture the deformation of the foam. This pillow, since it is very big, allows
us to capture local deformation. For this experiment we 3D printed the sphere-tool with the Optoforce
sensor mounted in the middle 5.16. The sphere-tool is able to provide a bigger deformation area, which
is easier to capture for the SR300.

Generated Data

Fig. 5.16.: Universal Robot 5 equipped with
Optoforce sensor and sphere tool

We generate points of contact equally spaced in a 15x15
grid pattern with dimensions of 10cm x 10cm and re-
peated this procedure five times. After deforming the ob-
ject softly, UR5 quickly releases the object and moves
out of the scene, avoiding covering the pillow for the Re-
alSense SR300. Focusing on the performance and general-
ization capabilities of the VAE, every touch was performed
with the same depth and orientation onto the top surface.
We generate for this object 1125 deformation sequences.
We recorded the point cloud in the area of interest with
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20 fps and rendered each deformation "action" into a sequence of 16x16x16 voxel data with ten total
time-steps. A voxel was set on, when over four out of seven consecutive frames, more than three points
were located in the voxel area. This can be seen as smoothing over time for data pre-processing and
noise reduction. Additionally the Z-axis was scaled with a factor of 2.0 to see the depth of deformation
clearly in the scene and to make use of the whole 16x16x16 voxel space. While the robot performed the
experiment, the foam material was a few degrees tilted and in the end of every sequence a oblique plain
can be observed in figure 5.17, which is not related to the deformation action applied to the material.
We provide no additional force or position information to the network. The recorded data was randomly
shuffled and split into 1000 training sequences and 125 test sequences. The training and test dataset did
not differ in the actions applied to the object but include recording noise, volatilization errors and devia-
tion, caused by the experiment itself. We have designed this dataset to test the real world performance of
the DDN for a simple reconstruction task and to verify simple generalization capabilities.

Fig. 5.17.: Foam robot experiment sample sequence bottom view point. The color is correlated to the
height of the voxel in the scene, not directly to the degree of deformation.

Training

Adjusting the reconstruction loss function, dimension of A, Z and the number of matrices K helped to
improve the overall performance of the network. The hyper-parameter setting can be found in table 5.2.

Table 5.2.: Foam deformation experiment hyper-parameter setting
Parameter dim_a dim_z K recscale l

Value 16 16 1 0.3 0.4

For training the model the Adam optimizer [29], which lead to good results in simulation, was used
with an initial learning rate of 5�6, beta1 = 0.9, beta2 = 0.999 and epsilon = 10�8. Fraccaro et al. [14]
suggest in the supplementary section, to first only update the VAE parameters, then the Kalman Filter
parameters and afterwards all parameters at the same time. On real robot data no significant difference
between this procedure and tuning all parameters at the beginning could be observed. The batch size for
the foam experiment was set to 10. While training we exponentially decreased the learning rate in 40
steps by the factor of e0.7. After a total amount of 500 epochs the model converged.
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Results

(a) Training dataset results (b) Test dataset results

Fig. 5.18.: Foam robot experiment imputation [3-8] and prediction [3-10] performance bar chart

At first we have a look at the reconstruction result (Figure 5.18). The mean wrong voxels per sequence
of the VAE reconstruction are 475, with an standard deviation of 47, for the training data. This can be
interpreted as a bad result since we wrongly classify over 3% of the total voxels in the scene. In fig-
ure 5.19 we can see three different smoothed imputation sample sequences [3-8], with the false-positive
and false-negative voxels highlighted. Despite this high reconstruction loss we can see the VAE was able
to find multiple important features of the sequence. It localized the touch point and encoded the depth
of the touch in the latent space. We don’t expect the network to perfectly reconstruct the training data.
This would only indicate over-fitting and learning the noise, that is included in the training data, instead
of reducing the scene to its key hidden features.
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Fig. 5.19.: Foam deformation sample imputation [3-8] sequences over time-steps 1-6

Dynamical Deformation Network



Page 32 Chapter 5. Evaluation

In a sample of the first 5 VAE latent space dimensions (Figure 5.20), we can see, that the only way this
model was able to reduce the reconstruction error, was by specialization in the latent space. Despite
the regularization, the VAE consistently reduced the noise in favor to encode more information in the
latent space. The standard deviation on average dropped to 0.05 for all latent variables. By increasing
the penalty of the VAE, we could not achieve better performance on the test or training dataset. The

Fig. 5.20.: Foam robot experiment latent space A of sample sequence

previous simulation phase showed, while performing imputation tests, that smoothing the hidden space
slightly outperformed filtering. The same behavior can be observed in the real robot experiment 5.18, but
the performance difference is marginal. By comparing the test and training performance of the network
in figure 5.18, similarly good results, can be observed. Previously mentioned the metric of the total
amount of wrong voxels, which was a direct performance indicator in simulation, because no noise was
included in the dataset, is not the best choice for evaluating the real noise robot data. For interpreting the
modelling performance of the DDN, we have to more often take a look at the actual reconstruction data.
By performing linear interpolation between the latent space of two different sequence starting points, we
could also verify, that the VAE was able to encode the key features of the object.

Fig. 5.21.: Foam robot experiment linear interpolation between two sequence starting positions
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We can clearly see smooth movement of the touch area between the two different sequence starting
positions (Fig. 5.21). This definitely, shows that we were able to reconstruct a robust, not completely
over-fitted latent space which is able to encrypt information about the occurring deformation.
One unexpected result we found, while evaluating hyper-parameters was, that restricting the set of learn-
able metrices to K = 1 performed similar, compared to a more complex setting of K. In figure 5.22 the
number of on average wrongly classified voxels per sequence, while training, is plotted for different set-
tings of K. By setting K = 1 we "deactivated" the dynamical network and only allowed learning linear
movement across the whole domain of the latent space. For this real robot experiment it seemed to be
easier for the DDN to adjust the latent and hidden space, so only linear transitions, are necessary to re-
produce the original sequence, even when more complex dynamical movements could be learned in the
hidden space. A good dynamical performance can be seen by comparing the reconstruction loss to the
imputation and prediction loss in the bar charts of figure 5.18. The bar chart shows good results for the
test and also the training data. For a higher setting of K the network responded more less stable to other
hyper-parameters variations. Lowering dim_a and dim_z resulted often in a static local minimum of the
undeformed foam in the end of the sequence, for all time-frames, or in an overall higher reconstruction
error. The network could not benefit from changing K to a higher setting and additional complexity often
only lead to worse training results. So describing this deformation data by a single set of linear transmis-
sion matrices for the LGSSM just might be the simplest and most precise solution the network is able to
learn.

Fig. 5.22.: Foam robot experiment average number of wrong classified voxels per sequence over training
process for smoothed imputation [3-8]. Different settings of K result in similar testing performance
(log-scale).

At the beginning while creating the voxel data, we stretched the object in Z direction, with the factor of
2.0. This underlined the location and depth of the touch-point and reduced the noise in comparison to the
features present in the scene. This preprocessing of the raw sensor data, can be seen as highlighting the
deformation features in the scene. Similar training results could be achieved for the unstretched/original
voxel data. We only presented the stretched version here, so the deformation features can be seen more
clearly in the low resolution 16x16x16 voxel space.

Another important property we have not discussed, is the size of the training dataset. At first we tried to
train the model with 225 touches, this resulted in higher over-fitting and worse reconstruction results for
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the test data. Extending this dataset to 1125 sequences, resulted in overall better performance.
We tried to utilize the previously introduced control signal for this experiment. Two important informa-
tions were available. The applied force measured with the Optoforce sensor and the location of the touch.
No matter how many different control matrices we learned influencing the hidden space by the control
signal, did not lead to significant better results. We mainly tried to provide the (x,y) position of the touch
to the network.

Conclusion

Despite the fact that we could not utilize the full functionality of the DDN, including the Dynamical
Network to weigh mutiple learned LGSSM matrices and the additional control input, simple deformation
could be captured, with high precision.
We showed in this foam deformation experiment, that the DDN, is able to extract meaningful features
from the high dimensional voxel space. With the setting of K = 1 the network was forced to adjust its
latent space, so only linear transmission is required in the hidden space to reconstruct a full deformation
sequence. Learning this more complex sorted latent space of the VAE framework was only possible by
the additional restriction given by the KVAE. We could also verify that the VAE network accomplished
good generalization results, for a very similar test dataset.
One big disadvantage, that cannot be illustrated in this Bachelor’s thesis, is that fine tuning the network
structure has been extremely time consuming. If this would be required for all new objects, applying the
proposed DDN to real world deformation scenarios would be absolutely intractable.
So for the last experiment we decided to apply the DDN to a different object, with the exact same
parametrization and no additional data preprocessing and hope to find similar results.

5.2.3. Experiment Toy-Ball Deformation

For this experiment we have chosen to deform a smaller toy object. This object is referred to as a squeeze
stress reliever toy and made out of polyurethane. This foam material is softer and recovers more smoothly
than the previously evaluated pillow. The dimensions of this toy are approximately 8cm x 8cm x 8cm.
We try to verify in this experiment the ability of the DDN to learn similar objects, without fine tuning the
hyper-parameters for the new training and test dataset.

Generated Data

Fig. 5.23.: Screenshot ROS Rviz UR5
probing toy-ball. All starting positions
marked by cube with green number.
Real SR300 point cloud data of toy-
ball.

To record data, we directly mounted the Optoforce sensor to
the UR5, without increasing the surface by the sphere tool.
We equally spaced 156 points on a sphere around the object,
seen in figure 5.23. These point mark the start position, from
where we began to push the end-effector, equipped with the
optoforce sensor pointing towards the object, into the ball-
toy. We repeated this procedure five times and generated in
total 780 touch sequences. We randomly shuffled the data
and split it into 156 test and 624 training sequences. This
toy object recovers in approximately 3s, so we could apply
the same method to generate voxel data, used before, with
smoothing over seven time-frames. One video sequence of
every other frame can be compared to the resulting voxel
data in figure 5.24.
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Fig. 5.24.: Ball-Toy SR300 image compared to generated voxel data for every other frame. The color is
correlated to the height of the voxel in the scene not directly to the degree of deformation.

Training

We applied the exact same network hyper-parameters and training-parameters, we found in the previous
experiment to this dataset.

Results

(a) Training dataset results (b) Test dataset results

Fig. 5.25.: Ball-Toy robot experiment imputation [3-8] and prediction [3-10] performance bar charts

We can directly have a look at the reconstruction, imputation and prediction results in figure 5.25[a]. We
can see a similar performance, compared to the previous foam deformation experiment. The DDN net-
work could reduce the total amount of wrong voxels for the training data to under 250 per sequence for
all evaluation methods. Since the imputation and prediction performance are very similar to the recon-
struction result, we can clearly tell, that the network successfully learned all the dynamics, in the hidden
space. Comparing the training 5.25[a] to the test 5.25[b] performance, we can note slightly worse results.
On average the network misclassified 4 voxels per time-step more than in the original training data. This
can be directly related to the data applied to the network. For every sequence in the foam experiment a
clear deformation can be observed and the touch point can be perfectly observed in the voxel space. 5.19.
For the ball experiment the deformation, when applied to the back side of the ball could not be clearly
captured by the Realsense camera and the number of deformed voxels is noticeably smaller than for the
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foam experiment. This leads to a lower "signal" to "noise" ratio, when we interpret the deformation as
the signal appearing in the voxel space.

To understand what these error rates, occurring in the test and training data, represent we can have a look
at a sequence with the time-steps 3-8 imputed, for the test and training case. In this data we are looking
for features, that describe the shape deformation of the object, and want to evaluate where errors occur.
For both cases 5.26 we can see that the object was deformed on the left side. We can also recognize in
the data that this deformation on the left side slowly recovers over time. The occurring errors do not only
affect the deformation area, they are nearly equally spread around the object. So the remaining error rate
can be interpreted as noise, that does not influence the shape of the object.

Conclusion

With this second robot experiment we were able to validate the performance of the DDN to model simple
object deformations, without the need of fine tuning the network parameters. The DDN performed on
the new dataset comparably to the foam pillow experiment. This qualifies the network to learn a wider
field of deformable objects, without additional parameter fine-tuning.
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Fig. 5.26.: Toy-Ball deformation imputation [3-8] test and training sample sequence of time-steps 1-6
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6. Conclusion and Outlook
The Dynamical Deformation Network is a completely novel data based approach to model deforma-
tion. Consequently, only basic problem scenarios were investigated. We successfully modeled simple
dynamics in deformation by extending the KVAE framework to handle voxel data. Finding a low di-
mensional latent representation of the complex voxel space, was only possible by in-cooperating the
recent advantages, achieved in 3D deep learning. In particular adopting the progress achieved in the
context of the ModelNet classification challenge [67, 7, 18, 38] help to simplify the complex voxel rep-
resentation. Mapping this low dimensional space over time by a LGSSM could predict the unobserved
voxel scene, but only learning basic dynamics was verified. While implementing and training the net-
work, we had to face different challenges and problems. The first problem was to acquire large datasets,
which are necessary for deep learning. Generating these datasets to evaluate this new network structure
is very time consuming. Another time intensive challenge we faced, consisted of evaluation the DDN
hyper-parameters. Even equipped with a high-end computer graphic card (Nvidia GTX 1080) training
the model took around 1 hour. This strongly limited the number of cross validated hyper-parameters.
We suppose for future experiments to acquire higher resolution voxel data (32x32x32) to capture more
deformation details. For our experiments we were limited to low resolution by the available training time
and computational power given, with a single GPU. Even without using the full complexity of the DDN
structure, to model the real deformation data, we acquired good results on the given deformation datasets.

In general applying stochastical deep learning to model deformation, did obviously not provide outstand-
ing performance for the given task. Without any doubt classical FEM methods or mass spring damper
models can outperform the DDN in terms of precision as well as simplicity. The provided experiment
may be misleading, because the novel network was applied to a deformation problem, that already has
been perfectly solved by other methods. Nevertheless we could verify the basic capability of the pro-
posed network to model deformation. We could successfully perform prediction and imputation. Data
based deformation modelling might be used in the field of medical engineering. Further the DNN can be
used for interacting with objects of which the material parameters cannot be exactly discriminated or the
object properties are not covered by "traditional" modelling approaches.

In the context of this bachelor‘s thesis only a simple evaluation of the proposed network was performed.
To extend, and hopefully later apply this method to real world problem scenarios, future work is needed.
At first further validation of the generalization capability of the network need to be performed. Therefore
we propose to capture more complex deformation data. Instead of deforming a real-world object, a
finite element simulation can be used to quickly generate a huge amount of training data. Evaluating the
network on deformation data of multiple objects in different position, orientations or partial observed,
can verify the capability to model more complex deformation data.
The resolution of the voxel data might be extended to 32x32x32 or higher, to capture more deformation
details. Regarding the actual robot experiment, representing the 2.5D depth data of the Intel Realsense
camera in voxel format is unusual for this application. The same data can be represented as a depth-
image, on which already different deep learning methods have been successfully applied. Nevertheless,
when we want to extend this method to other 3D data acquisition sensor types, sticking to voxel data can
be justified and enhances the generalization capability of the network to other problem scenarios.

One reason why the DDN was not able to utilize its full potential, might be the difference in complexity
between the VAE and LGSSM. The VAE is equipped with extremely expressive neural networks. In
contrast to the limited LGSSM, which only can describe "simple" transitions in the hidden space. It
might be worth investigating, if different statistical models are capable to better connect the latent space
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over time. Beside this, the VAE could be extended with additional knowledge about the scene. This could
be a picture of the scene, suggested in [18] or other data about the deformation. A "better" latent space
to describe the deformation might be acquired, which then can be easier modeled over time. Further
investigating the Dynamical Networks might increase the capability of the model to learn deformation in
the hidden space. Fraccaro et al. [14] performed a simple evaluation of different network structures for
the Dynamical Network. This evaluation can be extended to the real deformation data and might help to
learn more complex dynamics in the hidden space.
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A. Appendix

A.1. Deep Learning Frameworks

With the constantly increasing popularity of deep learning and the new fields of applications, a variety of
big technology companies like Google, Amazon, Facebook and Microsoft, to name a few, released their
own deep learning frameworks. The purpose of these frameworks is to simplify, the highspeed parallel
implementation of complex networks with millions of computational operations. Utilizing modern GPU
acceleration, allows the programmer to create and train big models in a reasonable time using cheap
consumer hardware (mainly Nvidia graphic cards).
The most popular Frameworks Tensorflow (Google), Caffee (Amazon), PyTorch (Facebook), CNTK
(Microsoft) are based on building a computational graph. This directed graph, where nodes correspond
to operations, can be utilized to compute a high number of operations. This structure allows the calcula-
tion of the loss function’s gradient with respect to every learnable parameter by the means of backprop-
agation. Variables can feed their value into operations, and operations provide their output data, to other
operations. The output and inputs of these nodes are multi-dimensional arrays, commonly called tensors.
To find the optimal network parameters we need to minimize the cost function of the network. This
function corresponds to the inverse of the performance of the network e.g. the classification error. To
achieve this, the network parameters (weights) can be modified by an optimizer function. This optimizer
function adjusts the weights according to the negative gradient of the cost function in relation to every
network-parameter. To effectively calculate this gradient these frameworks, define for every operation a
forward and backward step. The forward step is the calculation of the actual function of the operation.
This can be a weighted sum of the input variables with additional bias term, a nonlinear function or a
more complex function. When the calculation is finished the output variables of the operation are set to
the calculated value, which then are provided to the next operation or are the actual output of the neural
network. Successively calculating the forward step in direction of the graph for the whole neuronal
network is called the forward pass. A complete forward pass is performed when to a given input data the
neuronal network discriminated all outputs.
The backward pass calculates the gradient of the loss function in reverse order for the whole neuronal
network starting from the output of the graph. To calculate this gradient the chain rule can be applied
for every operation. The partial derivatives of the operation outputs in respect to the operation inputs are
known for every operation.

Fig. A.1.: Computational graph, gradient backward step
(red), forward step (green). Based on [13]

When the gradient of the loss function is
known in respect to the input, only simple
multiplication with the partial deviations is
necessary to calculate the gradient in respect
to the inputs of the operation. To complete
a full backward pass and calculate the gradi-
ent of the loss function in respect to every
learnable parameter in the neural network,
this procedure is repeated for all operations
in the graph starting from the output in the
reverse graph order.
To illustrate this, a single node is shown in
figure A.1. This node performs the operation
f on the input tensors x and y to calculate the
output tensor z. When the output gradient
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is passed to the node, it can calculate the output gradient in respect to the input tensors by a simple
multiplication with the stored partial deviations dz

dx

and dz

dy

. The training of a neural network can be
described by the repetition of feeding training data to the network, calculating the gradient of the network
and adjusting the weights until a given minimal cost is accomplished. In Figure A.2 the schematic
interaction between the different components for a supervised training process is provided.

Fig. A.2.: Supervised neural network training process. Overview of interaction between optimizer and
neural network.

A.2. Robot Operating System

"Robot Operating System (ROS) is robotics middleware (i.e. collection of software frameworks for
robotsoftware development). Although ROS is not an operating system, it provides services designed for
heterogeneous computer cluster such as hardware abstraction, low-level device control, implementation
of commonly used functionality, message-passing between processes, and package management. " [65]
We previously had a look at the computational graph in TensorFlow. The purpose of this was to separate
a big neural network into simpler operations and layers. ROS is providing a similar structure to manage
different task of a robot system.
"The Computation Graph is the peer-to-peer network of ROS processes that are processing data together.
The basic Computation Graph concepts of ROS are nodes, Master, Parameter Server, messages, services,
topics, and bags, all of which provide data to the Graph in different ways." [4]
Nodes are processes that perform computational operations. Every node must register to the ROS Master.
The ROS Master can be seen as the root of this computational graph and provides look-up-service to the
rest of the graph. Communication between nodes can be established on two ways. First a node can
publish or subscribe to a topic. A topic has a unique name and a static message type (data type). A topic
can be subscribed and published by multiple nodes at the same time. When new data arrives to a topic, all
subscribed nodes are notified that new information is available. The second way is provided by request
and reply structure, called services. They allow a node to offer a service to other nodes. A service is
defined by a message to request a response and by the responding message provided by the node offering
the service. The connections in the computational graph are provided mainly by an implementation of
TCP/IP sockets. This allows ROS to run over multiple machines in the same network. ROS is supported
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for selected Linux distributions. It also comes with additional useful tools like the visualization toolbox
Rviz or simulation environment Gazebo.
One of the biggest advantages of ROS is the big research community and the open source policy. There
are many packages available, that help to accelerate your robot software development. Despite numerous
efforts to bring ROS to industrial environments the lack of real-time reliability and security concerns
hindered this so far. With ROS 2.0 the community tries to tackle the open real-time problems, but
the safety issues will stay a future obstacle for the advance of ROS into industrial environments. In
conclusion ROS is a great framework for research and development, with minor lacks that are in no
relation to its usefulness for fast development.

A.3. Decoder and Encoder Tensorflow Implementation

A.3.1. Encoder ⇠
def encoder(self, x):

print "\nEncoder Layer Structure:"
with tf.variable_scope(’vae/encoder’):
def conv3d(x, W):

# ksize = size of filter (2,2,2);
# strides = filter movement (2,2,2);
return tf.nn.conv3d(input=x, filter=W, strides=[1,1,1,1,1],

padding=’SAME’)
def maxpool3d(x):

# ksize = size of filter (2,2,2);
# strides = filter movement (2,2,2);
return tf.nn.max_pool3d(x, ksize=[1,2,2,2,1], strides

=[1,2,2,2,1], padding=’SAME’)
def avgpool3d(x):

# ksize = size of filter (2,2,2);
# strides = filter movement (2,2,2);
return tf.nn.avg_pool3d(x, ksize=[1,2,2,2,1], strides

=[1,2,2,2,1], padding=’SAME’)

x = tf.layers.batch_normalization(x)
conv_input = tf.reshape(x, shape=[-1, self.d1, self.d2, self.d3,

1])
print conv_input
#conv_input dimension [bs,16,16,16,1]

conv1 = tf.nn.leaky_relu(conv3d(conv_input, self.enc_weights[’
W_conv1’]) + self.enc_biases[’b_conv1’])

conv1 = tf.layers.batch_normalization(conv1)
conv1_b = maxpool3d(conv1)
conv1_a = avgpool3d(conv1)
concat_1= tf.concat([conv1_b, conv1_a],4)
print conv1,"\n", conv1_a,"\n",conv1_b,"\n",concat_1
#concat_1 dimension [bs,8,8,8,16]

conv2 = tf.nn.leaky_relu(conv3d(concat_1, self.enc_weights[’W_conv2
’]) + self.enc_biases[’b_conv2’])

conv2 = tf.layers.batch_normalization(conv2)
conv2_b = maxpool3d(conv2)
conv2_a = avgpool3d(conv2)
concat_2= tf.concat([conv2_b, conv2_a],4)
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print conv2,"\n", conv2_a,"\n",conv2_b,"\n",concat_2 #concat_2
dimension [bs,4,4,4,64]

_ , x , y, z, f_o = concat_2.get_shape()
concat_2_reshape = tf.reshape(concat_2 ,shape=[-1,x*y*z*f_o] )
print concat_2_reshape #concat_2 dimension [bs,4096]

fully0 = slim.fully_connected(concat_2_reshape, 512, activation_fn=
tf.nn.leaky_relu)

print fully0 #fully0 dimension [bs,512]

fully1 = slim.fully_connected(fully0, 512, activation_fn=tf.nn.
leaky_relu)

print fully1 #fully1 dimension [bs,512]

fully2 = slim.fully_connected(fully1, 256, activation_fn=tf.nn.
sigmoid)

print fully2 #fully2 dimension [bs,512]

a_mu = slim.fully_connected(fully2, self.config.dim_a,
activation_fn=None)

print a_mu #a_mu dimension [bs,dim_a]

a_var = slim.fully_connected(fully2, self.config.dim_a,
activation_fn=tf.nn.sigmoid)

print a_var #a_var dimension [bs,dim_a]

a_var = self.config.noise_emission * a_var
epsilon = tf.random_normal(tf.shape(a_var), name="epsilon")
a = a_mu + tf.sqrt(a_var) * epsilon
print a #a dimension [bs,dim_a]

a_seq = tf.reshape(a, tf.stack((-1, self.ph_steps, self.config.
dim_a)))

return a_seq, a_mu, a_var⇢ ⇠
Output:

Encoder Layer Structure:
Tensor("vae/encoder/Reshape:0", shape=(?, 16, 16, 16, 1), dtype=float32

)
Tensor("vae/encoder/batch_normalization_2/batchnorm/add_1:0", shape=(?,

16, 16, 16, 8), dtype=float32)
Tensor("vae/encoder/AvgPool3D:0", shape=(?, 8, 8, 8, 8), dtype=float32)
Tensor("vae/encoder/MaxPool3D:0", shape=(?, 8, 8, 8, 8), dtype=float32)
Tensor("vae/encoder/concat:0", shape=(?, 8, 8, 8, 16), dtype=float32)
Tensor("vae/encoder/batch_normalization_3/batchnorm/add_1:0", shape=(?,

8, 8, 8, 32), dtype=float32)
Tensor("vae/encoder/AvgPool3D_1:0", shape=(?, 4, 4, 4, 32), dtype=

float32)
Tensor("vae/encoder/MaxPool3D_1:0", shape=(?, 4, 4, 4, 32), dtype=

float32)
Tensor("vae/encoder/concat_1:0", shape=(?, 4, 4, 4, 64), dtype=float32)
Tensor("vae/encoder/Reshape_1:0", shape=(?, 4096), dtype=float32)
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Tensor("vae/encoder/fully_connected/LeakyRelu/Maximum:0", shape=(?,
512), dtype=float32)

Tensor("vae/encoder/fully_connected_1/LeakyRelu/Maximum:0", shape=(?,
512), dtype=float32)

Tensor("vae/encoder/fully_connected_2/Sigmoid:0", shape=(?, 256), dtype
=float32)

Tensor("vae/encoder/fully_connected_3/BiasAdd:0", shape=(?, 16), dtype=
float32)

Tensor("vae/encoder/fully_connected_4/Sigmoid:0", shape=(?, 16), dtype=
float32)

Tensor("vae/encoder/add_2:0", shape=(?, 16), dtype=float32)⇢
A.3.2. Decoder ⇠

def decoder(self, a_seq):
print "\nDecoder Layer Structure"
with tf.variable_scope(’vae/decoder’):
a = tf.reshape(a_seq, (-1, self.config.dim_a))

dec_fully0 = slim.fully_connected(a,512, activation_fn=tf.nn.
leaky_relu)

print dec_fully0
#dec_fully0 dimension [bs,512]
dec_deconv1_input = slim.fully_connected(dec_fully0,4* 4 * 4 * self

.df0, activation_fn=tf.nn.leaky_relu)
dec_deconv1_input = tf.reshape(dec_deconv1_input, (-1, 4 ,4, 4,

self.df0))
print dec_deconv1_input
#dec_deconv1_input dimension [bs,4,4,4,32]

batch_size = tf.shape(dec_deconv1_input)[0]

deconv1 = keras.layers.UpSampling3D(size=(2,2,2),data_format="
channels_last")(dec_deconv1_input)

deconv_shape1 = tf.stack([batch_size,8,8,8,self.df1])
deconv1 = tf.nn.conv3d_transpose(dec_deconv1_input,

self.dec_weights[’W_deconv1’],
output_shape=deconv_shape1,
strides=[1,2,2,2,1],
padding="SAME")

deconv1 = tf.nn.bias_add(deconv1, self.dec_biases[’b_deconv1’])
deconv1 = tf.nn.leaky_relu(deconv1)
deconv1 = tf.layers.batch_normalization(deconv1)
print deconv1
#dec_deconv1_input dimension [bs,8,8,8,16]

deconv2 = keras.layers.UpSampling3D(size=(2,2,2),data_format="
channels_last")(deconv1)

deconv_shape2 = tf.stack([batch_size,16,16,16,self.df2])
deconv2 = tf.nn.conv3d_transpose(deconv1,

self.dec_weights[’W_deconv2’],
output_shape=deconv_shape2,
strides=[1,2,2,2,1],
padding="SAME")
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deconv2 = tf.nn.bias_add(deconv2, self.dec_biases[’b_deconv2’])
deconv2 = tf.nn.leaky_relu(deconv2)
deconv2 = tf.layers.batch_normalization(deconv2)
print deconv1 #deconv1 dimension [bs,16,16,16,1]
deconv2 = tf.reshape(deconv2,(-1, self.d1 * self.d2 * self.d3))

dec_fully_out0 = slim.fully_connected(deconv2, self.d1 * self.d2 *
self.d3, activation_fn=tf.nn.leaky_relu)

dec_fully_out1 = slim.fully_connected(dec_fully_out0, self.d1 *
self.d2 * self.d3, activation_fn=tf.nn.leaky_relu)

dec_fully_out2 = slim.fully_connected(dec_fully_out1, self.d1 *
self.d2 * self.d3, activation_fn=tf.nn.leaky_relu)

print dec_fully_out2
#dec_fully_out2 dimension [bs,16,16,16,1]

x_mu = slim.fully_connected(dec_fully_out2, self.d1 * self.d2 *
self.d3, activation_fn=tf.nn.sigmoid)

x_mu = tf.reshape(x_mu, (-1, self.d1, self.d2, self.d3, 1))
x_var = tf.constant(self.config.noise_pixel_var, dtype=tf.float32,

shape=())
x_hat = x_mu
print x_mu
#x_mu dimension [bs,16,16,16,1]

return tf.reshape(x_hat, tf.stack((-1, self.ph_steps, self.d1, self.
d2, self.d3))), x_mu, x_var⇢ ⇠

Output:

Decoder Layer Structure
Tensor("vae/decoder/fully_connected/LeakyRelu/Maximum:0", shape=(?,

512), dtype=float32)
Tensor("vae/decoder/Reshape_1:0", shape=(?, 4, 4, 4, 32), dtype=float32

)
Tensor("vae/decoder/batch_normalization/batchnorm/add_1:0", shape=(?,

8, 8, 8, 16), dtype=float32)
Tensor("vae/decoder/batch_normalization/batchnorm/add_1:0", shape=(?,

8, 8, 8, 16), dtype=float32)
Tensor("vae/decoder/fully_connected_4/LeakyRelu/Maximum:0", shape=(?,

4096), dtype=float32)
Tensor("vae/decoder/Reshape_3:0", shape=(?, 16, 16, 16, 1), dtype=

float32)⇢
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