SKIT

Karlsruhe Institute of Technology

Carnegie
Mellon
University

Enhancing Lecture Transcript
Comprehensibility By Recognising

Mathematical Formulae

Bachelor’s Thesis of

Fabian Martin

at the Department of Informatics

Institute for Anthropomatics and Robotics

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr. Tamin Asfour

20. Juli 2018 — 19. November 2018

Karlsruher Institut fiir Technologie
Fakultat fiir Informatik

Postfach 6980

76128 Karlsruhe

This thesis was written during an exchange at
Carnegie Mellon University in Pittsburgh (Penn-
sylvania) and was kindly supported by a schol-
arship from DAAD.

I declare that I have developed and written the enclosed thesis completely by myself, and have
not used sources or means without declaration in the text.
Karslruhe, 24th of October, 2018

(Fabian Martin)

Acknowledgments

First, I would like to thank Prof. Dr. Alexander Waibel for his valuable advice. Also, I'm very
grateful for the opportunity to have been a part of the CLICS and InterACT exchange program,
which made it possible for me to write my bachelor thesis at Carnegie Mellon University in
Pittsburgh. It was a memorable experience that has greatly benefitted me both professionally
and personally.

Abstract

This thesis is a contribution to the field of natural language processing, in particular, the subfield
that deals with processing mathematical formulae in natural language. The objective of this
work is to develop a program that recognises mathematical formulae in lecture transcripts,
matches them with their mathematical representation and attaches this representation to
the transcript in order to make it more comprehensible. On a test dataset consisting of 148
sentences taken from 4 different lectures by 2 lecturers, the system correctly recognises 91%
of mathematical formulae spoken by the lecturer and only incorrectly matches a formula for
every three correctly matched formulae.

ii

Zusammenfassung

Diese Bachelorarbeit ist ein Betrag zum Gebiet der Natiirlichen Sprachverarbeitung, im beson-
deren dem Teilgebiet, welches sich damit beschaftigt mathematische Formeln in natirlicher
Sprache zu verarbeiten. Das Ziel dieser Arbeit ist es, ein Programm zu entwickeln das mathema-
tische Formeln in Transkripten von Vorlesungen erkennt, ihrer mathematischen Reprasentation
zuordnet und diese Représentation dem Transkript beifiigt, sodass es leichter verstiandlich wird.
Auf einem Testdatensatz der aus 148 Satzen besteht, die aus 4 Vorlesungen von 2 verschiedenen
Lektoren stammen, erkennt das System 91% der vom Lektor gesprochenen mathematischen
Formeln korrekt und nur fiir jede dritte korrekt erkannten Formel, wird eine Formel falsch

erkannt.

1ii

Contents

4,

Introduction 1
Theoretical Background 2
2.1. Symbol, LaTeX command and Formula 2
2.2. Classification e 2
2.2.1. Support Vector Classification (SVC) 3
2.22. DecisionTree e 3
2.23. RandomForest 3
224, XGBoost 4
23. Word Embeddings 4
2.4. Sentence Similarity Measures. 4
2.4.1. Levenshtein Distance 4
2.4.2. Hamming Distance L. 5
243. JaroDistance 5
2.44. SequenceMatchero 5
2.5. Evaluation Metrics. 5
2.5.1. Correct and Incorrect Classification 6
2.5.2. Positive Predictive Value (PPV) 6
2.53. Negative Predictive Value (NPV) 6
25.4. Recall 6
2.5.5. FalsePositive Rate 7
25.6. ROCAUC 7
2.5.7. Precision-Recall AUC 7
Related Work 8
3.1. Recognition and Translation of spoken formulae 8
3.2. Word Classification 9
3.3. Machine Translation 10
3.4. String Similarity Measures L o 11
Assumptions and Limitations 12
4.1. Assumptions 12
4.2. Limitations e 13
Data 14
5.1. Data for the Systemasawhole 14
5.2. Classexamples L 14
5.3. Frequently occurring problems oL 16

iv

Contents

6. Design and Implementation 18
6.1. System Overview 18
6.2. Design Decisions e 19

6.2.1. Sub-formulae 19
6.2.2. Pseudo-Natural Language 20
6.3. Subsystems 21
6.3.1. Classification Subsystem, 21
6.3.2. Translation Subsystem o o0 25
6.3.3. Matching Subsystem Lo Lo 26
7. Evaluation 30
7.1. Evaluation Metrics 30
7.1.1. Metrics for the Systemasawhole 30
7.1.2. Metrics for the Classification subsystem 32
7.2. Classification Algorithms 33
7.3. First Approach 36
7.4. ClassificationBaseRules 37
7.5. Sentence Similarity Measures.o 38
7.6. Longest Consecutive Matching Word Count (LCMWC) 39
7.7. Penalties 39
7.7.1. Variable-Difference Penalty 39
7.7.2. Gap-SizePenaltyo 41
7.8. Valid Match Threshold (Similarity Threshold) 44
7.9. FinalResults 45

8. Conclusion 48

Bibliography 49

A. Appendix 52
A.1. Datafor Evaluation Graphs 52

A.1.1. Classifiers 52
A.1.2. Sentence Similarity Measures 52
A.1.3. Variable-Difference Penalty 52
A.14. Gap-SizePenalty 53
A.1.5. Valid Match Threshold 53
A.2. List of Translation Rules with covered symbols 53

1. Introduction

It is clear that speaking comes much more natural to us than writing or entering information
with the help of a keyboard. Hence, Automatic Speech Recognition (ASR) has been an important
field of study since its emergence in the 1950s. ASR has seen immense progress and enabled
many new technologies that used to be considered science-fiction just a few decades ago. For
instance, it is now possible to talk to your computer as you would to another human being.

It is not surprising that technologies like Apple’s Siri and Amazon’s Alexa have become
so popular. They enable us to communicate with our computer more easily and are especially
useful for people with disabilities that prevent them from entering information by use of a
keyboard or touchpad.

A simplified computer input is just one of the benefits of ASR. It has also enabled passive
information input. Where usually, information was only transmitted to another person or an
audience, ASR can now help to make additional use of this information without requiring the
user to change their behaviour. An example of this is the Lecture-Translator, which allows
presenters to record their speech while giving a talk. It then creates a transcript of spoken
words and translates it into a multitude of different languages. Just by using a microphone and
feeding the audio recording into the Lecture-Translator, the speaker can create additional value
without any additional effort.

One area that has not seen much progress, however, is the recognition of mathematical formulae
in spoken language. While there have been some developments, a satisfying solution has not
yet been found, as it is a very difficult problem to find the correct mathematical formula that a
human being is talking about. [1]

The objective of this bachelor thesis is to present a first step towards solving the problem of
recognising mathematical formulae in natural language. The use case is the application as part
of the Lecture-Translator. A system was developed that recognises formulae in the transcript
of a lecturer’s speech and matches it with the corresponding mathematical formula on the lec-
ture slide. The formulae can then be inserted into the transcript to make it more comprehensible.

Chapter 2 introduces the theoretical background necessary to fully understand this thesis. It is
followerd by chapter 3, which presents related work. Chapter 4 deals with the assumptions
made during the creation of the system and the limitations of this thesis. Chapter 5 describes
the data used to evaluate the system and in chapter 6, the system’s design and implementation
are discussed. Chapter 7 evaluates the system’s performance and gives a detailed account of
the results. Chapter 8 concludes the thesis and gives an outlook of possible future work.

2. Theoretical Background

This chapter introduces the basic concepts required to understand this bachelor thesis and
define terms that are used throughout this work. The descriptions are concise and not meant
to be complete.

2.1. Symbol, LaTeX command and Formula

A symbol is the smallest entity in mathematics. It corresponds to a character in a natural
language. Examples of symbols are: +, *, &, x.

A LaTeX command is the LaTeX code for any symbol.
Examples are: +, \ast, \alpha, x.

A formula is an entity constructed using the symbols and formation rules of a given lan-
guage. It expresses information symbolically. For clarity, three different terms are used for
formulae, depending on the underlying type of language.

« A natural formula is a formula in a natural language.
Examples are: X squared, The integral from minus infinity to infinity of y dy.

« A mathematical formula is a formula in the language of mathematics.
Examples are : X2, /_O:o y dy.

« A LaTeX formula is the LaTeX code for a mathematical formula.
Examples are: X " {2}, \int _ {-\infty } " { \infty } y dy.

2.2. Classification

Classification is the task of identifying which category a new observation belongs to. It is
a supervised learning approach that requires correctly labeled training data, from which it
generalises and learns how to classify a previously unseen data point. Binary classification is
classification with exactly two categories.

Cross-validation is a statistical method of evaluating machine learning algorithms by dividing
data into two segments: one used to train a model and the other one used to validate it [2].
The goal is to evaluate the model on data that was not used during training, which can give an
indication whether the model suffers from overfitting or other biases [3].

2. Theoretical Background

Overfitting is the characteristic of a learning algorithm to correspond too closely to the training
dataset and fail to generalise on future observations. Overfitting can be detected when a high
accuracy is achieved on the training data but a low accuracy on the validation data [4].

Most common machine learning algorithms have a set of hyperparameters that must be
determined before training the algorithm [5]. Hyperparameter optimisation is the problem of
choosing the hyperparameters for a given learning algorithm. The choice of hyperparameters
can have a significant impact on the algorithm’s performance [5]. Grid search is a technique
for optimising hyperparameters, where all combinations for a list of parameter values for each
relevant parameter are compared and the best result is chosen.

In the following, the classification algorithms compared in this thesis are introduced:

2.2.1. Support Vector Classification (SVC)

Support Vector Machines (SVM) are typically used for learning classification, regression or
function ranking [6]. In the case of classification, the term Support Vector Classification (SVC)
is often used.

Each data point is represented as an n-dimensional vector. In the case of binary classifi-
cation, a data point belongs to one of two classes. Binary SVC works by linearly separating
the data points using a hyperplane. If there are multiple possibly hyperplanes, the one with
the largest margin is chosen. The margin is the summation of the shortest distance from the
hyperplane to the nearest data point of both categories [6]. The hyperplane with the largest
margin is likely to generalise best.

For non-linear classification problems, the kernel trick is used which maps the input into
higher dimensional feature space. In the feature space, the classification problem is linear and
can be solved by using hyperplanes [6].

2.2.2. Decision Tree

A Decision Tree Classifier uses a decision tree to predict the class of a data point by observing
its properties. The classifier learns simple decision rules inferred from the features of the
training dataset and builds a decision tree.

In a decision tree, each inner node splits the instance space into two or more sub-spaces
according to the values of a set of attributes [7]. A branch represent a conjunction of features
that lead to a leaf node, which represents a class label.

2.2.3. Random Forest

Random Forest is an ensemble learning method for classification, regression and similar tasks.
It uses Bootstrap Aggregating (Bagging), which is a technique used to minimise variance and
can therefore help avoid overfitting. Bagging works by splitting the training data into multiple

2. Theoretical Background

parts, training an algorithm on each part and averaging the output of each algorithm.

Random Forest classification works by constructing many decision trees independently using
a random sub-sample of the training data. The mode of the results of individual trees is the
result of this classifier. The mode, in this context, is the class that appears most often.

It shares many characteristics of Decision Trees Classifiers but can reduce the amount of
overfitting by making use of the Law of Large Numbers thanks to the independent randomness
used in the construction of the trees [8].

2.2.4. XGBoost

XGBoost is a learning algorithm that uses Gradient Tree Boosting, which is an ensemble
learning method used for classification and regression problems. Gradient Tree Boosting is the
technique of training multiple decision trees sequentially, such that each new tree reduces the
errors made by the previous tree. By combining many classifiers that are only slightly better
than random guessing, a classifier can be constructed that achieves very good results [9].

2.3. Word Embeddings

Word embeddings are used to extract semantic features from words and transform them into
vectors of real numbers. Words are typically treated as arbitrary encodings that do not provide
useful information regarding their relationship to other words. Word embeddings map seman-
tically similar words to nearby points in a vector space.

Word2vec is one of the best performing and most commonly used word embeddings [10].
It uses a two-layer neural network to map words into vector space. This neural network is
trained on a large dataset in order to learn the linguistic context of words.

Word2vec can use two different model architectures to produce a vector representation of words:
continuous bag-of-words (CBOW) and skip-gram. CBOW predicts words from a window of
surrounding context words, while skip-gram works in the opposite way and uses the current
work to predict the surrounding context words.

2.4. Sentence Similarity Measures

In this subchapter, the sentence similarity measures compared in this thesis are introduced. All
of these metrics are syntactic similarity measures that measure the difference of two strings
based on syntax, not on semantics.

2.4.1. Levenshtein Distance

Levenshtein Distance measures the minimum amount of insertions, deletions and substitutions
necessary to change one string into the other. The more different two strings are, the higher is

2. Theoretical Background

the Levenshtein Distance.

For two strings a and b, the Levenshtein Distance is calculated as:

max(i, j) if min(i, j) = 0,
. levgp(i—1,j) +1
1 = “ ’ i
eVa,b(l,J) min 16Va,b(ia j-1D+1 otherwise.

levgp(i—1,j—-1)+1

where lev, ;(i, j) is the levenshtein distance between the first i characters of a and the first j
characters of b [11].

2.4.2. Hamming Distance

Hamming Distance measures the number of characters that differ between two strings. Nor-
mally Hamming Distance is only defined on strings of equal length but in this thesis, a version
is being used that counts extra characters as differing. The more different two strings are, the
higher is the Hamming Distance.

2.4.3. Jaro Distance

Jaro Distance measures the minimum amount of single-character transpositions required to
change one string into the other. Jaro Distance is a value between 0 and 1, where 0 signifies no
similarity at all and 1 is an exact match.

The Jaro Distance of two strings a and b is calculated as:

0 ifm=0
d; = _)
J (|s—”l’| + |ﬂ + m—t) otherwise

B
Where:

+ m is the number of matching characters and

« t is half the number of transpositions [12].

2.4.4. SequenceMatcher

SequenceMatcher is based on a syntactic similarity measure technique called “gestalt pattern
matching” first introduced by Ratcliff and Obershelp. This technique tries to find matches that
make intuitive sense to humans by finding the longest contiguous matching substring, using it
as an anchor and applying the same idea recursively to the sequences to the left and the right
of this substring [13].

2.5. Evaluation Metrics

This subchapter introduces the metrics used to evaluate the developed system.

2. Theoretical Background

2.5.1. Correct and Incorrect Classification

A true positive is an observation that was correctly classified as positive.
A true negative is an observation that was correctly classified as negative.

A false positive is an observation that was incorrectly classified as positive.
The underlying data point is actually negative.

A false negative is an observation that was incorrectly classified as negative.
The underlying data point is actually positive.

In this thesis, the class of formulae is referred to as the positive class, while the class of
non-formulae is referred to as the negative class.

The following confusion matrix illustrates the definitions.

‘ Predicted: Negative Predicted: Positive
Actual: Negative True Negative False Positive
Actual: Positive False Negative True Positive

2.5.2. Positive Predictive Value (PPV)

Positive Predictive Value, also called Precision, measures how many of the observations classi-
fied as positive are correct. Mathematically, it is defined as follows:

True Positives

True Positives + False Positives

2.5.3. Negative Predictive Value (NPV)

Negative Predictive Value measures how many of the observations classified as negative are
correct. Mathematically, it is defined as follows:

True Negatives

True Negatives + False Negatives

2.5.4. Recall

Recall measures how many of the observations that were positive were actually classified
correctly. Mathematically, it is defined as follows:

True Positives

True Positives + False Negatives

2. Theoretical Background

2.5.5. False Positive Rate

False Positive Rate measures how many of the observations that were negative were misclassi-
fied as being positive. Mathematically, it is defined as follows:

False Positives

False Positives + True Negatives

2.5.6. ROCAUC

ROC AUC is the two-dimensional area underneath the Receiver Operating Characteristic
(ROC) curve from (0,0) to (1,1). The ROC curve is a graph that plots the false positive rate on
the x-axis and recall on the y-axis. A higher area under the curve signifies a better model.

2.5.7. Precision-Recall AUC

Precision-Recall AUC is the two-dimensional are underneath the Precision-Recall curve
from (0,0) to (1,1). The Precision-Recall curve is a graph that plots recall on the x-axis and
precision on the y-axis. A higher area under the curve signifies a better model.

3. Related Work

3.1. Recognition and Translation of spoken formulae

There has not been much success so far in recognising and translating spoken formulae into
mathematics.

The first paper that dealt with the problem was published by Kevin Lin and R. Fateman
in 2004. They built a simple program called SKEME (Symbolic Keyboard and Mouse Editor)
that allowed users to enter mathematical equations with keyboard and mouse input. It also
supported voice recognition as an additional feature but was mainly focused on non-verbal
input methods. They were able to recognise simple formulae like “a plus b” or “script capital A”

[1] [14].

Fateman et al. developed a system called ‘Math Speak & Write’ in 2004 that was also able
to recognise simple formulae and was more robust than SKEME. Their approach was to use
speech and handwriting input for the same formula and combine these two methods to increase
recognition accuracy. Their system had similar limitations and was not considered to be more
than “demoware” [1] [15].

In 2007, McClellan published a tool called ‘MathTalk’ that was able to recognise mathematical
formulae spoken by a user. However, it had some significant limitations: It required pauses
before and after each operation, the input language was unnatural (military names like ‘foxtrot’
had to be used for f and most importantly, the user had to pre-train every single symbol before
it was usable [1] [15] [16] [17].

Fateman et al. concluded in 2013, that popular speech recognition models like Siri that use
keywords or phrases from spoken utterances in the context of a calendar, address book or
similar situation, are not suitable for mathematical formula input. They fail to produce the
desired results for variations as simple as changed variable names. A more sophisticated model
has to be developed that “recognises the peculiar nature of mathematical discourse” [1].

There have been some approaches to translating English into mathematics that showed accept-
able results, however, these have dealt with very simple problems and clean input data [18].

Automatic Mathematic Problem Solvers have been developed that can translate clearly stated
mathematical problems in a mixture of natural and mathematical language (as in pre-university
exam questions) into a form that can then be automatically processed by computers. They show
good results. However, similar results cannot be expected on data from the Lecture-Translator

3. Related Work

[19].

Matching Math to descriptions oftentimes works by finding special phrases (e.g. X is Y, X is
given by Y) or finding patterns in the natural language and using them to identify places where
formulae are mentioned. This presupposes that coherent sentences are available, so that noun
phrases or other grammatical structures can be found, that give an indication about the position
of formulae. However, this is rarely the case with input data from the Lecture-Translator and
consequently it’s not an option to use similar approaches in this thesis [20].

Solving the problem of recognising and translating spoken formulae into mathematics is
a very difficult problem. However, this thesis’ problem does not necessarily require solving this
problem. Because the system is used as part of the Lecture-Translator, the formulae that need to
be recognised are the formulae on the lecture slides and are therefore known. These formulae
can be translated into natural language, which is a much simpler problem than translating
natural language into mathematics, and can then be matched with the spoken utterances of
the lecturer. This allows finding the mathematical representation for a natural formula without
solving the above-mentioned problem.

The problem of recognising mathematical formulae in the transcript of a lecture can therefore
be divided into three smaller problems:

1. Finding natural formulae in the transcript (Classification)
2. Translating all possible formulae into the natural language (Machine Translation)

3. Matching the spoken formulae with their corresponding mathematical formulae (Match-

ing)

3.2. Word Classification

Machine learning is commonly used for classification tasks. Many different machine learning
models are used in practice and there is no best model for all problems; which approach achieves
the best results depends on the nature of the problem [21].

Neural models have shown particularly good results for text classification tasks [22]. However,
these models require a large training dataset in order to achieve good results that are statistically
significant [23]. Training neural networks on small amounts of data can lead to significant
performance losses due to overfitting [21]. Additionally, neural networks require a lot of
computation time and infrastructure investments in order to be trained within a reasonable
amount of time [24]. Shallow learning techniques can overcome the problems of neural models
and perform better on small datasets [21].

When dealing with highly imbalanced training data, classifiers generally perform poorly
because they aim to minimise the overall error rate and end up favouring the majority class.
This often leads to almost all instances being classified as the majority class [25] [26].

3. Related Work

There are two common techniques that deal with training on highly imbalanced data. The first
one is cost-sensitive learning, where a higher cost is assigned to the misclassification of the
minority class. The second technique is using a sampling technique, where either the majority
class is downsampled or the minority class oversampled. Downsampling is a technique that
artificially decreases the size of a class, while oversampling increases the size of a class. Both
of these approaches can lead to an increase in performance for algorithms trained on highly
imbalanced data [26].

Shallow learning algorithms that have shown good results when trained on imbalanced data
using one of these two techniques are: Decision Tree [27], Random Forest [26], XGBoost [28]
and Support Vector Machine [25].

In order to classify words, a common approach is to convert them into vectors which can
then be used as input for machine learning models. Word embeddings can be used to extract
semantic features from words and transform words into vectors [29] [30] [31]. One of the best
and most commonly used word embeddings is word2vec [10].

3.3. Machine Translation

Two major approaches to machine translation are Rule-Based Machine Translation (RBMT) and
Neural Machine Translation (NMT). NMT has shown better results than RBMT in many cases,
when translating between two natural languages [32]. However, Neural Machine Translation
requires large datasets in order to draw statistical conclusions.

Mathematical language has different characteristics than natural language. Features such
as gender, plural and part of speech don’t exist for formulae and cannot be used for coreference
resolution. This makes it hard to apply standard natural language processing methods to
formulae [20]. Additionally, there is not enough labeled data available for the coreference
relations between formulae and texts. Therefore, commonly used machine learning techniques
cannot be applied to mathematical language without expensive human annotations [20].

For the problem of this thesis, a machine translation system that can correctly translate one
language into another is not necessary. Firstly, the input of the system are LaTeX formulae and
not complicated natural language sentences, which makes it significantly easier to define rules
for translation. Secondly, a coherent output is not necessary. The translated mathematical
formula is only used to match the spoken utterances of the lecturer. Therefore, what matters
is that the match results are good; not that the translation is a syntactically correct sentence
in the natural language. And lastly, good results for the system can already be achieved by
translating only the most frequent mathematical symbols, which make up most of the formulae
that are likely to be used in a lecture setting. This substantially reduces the required manual
labour to build a Rule-Based Machine Translation system. This removes many of the problems
of classical RBMT and thus makes it a viable translation system for this thesis.

10

3. Related Work

3.4. String Similarity Measures

The two groups of commonly used approaches to measuring similarities between strings are
semantic similarity measures and syntactic similarity measures.

Semantic similarity measures match semantically related words. Traditionally, semantic similar-
ities are calculated with the help of manually compiled dictionaries such as WordNet. However,
a lot of terms are not covered by these dictionaries which makes this approach unusable for
cases in which many of these terms are used [33]. Mathematics is one of these cases.

Oftentimes semantic similarity is calculated by using the percentage of co-occurrence of
two terms or by looking at the context in which two words are used [33]. This can cause
problems in this thesis’ application. In mathematics, the contexts of the words “minus” and
“plus” are unlikely to be different from one another. In natural language, a word with a negative
connotation and a word with a positive connotation are oftentimes surrounded by other nega-
tive/positive words. This makes it possible to learn the sentiment of these words and therefore
their semantic relationship to other words. In mathematics, this is harder because the same
formula can easily be used with a plus and a minus sign. Thus, it is hard to learn the semantics
of a mathematical symbol by looking at the context in which a symbol is used.

“Minus” and “plus” could be considered related words by a system that looks at co-occurrence,
because they tend to be used in similar situations. However, the string similarity measure
should calculate a big difference between these two words, otherwise the wrong formula can
very easily be chosen, especially because it is not a rare case in which the same formula with a
minus and with a plus sign are both present on the same lecture slide.

Therefore syntactic similarity measures are the focus of this work. Even though they also
present their issues, they are less likely to match completely different formulae and tend to
give results that are close to the correct formula.

Some of the most commonly used syntactic similarity measures are: Levenshtein Distance,
Hamming Distance and Jaro Distance. Additionally, the python library “difflib" has implemented
a similarity measure called SequenceMatcher that has become popular for the comparison of
complicated strings.

11

4. Assumptions and Limitations

4.1. Assumptions

The objective of the system is to supplement a lecture transcript so that it is more easily
understandable when dealing with mathematical formulae. The system finds natural formulae
in a lecture transcript and matches the corresponding mathematical formula from the lecture
slides. The results are used as part of the Lecture-Translator to optionally show the user the
mathematical formula in addition to the words that describe the said formula. The integration
of this system into the Lecture-Translator website was not part of this thesis. However, it could
be implemented as an optional feature that highlights the area of text that describes a formula
and then shows the corresponding mathematical formula when hovering over it with the mouse.

Because this thesis’ goal is merely to improve comprehensibility, formula recognition does not
have to be perfect. If the recognised formula has an additional symbol i.e. =" but is otherwise
correct, it is still going to help the user understand the content of the transcript. The same
is true for the location of the formula; if an additional word of the transcript is highlighted
as part of the formula, the benefit to the user is not substantially decreased. The evaluation
metrics take this into consideration. These metrics are explained in more detail in Chapter 7.1.

The system assumes two kinds of input. The first input are the sentences uttered by the
lecturer. The sentences could, in theory, be from any text, but in this thesis, they are sentences
from a transcript of a lecture that covers topics related to mathematics. The test data is taken
from the transcript from the Lecture-Translator website! and separated into sentences by
splitting it at every dot (*.”). The Lecture-Translator occasionally mistakes a sentence that
contains a long pause for multiple sentences. This means that a formula might be spread over
two or more sentences. This makes it difficult to detect the formula when only handling one
sentence at a time. However, because the system detects sub formulae instead of complete
formulae (explained in chapter 6.2.1), the system can detect the part of the formula spoken in
each sentence and give a sufficiently good result to the user in most cases.

The second input is a list of all LaTeX formulae that the lecturer could possibly be talking
about in the sentence. These are all formulae from the lecture slides shown during the time of
utterance of each sentence. The Lecture-Translator has a hyperlinked transcript of the lecture
and the corresponding video, which allows the user to click on a word and see the lecture from
the point in time, at which this word is spoken. This makes it very easy to find the slide that
was shown during the utterance of a sentence. There is a plethora of tools that convert images

https://lecture-translator.kit.edu/

12

4. Assumptions and Limitations

of formulae into their LaTeX equivalent. An example is Mathpix?, which allows users to take a
screenshot of a mathematical formula and convert it into LaTeX code. Mathpix also has an API
that allows automated formula conversion.

Another assumption is that the program is not used as part of a realtime application and
the running time therefore is not crucial. The problem of finding all sub formulae in a given
sentence, as well as in the corresponding lecture slide, and then correctly matching them is by
nature exponential in the size of the sentence, as well as the formulae on the slide. Therefore
the program can take a long time for long sentences or slides that contain many formulae. It is
not the focus of this thesis to develop a program that can deal with big input sizes in a short
amount of time. However, by restricting the input to single sentences and assuming formulae
from only one slide at a time, the running time is kept within reasonable bounds.

4.2. Limitations

The system is limited to German and English and cannot currently process input in any other
language. The focus of this thesis is on German because the data from the Lecture-Translator
is significantly cleaner in the original language of the lecture, which was German in the case of
the test data. Because a rule-base translation system is chosen for translating latex-formulae
into spoken language, adding support for additional languages requires a non-trivial amount
of work. For languages that are similar to German and English, the translation rules do not
have to be altered, however a lot of language specific strings have to be changed. Adding a
language like Chinese would require a considerable amount of work. It is also the case that,
unlike a neural approach, a rule-based approach does not handle previously unseen symbols
well. Translation rules for the most common symbols were created and the program can
therefore correctly translate formulae in most cases, however there will definitely be formulae
containing infrequently occurring symbols, that will not be translated sufficiently well. It
therefore requires continuous updating of the translation algorithm, in order to achieve a very
high accuracy for a large set of data. A rule-based approach was chosen mainly because the
required amount of data and time to develop a neural translation approach was not available
within the scope of this bachelor thesis.

What exactly constitutes an improvement in the comprehensibility of the lecture transcript
was determined by the author and not tested experimentally. Also, which formula a lecturer
actually talks about in the test data for the system was determined by the author by watching
the lectures.

“https://mathpix.com/

13

5. Data

5.1. Data for the System as a whole

The entire data for the system as a whole consists of 196 sentences that is taken from 5 lectures
by 2 courses from 2 different lecturers. The courses are computer science courses that have a
significant amount of mathematical content. Both courses are German and therefore all test
data is in German. The test data is only taken from 4 of these lectures because one of them is
used for training. This reduces the amount of sentences that can be used for testing to 162.

The data taken from the Lecture-Translator is rather unclean. It is often the case that words
are incorrectly transcribed and sometimes sentences are completely incomprehensible even for
a human reader. Therefore, the data is classified into three classes: unclean, somewhat clean
and clean. Sentences in the unclean class contain multiple errors that make them difficult to
understand even for a human being!. The somewhat clean sentences contain some errors that
make it moderately difficult to understand the content but generally allow a human reader to
make sense of it. The clean data barely contains any errors and is easy to understand for a
human.

Out of these 162 sentences, 148 sentences are classified as being somewhat clean or clean. The
system is not expected to be able to correctly recognise unclean sentences. All other sentences
should ideally be recognised. Therefore, the test data contains 148 sentences. 109 out of these
sentences do not contain any formulae and the remaining 39 sentences contain a total of 43
formulae. Some sentences contain multiple formulae. The data was collected by hand from the
Lecture-Translator website.

5.2. Class examples

1. Clean sentences

I + Sentence in German:
Auf die rechte Seite hier verschoben worden ist das riicken wir aus durch dieses
minus X null, das ist die Funktion eben nach rechts verschoben.

+ Sentence in English:
Here on the right side has been postponed is that we back from through this minus
X 0, that is the function just shifted to the right.

based on the experience of the author and two volunteers

14

5. Data

I

I

Formula in Sentence:

Sentence in German:
Und das ist definiert als das Integral von minus unendlich bis plus unendlich von
Fvon T minus Tau mal G von Tau mal Lterter, also kontinuierliche Variante.

Sentence in English:
And this is defined as the completely of minus infinitely to infinitely plus of F of T
minus Tau times G of the Tau times Lterter, continuous variant.

Formula in Sentence:
[ft=1)g(r)
Sentence in German:

Hier wir geben dem ganzen einen sigmoid Funktion das heifSt wir haben eins
durch eins plus E hoch minus X § die Sie zwar nicht.

Sentence in English:
Here we give the entire a Sigmoid function, that is, we have one divided by one
plus E to the power of minus X J, which you may not.

Formula in Sentence:
1

1+e %

2. Somewhat clean sentences

I

I

III

Sentence in German:
Das heif$t wir haben von minus unendlich bis plus unendlich berechnen wir die
Fliche unter dieser Funktion, das ist die Dirac Funktion iiber.

Sentence in English:
That is, we have plus infinitely of minus infinitely until we calculate the surface,
this is the Dirac function about under this function.

Formula in Sentence:

+o00

—00
Sentence in German:
Das ist meine Ausgabewert und wenn ich die nach D Y J ableite dann bekomme
ich wieder sehen die zwei kiirzt.

Sentence in English:

This is my output value, and if I derive the to D Y J, then I get again see the two
abbreviate.

Formula in Sentence:

IE
dy;

Sentence in German:
Wenn ich wieder von R0, Plus, Nach, NO, plus Abbildung dann, ist, das, ganze so.

Sentence in English:
If I again of RO, plus, after, NO, plus mapping, then, is, the whole thing.

15

5. Data

Formula in Sentence:
+ +
RO — RO

3. Unclean sentences

I .

om .

.

Sentence in German:
Abgeleitet das haben wir hier gerade bestimmt die nach Y D Y J haben wir schon
das ist das hier mal D' Y J nach D.

Sentence in English:
Derived this here, we have just determines the D Y J with respect to YD Y J, we
have already, this is the here after D.

Formulae in Sentence:

i, 52

Sentence in German:

X FYnach Y ¥ Mal D X J, das heifit wir brauchen die Ableitung von der sigmoid
Funktion und die haben wir hier miissen also Ableiten, D Y J nach D X J Und wie

machen wir das auch eine ganze Folie dafiir.

Sentence in English:

X J, YtoY Jtimes D X J, that is, we need the derivative of the Sigmoid function,
and here we have, therefore, have to derive D Y J with respect to D X J, and how
we do this also a whole slide for this.

Formulae in Sentence:
9y;
an

9y;
an

1.
ii.
Sentence in German:

Oder X ist nicht Element von von Jahr, dann streichen wir diese stilisierte Ii einfach
durch.

Sentence in English:
Or X is not element of of year, then we delete this stylized ii simply through.

Formula in Sentence:
xéA

5.3. Frequently occurring problems

In the following, some frequent problems that occur in the Lecture-Translator data are listed,
that make it difficult to recognise the correct formula.

« Variable names are messed up (e.g. 'E’ becomes T’, N’ becomes ‘R’)

« Variables are confused with regular words (e.g. ’A’ becomes ‘Year’)

16

5. Data

+ The lecturer repeats certain parts of a formula. This can result in natural formulae like

X7 YtoYFtimesDX T

that represents the formula
9y,
o0x j
This is clearly hard to recognise.

« Lecturer skips important words (e.g. ‘integral’ in the first example of the class somewhat
clean)

17

6. Design and Implementation

This chapter presents the design and implementation of the system. First, a general overview
of the system is provided and the fundamental design decisions are discussed. Second, the
subsystems are explained in detail and information is given about their implementation and
optimisation.

6.1. System Overview

Input

As described in Chapter 4, the input of the system is a sentence from the transcript of a lecture
in a natural language, as well as a list of all LaTeX formulae on the lecture slide that were
shown during the utterance of the sentence.

Step 1: Classification
Firstly, the system uses a binary classification algorithm in order to classify the words in the
sentence into one of the following two classes:

1. formula word

2. non-formula word

The formula words are then grouped together to create a sentence that describes one particular
formula. This formula sentence is further processed by the matching algorithm.

Step 2: Translation

Secondly, the LaTeX formulae are translated into the natural language by a rule-based machine
translation algorithm. Natural languages are highly ambiguous and multiple ways to describe
a mathematical formula are possible. Therefore, the algorithm creates multiple translations
that contain the most frequent pronunciations of each symbol in the formula. The list of all
possible translations for every formula is passed on to the matching algorithm.

Step 3: Match

Lastly, the formula sentence is compared with all possible translations of every formula using
a sentence similarity measure. The LaTeX formula with the best matching translation is then
chosen as the corresponding formula, if it exceeds a minimum similarity threshold; otherwise
the formula sentence does not match and will be discarded.

Output

If there is a match, the formula sentence, its location in the sentence and the LaTeX code for
the corresponding formula are returned as the output of the program.

18

6. Design and Implementation

6.2. Design Decisions

There are two fundamental design decisions that were made for the development of this system.
This subchapter explains these decisions, their reasons and the consequences that they entail.

6.2.1. Sub-formulae

In most cases, the lecturer does not read aloud an entire formula from the slide. Showing the
entire formula under those circumstances can be confusing to the reader, especially when the
formula is large. Because the goal of this system is to improve the transcript’s comprehensibility,
it is designed to only match the part of the formula that is actually being mentioned instead of
the entire formula.

For example, if the lecture slide contains the quadratic formula

—b + Vb2 — 4ac

2a

x =
but the lecturer only mentions the radicand
b squared minus four a c
, the system finds the sub-formula of the quadratic formula and matches
b* — 4ac
. The following implementation details are chosen to realise this design decision.

First, instead of combining all formula words into a single formula sentence, the system
creates multiple formula sentences. This is required because the lecturer might be talking about
multiple formulae in any given sentence. This is implemented by combining all consecutive
formula words into a formula sentence. If there are multiple groups of consecutive formula
words in a sentence, the system will therefore try to match multiple formulae for this sentence.

For example, the following is a representation of a sentence, where 'F’ represents a formula
word and "N’ represents a non-formula word:

NNF F,sNNFyNFsFg N
The consecutive F’s are then combined to three formula groups:
« Group 1: Fy, F,, F3
« Group 2: Iy

« Group 3: Fs, Fg

19

6. Design and Implementation

The matching algorithm will try to match each formula group to an individual mathematical
formula. However, formula groups with less than or equal to two formula words are discarded.
In this example, Group 2 and 3 will not be considered in the matching algorithm. Formula
descriptions in a natural language that are up to two words in length can easily be understood
without the corresponding mathematical formula. The decision to require a minimum length
of formula groups significantly reduces the amount of false positives without impacting the
transcript’s comprehensibility.

Additionally, Formula groups will be split on commas because the Lecture-Translator inserts
commas when the speaker takes a break in between words!. This is usually a sign that the
subsequent formula words are part of a different formula. However, even if the subsequent
words are part of the same formula, the correct formula can still be matched because the
matching algorithm tries all possible combinations of formula groups.

A formula sentence is a combination of all formula groups of a sentence that allows merging
of multiple formula groups into one. For the previous example, this means that all possible
combinations are:

Group 1: Fy, F, F3, Group 2: F; and Group 3: Fs, Fs

Group 1: Fy, F;, F3, F4 and Group 2: Fs, Fg
» Group 1: Fy, F5, F5 and Group 2: Fy, F5, Fg
. Group 1: Fl, Fz, F3, F4, F5, F6

There are a total of 2"~! possible formula sentences for n formula groups.

The second change that is necessary is to split each LaTeX formula into all valid sub-formulae.
If the LaTeX formula is considered to be a sentence, this splitting is done by finding all possi-
ble subsentences and checking if the resulting mathematical formula is valid. What exactly
constitutes a valid mathematical formula and how this is implemented is described in more
detail in Chapter 6.3.3.1. All sub-formulae are then translated into the natural language and
the sub-formula with the highest similarity to the formula sentence will be chosen as the best
matching formula.

6.2.2. Pseudo-Natural Language

Translating a LaTeX formula into a natural language is a difficult task due to the ambiguity
of natural languages. However, the difficulty can be significantly reduced by loosening the
requirements of the translation result. Because the translated formula is only used to match
the formula sentence found in the transcript sentence, it is not necessary to create a perfectly
coherent sentence.

Lonly if the sentence contains a maximum of 5 commas. The Lecture-Translator sometimes messes up and inserts
commas after every word. These sentences are excluded.

20

6. Design and Implementation

Therefore, the system translates the LaTeX formulae into a pseudo-natural language that
is not syntactically correct but contains all semantically important information. The classifica-
tion algorithm also focuses only on words that have semantic value and aims to classify filler
words as non-formula words.

Because natural formulae are matched with mathematical formulae by using a syntactic simi-
larity measure, removing any semantically unimportant words decreases the average formula
distance and therefore increases the likelihood of finding a match.

6.3. Subsystems

6.3.1. Classification Subsystem

The classification subsystem takes a sequence of words in natural language as an input, pre-
processes each word in the sentence and transforms it into a vector representation. Optionally,
these words can be checked for certain characteristics by a set of Base Rules and directly
classified if they fall into certain groups. This removes the possibility of classification errors.
The vector representation is fed into a trained classification algorithm that classifies each word
as a formula or non-formula word. The formula words of a sentence are grouped together
into formula sentences, which are returned by the classification subsystem. The following
subchapters explain these steps in detail.

6.3.1.1. Training and Test Data

The binary classification algorithms used in this experiment were trained using supervised
learning. This requires labeled training data. The first part of the data is taken from a computer
science lecture. Every word in the Lecture-Translator transcript for this lecture was manually
labeled. This resulted in 4.321 labeled words, of which 90% were labeled as non-formula words
and the remaining 10% as formula words. This data is highly imbalanced, which can be prob-
lematic for training classification algorithms. When trained on this data, algorithms tend to
develop a strong bias towards classifying words as the majority class, which in this case is the
class of non-formula words. To mitigate this effect, class weights are set during the training
phase to assign a higher cost to the misclassification of the minority class during training.

Besides the manually labeled lecture data, additional data was added to the dataset that was
labeled automatically. This step was taken in order to increase the amount of training data.

The first set of supplementary data consists of the translations for all mathematical sym-
bols that are covered under the rules of the rule-based translation subsystem. As is covered in
depth in Chapter 6.3.2, the machine translation algorithm, that converts LaTeX formulae into
natural language, uses rules to translate the most frequent mathematical symbols. It therefore
has a list of the most common pronunciation for many mathematical symbols. Every word of
this list was labeled as a formula word and added to the dataset. This resulted in 287 additional
formula words.

21

6. Design and Implementation

The second set of additional data are the words from 2000 randomly chosen sentences from
German news articles from the year 2011. This data was taken from GermanWordEmbeddings?.
These news article sentences contain a large amount of commonly used words of the German
language. These words were all labeled as non-formula words and added to the dataset. There
might be some misclassification because the data was not cleaned and might contain some
mathematical words. However, because the formula data was oversampled, the effect of these
misclassifications are minimal. In this way, 16.489 additional non-formula words were added to
the dataset.

Oversampling was used on all formula words in order to improve the training dataset’s balance.
The data was split in 80% training data and 20% test data before oversampling was used on
the training data. The test data was not oversampled. This enables the test data to be used for
cross-validation.

After oversampling, the training data contains 22.017 words of which 25.93% are formula
words, while the test data contains 4.219 words of which 3.29% are formula words. The distri-
bution in actual lectures is somewhere between 0% to 10% formula words, depending on the
lecture.

6.3.1.2. Classification Algorithms

There are many machine learning algorithms that can be used for binary classification tasks.
Neural Networks have been shown to achieve very good results for similar tasks but require
a significant amount of training data in order to achieve them. However, not enough labeled
data was available and there was not enough time, in the scope of this bachelor thesis, to label
the data oneself. Therefore, this thesis uses shallow learning, which requires significantly less
data in order to produce good results.

In this thesis, multiple shallow learning algorithms will be compared. As a result of the
imbalanced dataset, only algorithms that perform well on imbalanced datasets were chosen.
The following algorithms all share this characteristic: SVC, Decision Tree, Random Forest, XG-
Boost. Except for XGBoost, all classifiers are available in the python library ’sklearn’. XGBoost
is implemented in the xgboost’ library.

These algorithms are analysed in Chapter 7.2 in their default form and with balanced class
weights and tuned hyperparameters. The hyperparameters are tuned by using the scikit-learn
implementation of Gridsearch and maximising ROC AUC. Gridsearch evaluates the performance
of the algorithms with different hyperparameters and chooses the parameter combination with
the highest ROC AUC. After comparing all algorithms, the best one is chosen for the task of
classifying words into one of the following classes: formula word or non-formula word.

“https://devmount.github.io/GermanWordEmbeddings/

22

6. Design and Implementation

6.3.1.3. Pre-processing words

Instead of feeding the words directly into the classification algorithm, they are first pre-
processed by word2vec. The implementation used in this program is by GermanWordEm-
beddings®, which is a word2vec model that uses the skip-gram model architecture. It was
pre-trained on over 650 million German words and can recognise more than 600 thousand
words [34] . This word2vec implementation creates a vector of 300 features for every word,
that can then be used as an input for the classification algorithm. The vector contains se-
mantic information, so that similar words are mapped to similar points in the vector space.
Consequently, training the classification algorithm to correctly classify a word increases the
probability of correctly classifying semantically similar words as well.

The words are cleaned before being passed to the word2vec algorithm, so that as many words
as possible are recognised. Words that are not recognised by word2vec will be directly con-
sidered non-formula words instead of being classified by the classification algorithm. There
are three steps to cleaning a word. Firstly, the words a stripped of punctuation. Secondly,
the special characters ‘4’, ‘0’, ‘i’ and ‘B’ are converted to a form consisting of only the 26
standard characters of the alphabet (e.g. ’4’ -> ‘ae’, ‘3’ -> ‘ss’). And lastly, the most common
math symbols are transformed into their natural language equivalent (e.g. ‘+* -> ’plus’). This is
necessary because the Lecture-Translator sometimes inserts these mathematical symbols into

the transcript instead of using natural language.

After cleaning and pre-processing all the words of a sentence, the list of vectors representing
this sentence is then processed by the classifier.

6.3.1.4. Baserules

There are words that should always be considered formula words and equally there are words
that should never be considered formula words. Classifiers can make mistakes and misclassify
these words. Therefore, creating a set of base rules that check if a word has certain characteris-
tics, that put them into one of these groups, before feeding it into the classifier can improve
classification results.

Additionally, there are many words that can be used in a mathematical context, as well as in a
non-mathematical context. When training the classifier on data from lectures, these words tend
to be used more frequently in a non-mathematical context and are therefore biased towards
being classified as non-formulae. This is especially severe if the classifier is also trained on
additional data from news articles that is entirely classified as non-formula data, as is done in
this thesis. However, by observing of the context for these types of words, the likelihood of
classifying them correctly can be increased. In the following, two groups for these types of
words are presented.

The first group are context-dependent formula words. These are words that can be used in
a mathematical, as well as a non-mathematical context. Examples of these words are: “plus”,

Shttps://devmount.github.io/GermanWordEmbeddings/

23

6. Design and Implementation

“equal”, “times”. Words in this group should only be classified as formula words if they are used
in a mathematical context. A word is considered as being used in a mathematical context if it is
either classified as a formula word by the classifier or in vicinity of a formula word. In the first
case, the classification algorithm has most likely seen cases of similar words being used in a
mathematical context, which increases the likelihood that this word is being used in the same
manner. In the second case, the word is very likely part of the description of the mathematical
formula. Being in vicinity of a formula means that there is a formula word within distance of
two words in either direction.

The second group are context-required formula words. These are words that are very fre-
quently used, that also have a mathematical meaning. Examples of these words are: “of”, “from”,
“to”. Words in this groups should only be classified as formulae if they are in vicinity of a
formula. They are used to connect formula words that would otherwise be separated by a gap.

This thesis will experiment with the following base rules, that can be grouped into four
groups. The first group a word matches is the group it belongs to.

Group 1 — Formula Word Rules:
If a word has one of the following characteristics, it is classified as a formula word:

« It consists of only one character

It is either a number word ("one’, ’two’, ..) or an ordinal number word (first’, ’second’, ..)

It is a letter of the Greek alphabet (alpha’, 'beta’, ..)
« It is a summation word (’sum’, ’integral’, ..)
« It is a trigonometric or otherwise special function (’sine’, ’arccosine’, ..)

Group 2 — Non-Formula Word Rules:

If a word is one of the 1000 most frequently used words in the language and not commonly
used in a mathematical context, it is classified as a non-formula word. Whether a word is
commonly used in a mathematical context was determined by the author.

Group 3 — Context-Dependent Formula Word Rules:
If a word has one of the following characteristics, it is classified as a context-dependent formula
word.

It is a negation ('not’, 'no’)

It is a mathematical conjunction ("from’, ‘over’, ..)

« Itis an accent that is often used in mathematics (Chat’, ’tilde’, ..)

It is used for mathematical operators (’plus’, ’equals’, ..)

24

6. Design and Implementation

Group 4 — Context-Required Formula Word Rules:
If a word is one of the 1000 most frequently used words that is also commonly used in a
mathematical context, it is classified as a context-required formula word.

A version of the classification subsystem that applies these rules will be compared to a version
that only uses the classifier in chapter 7.4. The same chapter also demonstrates the effect of
using additional data from news articles on the classification results.

6.3.2. Translation Subsystem

The input to the translation subsystem is a LaTeX formula. Multiple translation rules are
applied to this formula until finally all frequently used LaTeX symbols are converted into
the natural language. Each rule translates a certain type of symbol and passes the resulting
partly translated formula to the next rule. Because natural languages are ambiguous, there
are multiple possible pronunciations for many mathematical symbols. Therefore, some rules
generate multiple translations. Hence, after applying all rules, many different translations for
the original formula are created. Because there is not a rule for every possible LaTeX symbol,
some infrequently used symbols might not be translated during this process. These symbols
are then stripped of all special characters and kept as part of the translation.

Following is a list of all groups of symbols that are translated by the system:
« Summation (Sum, Integral, Product, Co-Product)
« Function
« Root
« Power
« Fraction
» Operators
+ Greek symbols
+ Trigonometry and special functions
« Accents
« Numbers
« Variables
« Spacing

« Braces

25

6. Design and Implementation

A list of the symbols that belong to each group can be found in Chapter A.2

Example for the translation result of the LaTeX formula 2" + f(x):

« in German: 2 hoch n plus f von x
in English: 2 to the power of n plus f of x

« in German: zwei hoch n plus f von x
in English: two to the power of n plus f of x

« in German: 2 n plus f von x
in English: 2 n plus f of x

« in German: zwei n plus f von x
in English: two n plus f of x

« in German: 2 hoch n plus f'x
in English: 2 to the power of n plus f x

« in German: zwei hoch n plus f x
in English: two to the power of n plus f x

« in German: 2 n plus f x
in English: 2 n plus f x

« in German: zwei n plus f x
in English: two n plus f x

As the example demonstrates, the focus is not on creating perfectly coherent formulae in
natural language but on translating the semantically important information.

The resulting list of possible translations are returned by the translation subsystem.

6.3.3. Matching Subsystem

The matching subsystem takes a sentence from the transcript and all LaTeX formulae shown
during the time of the sentence’s utterance as an input. The formulae are split into all valid sub-
formulae, which are then translated by the translation subsystem. The sentences, after being
cleaned, are given as an input to the classification subsystem, which returns the corresponding
formula sentences. Thereafter, the matching subsystem compares each formula sentence
with every possible translation of every LaTeX sub-formula and finds the best match by
using a sentence similarity measure. This similarity measure can be very simple or consist of
complex logic that takes matching subsentences and penalties into account. The result of this
subsystem are the best matching mathematical formulae for all natural formulae recognised in
the transcript sentence. All these steps are explained in detail in this chapter.

26

6. Design and Implementation

6.3.3.1. Preparation

The first step of the matching subsystem is to split every LaTeX formula into all possible
valid sub-formulae, as introduced in Chapter 6.2.1. A LaTeX sub-formula is valid, if all of the
following characteristics hold true:

1.

The formula is a valid parenthesis expression. That means that for every opening
parenthesis, there is a corresponding closing parenthesis of the correct type in the correct
order.

For example, this is a valid parenthesis expression:

(a[b+c]-d)

, while this isn’t:
)[a+b)-c]

The formula contains at least three semantically informative LaTeX words. Parentheses
and special LaTeX formatting symbols are not considered to hold semantic information
on their own.

The formula does not start with a binary operator (e.g. =" or ’\in)’ or end in LaTeX words
that require further context (e.g. ’\frac’, ’\int’).

Here is an example for all possible valid sub-formulae for the LaTeX formulaa (b +c) =12 " 3:

LaTeX formula: a (b + ¢)
Mathematic formula: a(b + c)

LaTeX formula: a (b +c)=12
Mathematic formula: a(b + ¢) = 12

LaTeX formula: a (b+c)=12"3
Mathematic formula: a(b + ¢) = 123

LaTeX formula: (b +c¢)
Mathematic formula: (b + ¢)

LaTeX formula: (b +c)=12
Mathematic formula: (b + ¢) = 12

LaTeX formula: (b+c)=12"3
Mathematic formula: (b + ¢) = 123

LaTeX formula: b + ¢
Mathematic formula: b + ¢

LaTeX formula: 12 * 3
Mathematic formula: 123

27

6. Design and Implementation

All of the valid sub-formulae are then converted into multiple possible translations in natural
language by the translation subsystem.

The next step is to clean the sentence. First, punctuation is stripped from the sentence. After-
wards, words written in all uppercase characters are separated into single characters. This is
necessary, because the Lecture-Translator transcribes variable names as uppercase characters
and sometimes makes the mistake of merging multiple variables together into one. Separating
them into each individual character allows the classification subsystem to recognise the formu-
lae and classify them correctly. The sentence is then passed to the classification subsystem,
which returns the corresponding formula sentences.

6.3.3.2. Matching Formulae

To find the best match, all formula sentences are considered. For each sentence, the match score
of all formula groups is calculated and the combination with the highest average of formula
group match scores is chosen. The match score is a natural formula similarity measure that
will be explained in more detail in the following subchapter 6.3.3.3.

The match score for each formula group is calculated by comparing it with every possible
translation of all valid LaTeX sub-formulae for every formula on the slide. The sub-formula
with the best match score is then taken as the corresponding mathematical formula, as long as
it exceeds a minimum threshold. This threshold is used to discard formula groups that were
either misclassified and don’t represent any mathematical formula or represent a mathematical
formula that is not on the slides and should therefore not be considered. This value of this
threshold has a significant impact on the amount of false positives and false negatives. If the
value is set correctly, many misclassification errors can be fixed. This thesis experiments with
different threshold values in Chapter 7.8. Only the formula groups that exceed the threshold
are considered for the calculation of the average match score.

This approach finds the combination of formula groups that has the highest likelihood of
finding all matches. If there are multiple such combinations, one of them is chosen at random.

6.3.3.3. Match Score

This thesis experiments with multiple approaches to calculating the match score. The basis
for this score is a syntactic similarity measure that compares a translated LaTeX formula from
the slide with a natural formula from the input sentence. Similarity measures that will be
compared in Chapter 7.5 are the following: Levenshtein Distance, Hamming Distance, Jaro
Distance and SequenceMatcher. The first three measures are string similarity measures that
use simple approaches to calculate the distance between two strings. The latter, on the other
hand, uses a more sophisticated approach.

For the first two similarity measures, the match score increases for an increased difference in

strings, while for the latter two, the match score represents a percentage of similarity, where
an increase in difference leads to a decrease in the match score. Because chapter 7.5 will

28

6. Design and Implementation

show that the latter two measures achieve better results, it is assumed from here on out, that
the match score will be a number between 0 and 1 with 1 being representative of a perfect match.

Additional ideas are considered, that use other characteristics than comparing characters.
These allow the match score to be specialised towards solving this thesis’ specific problem.

The first supplementary idea is to find the Longest Consecutive Matching Word Count. This is
the highest amount of consecutive matching words between the two naturl formulae. Only
formula sentences with the highest Count are considered for possible matches. This means
that natural formulae that share multiple words in a row are preferred. An example for this
approach is the following:

« Formula group:
X is divided by Y

« Translated LaTeX sub-formula 1:
X squared divided by Y
Levenshtein Distance: 7

« Translated LaTeX sub-formula 2:
X is raised by Y
Levenshtein Distance: 4

+ Naive solution (using Levenshtien Distance):
Formula 2

« Solution with Longest Consecutive Matching Word Count:
Formula 1

« More likely the correct solution:
Formula 1

Another approach is to add penalties that reduce the match score if certain conditions are met.
The first penalty is the variable-difference penalty. This penalty subtracts a fixed value from
the match score for every variable that is contained in one natural formula but not in the other.
A variable is defined as any single-letter word. The second penalty is the gap-size penalty
that first calculates the contained gap size of a formula sentence. As explained in Chapter
6.2.1, formula sentences can consist of multiple formula groups merged together. The gap sizes
between these initial formula groups are summed up and if the sum exceeds a certain threshold,
a penalty will be applied to the difference of the gap size and the threshold. Hence, formula
groups that span long parts of the sentence are disadvantaged, which could improve results
because these formula groups are likely to contain multiple formulae or unnecessary words
that should not be included in the match.

Chapter 7 compares the naive match score approaches with match scores that make use
of the supplementary ideas. The best approach is then chosen to find matches.

29

7. Evaluation

7.1. Evaluation Metrics

This chapter presents the metrics used to evaluate the performance of the system as a whole,
as well as, metrics that are used to compare different approaches to the model’s design.

7.1.1. Metrics for the System as a whole

The quality of the system is based on its underlying purpose, which is to improve the com-
prehensibility of the transcript in the Lecture-Translator. The system achieves this by finding
natural formulae in the transcript and attaching their mathematical representation. How good
the system works is therefore measured by metrics that reflect how well it can solve this task.
The system is evaluated on the level of a sentence instead of the level of a word because it is
not important that every word is correctly identified as being part of a formula. Rather, it is
important that each natural formula in a given sentence is recognised and correctly matched
to its equivalent mathematical formula.

Whether the predicted mathematical formula is correct is evaluated using the following metrics.
The first two metrics are Correctly Matched Count and Correctly Located Count. For both of
these metrics, the count should ideally be as high as the amount of actually existing formulae.
Additionally, the system should minimise the amount of incorrect matches. This is being
measured using the metric Incorrectly Matched Count. In the following, each of these metrics
is described in more detail.

7.1.1.1. Correctly Matched Count

Correctly Matched Count (CMC) is the amount of correctly matched formulae in a given
sentence. A formula is correctly matched if the mathematical formula that is predicted to be
described by the natural formula is sufficiently similar to the mathematical formula, that the
lecturer actually talks about.

Being sufficiently similar is defined as fulfilling one of the following two characteristics:

+ The LaTeX code of the predicted formula and the LaTeX code of the correct formula have
a Levenshtein Distance of less than 5 (not counting spaces).

+ The LaTeX code of the predicted formula and the LaTeX code of the correct formula have
at most one LaTeX command not in common.

Examples:

30

7. Evaluation

+ The following two formulae are sufficiently similar based on the first characteristic:

\frac{x}{y}=3

\frac{x}{y}

+ The following two formulae are sufficiently similar based on the second characteristic:

\bigtriangledown f = grad f

f=gradf

7.1.1.2. Correctly Located Count

Correctly Located Count (CLC) is the amount of correctly matched formulae that are also
correctly located in a given sentence. A formula is correctly located if it is a correct match
and the predicted location of the natural formula is within a distance of three words from the
actual location of the natural formula in the sentence.

Example:

« If the natural formula
integral of x
was correctly matched in the sentence
The integral of x can easily be calculated by hand.

, it is correctly located if its location is predicted to be in the index interval [0,6] which
represents the substring

The integral of x can easily be
. Therefore, if the predicted location of the formula
integral of x

is the interval of [4,7], it is not considered to be correctly located.

7.1.1.3. Tolerant Correctness

CMC and CLC are both defined, so that small errors are ignored. As explained in Chapter 4, a
formula that is slightly wrong can still increase the user’s comprehensibility when reading the
supplemented transcript. The same is true for a small deviation in the formula’s location. The
exact values have been chosen by the author after manually looking at hundreds of sentences
from lecture transcripts and comparing how different degrees of errors would impact their
ability to understand these sentences. A formula that is correctly matched and located, when
attached to a lecture transcript, is considered to be beneficial to the reader’s comprehensibility.

31

7. Evaluation

7.1.1.4. Incorrectly Matched Count

Incorrectly Matched Count is the amount of incorrectly matched formulae in a given sentence.
A formula is incorrectly matched if the algorithm detects a natural formula for a sub-sentence,
that either is not actually a natural formula or is a different natural formula than the one that
was predicted. In the second case, the detected formula was not sufficiently similar to the actual
formula.

7.1.2. Metrics for the Classification subsystem
7.1.2.1. ROCAUC

Research has shown that classifiers trained on imbalanced datasets show good results when
maximising ROC AUC or Precision-Recall AUC [35] [36]. Which metric is better depends
on the importance of certain kinds of errors for the application. The difference is that ROC
AUC measures Recall and False Positive Rate, while Precision-Recall AUC measures Recall and
Precision.

For highly imbalanced datasets, an increase in the amount of false positives results in a greater
decrease for Precision-Recall AUC than for ROC AUC [35]. This is often cited as a reason that
Precision-Recall AUC is the better metric for imbalanced datasets [35]. However, in the context
of this thesis, this is not the case, because it is significantly more important to maximise the
amount of true positives than it is to minimise the amount of false positives, when it comes to
the classification algorithm. The reason for this is two-fold:

1. During matching, there are measures taken to discard false positives before they appear
in the result. One of these is the valid match threshold described in chapter 7.8 that
requires all matches to have a sufficient match score in order to be considered valid.
Another measure is to require a formula group to have a minimum length, as described
in chapter 6.2.1. This helps to discard wrongly matched formulae that are very short.

2. Because the system is used to supplement the transcript instead of modifying it, an
increase in the amount of false positives does not significantly decrease the transcript’s
comprehensibility. Therefore, false negatives do not have an impact as negative as in
many other binary classification tasks.

The following example demonstrates the difference between ROC AUC and Precision-Recall
AUC for the classification in the system. The data was taken from an evaluation of the bi-
nary classifier RandomForest’s performance on the training dataset with different specifications.

RandomForest - Default:
ROC AUC: 0.897

P-R AUC: 0.790
Confusion-Matrix:

32

7. Evaluation

‘ Predicted: Non-Formula Predicted: Formula
Actual: Non-Formula 15789 518
Actual: Formula 990 4720

RandomForest - Tuned (for ROC AUC) and Balanced:
ROC AUC: 0.922

P-R AUC: 0.728

Confusion-Matrix:

‘ Predicted: Non-Formula Predicted: Formula
Actual: Non-Formula 14478 1829
Actual: Formula 250 5460

The default algorithm has significantly less false positives (518 instead of 1829) but also consid-
erably less true positives (4720 instead of 5460) than the tuned and balanced algorithm. The
default algorithm has a higher Precision-Recall AUC than the tuned and balanced one, which
is reversed for ROC AUC. For the purpose of this thesis, the tuned and balanced algorithm is
better, which is why the classifiers are trained to maximise ROC AUC and the algorithm with
the highest ROC AUC is chosen. The classifiers’ python libraries contain training methods that
support maximising this metric during training.

7.1.2.2. Positive and Negative Predictive Value

Useful measures in addition to ROC AUC are the Positive Predictive Value (PPV) and Negative
Predictive Value (NPV). PPV measures how many of the words classified as formula words are
correct and NPV measures how many of the words classified as non-formula words are correct.
Because it is so important for this thesis to correctly classify formulae, PPV plays a big role
when comparing classification algorithms. If a classifier has the highest ROC AUC, it is not
necessarily implied that PPV is also the highest. Therefore, multiple metrics are considered
when comparing classifiers. NPV plays a less important role than PPV but can still help to
evaluate the performance of an algorithm.

7.2. Classification Algorithms

In the scope of this thesis, four binary classification algorithms are compared: SVC, DecisionTree,
RandomForest, XGBoost.

The classifiers were trained on the training data described in chapter 6.3.1.1, so that they
maximise ROC AUC. All of the algorithms were trained in their default form, as well as tuned
and balanced. For hyperparameter optimisation, scikit-learn’s GridSearchCV was used to
compare commonly used parameter values and choose the best performing specification. The
following algorithms are compared in this chapter:

33

7. Evaluation

« SVC Default

o SVC Tuned & Balanced
(Parameters: class_weight="balanced”, tol=0.001, kernel="rbf")

« DecisionTree Default

« DecisionTree Tuned & Balanced
(Parameters: random_state=random_seed, class_weight="balanced", criterion="gini",
max_depth=None, max_features=5, max_leaf nodes=None, min_samples_leaf=1, min_samples_split=

« RandomForest Default

« RandomForest Tuned & Balanced
(Parameters: n_jobs=2, random_state=random_seed, class_weight="balanced", crite-
rion="entropy", bootstrap=True, max_depth=None, max_features=9, min_samples_leaf=5,
min_samples_split=7)

* XGBoost Default

+ XGBoost Tuned & Balanced
(Parameters: eta: 0.01, max_depth: 17, subsample: 0.9, colsample_by_tree: 0.7)

In the following, the evaluation results of the classifier’s performance on the training data and
the test data are presented. Both of these datasets are explained in more detail in chapter 6.3.1.1.
It is important to note that the algorithm’s performance on the training data is very important.
Many of the most frequent mathematical symbols are in the training dataset and most formulae
consist largely of these symbols. This implies that if the classifier can achieve good results on
the training data, it will be able to correctly classify most formulae. The test data is important
for formulae that consists of multiple symbols that are not frequently used and therefore not
part of the training data. A classifier that achieves good results on the training data but only
mediocre results on the test data is still going to perform reasonably well most of the time.

34

7. Evaluation

= Training Data

XGBoost-Tuned-Balanced = Test Data 0.91

| 0.97

] 0.92

XGBoost-Default

10.98 |

RandomForest-Tuned-Balanced - | 0.84 10.92 =

RandomForest-Default - | 0.81 0 |

DecisionTree-Tuned-Balanced -i | 0.84 10.92 =

DecisionTree-Default 0.8 10.9 =

SVC-Tuned-Balanced | 0.82 1 0.87 i

SVC-Default —— -7

1 0.8

1 1 1 1 1 1 1 1 1 1 1 1 1
0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

ROC AUC
= Training Data
XGBoost-Tuned-Balanced |=__Test Data e 1 0.91 |
XGBoost-Default - | 0.65 1 0.83 i
RandomForest-Tuned-Balanced | 0.7 10.96 |
| | 0.65 i
RandomForest-Default 10.83

DecisionTree-Tuned-Balanced 0.7 1 0.96 |
DecisionTree-Default | 0.64 10.83 |
| | 0.78 L

SVC-Tuned-Balanced 10.87
) 0.53 :

SVC-Default 10.63
| | |

| | | | | | |
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Positive Predictive Value

35

7. Evaluation

= Training Data
= I 7o.
XGBoost-Tuned-Balanced | = rest Data T 8 g}
i | 0.97
XGBoost-Default | 0.97
| 0.89
RandomForest-Tuned-Balanced - 1 0.89
RandomForest-Default ‘ 0\.8.797
. I 70.88
DecisionTree-Tuned-Balanced i 10.89
. |] 0.96
DecisionTree-Default | 0.97
SVC-Tuned-Balanced *%370. 87
| | 0.97
SVC-Default | 0.98
| | | | | | | | | |

1 1 1
0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.9
Negative Predictive Value

The data shows, that XGBoost (in both specifications) has the best ROC AUC for Training
and Test data alike. However, the PPV on the training dataset is considerably worse than for
Random Forest and Decision Tree. Because it is very important for the application of this thesis,
to have a very high PPV, XGBoost is not considered to be a good classifier. Random Forest and
Decision Tree show very similar results in their Tuned and Balanced specification. They have
the highest PPV among all classifiers on both the training data and the test data. Additionally,
they achieve good results for all other metrics. Random Forest Tuned and Balanced is slightly
better than Decision Tree Tuned and Balanced and therefore chosen as the classifier for this
thesis.

7.3. First Approach

First, a naive approach is presented, that is used as a benchmark to compare ideas for improve-
ments to. This approach only consists of a classifier, sentence similarity measure, and a valid
match threshold. The exact specification is as follows:

« Classifier: RandomForest Tuned and Balanced (see chapter 7.2)
« Sentence Similarity Measure: SequenceMatcher

« No Base Rules

+ No Longest Consecutive Matching Word Count

No Penalties

36

7. Evaluation

« Valid Match Threshold = 0.6

The underlying dataset contains 43 actual formulae.

System Specification ‘ Correct Match Count Correctly Located Count Incorrect Match Count
First Approach ‘ 0 0 3

The results clearly shows that the naive approach is very bad. A system using this approach in
a practical application could not expect any improvements in comprehensibility.

7.4. Classification Base Rules

The first addition to the naive system that is being analysed is the use of Base Rules for the
classification subsystem, that define rules for the classification of words with certain charac-
teristics. In the following, the naive system is being used as a base system to compare the
classification with and without Base Rules.

The following example demonstrates the effect of using these base rules on the classifica-
tion results. Bold words are classified as formula-words.

1. Sentence:
in German: Integral von i ist gleich null bis unendlich von fvon x d x
in English: Integral of i is equal to zero to infinity of fof x d x

2. Classification when trained without news articles:
in German: Integral von i ist gleich null bis unendlich von fvon x d x
in English: Integral of i is equal to zero to infinity of fof x d x

3. Classification when trained with news articles:
in German: Integral von i ist gleich null bis unendlich von fvon x d x
in English: Integral of i is equal to zero to infinity of fof x d x

4. Classification when trained with news articles and using Base Rules:
in German: Integral von i ist gleich null bis unendlich von fvon x d x
in English: Integral of i is equal to zero to infinity of fof xd x

It is clear from this example, that some of the most important formula words are missing when
not using Base Rules. This makes it very hard for the system to correctly match formulae. This
effect is especially severe when news articles are added to the training data as examples for non-
formulae, because then even less words are classified as formula words. The Base Rules classify
these important formula words separately and lead to a significant impact in the system’s result.

The following observation shows the impact of using Base Rules on the system as a whole. The
underlying dataset contains 43 actual formulae.

37

7. Evaluation

System Specification ‘ Correct Match Count Correctly Located Count Incorrect Match Count

Naive System 3 1 3
Naive System with news articles 0 0 3
Naive System with news articles and Base Rules 34 30 27

All three metrics are increased considerably by including Base Rules in the classification
subsystem. Therefore, the Base Rules are used in the system developed in this thesis.

7.5. Sentence Similarity Measures

In this subchapter, the different sentence similarity measures presented in chapter 6.3.3.3 are
compared. The base system for this comparison is the naive system with Base Rules from the
previous subchapter. The underlying dataset contains 43 actual formulae.

T T
SequenceMatcher | | 30 34 -
i | 32 |
Jaro 135
Hamming ::10 13 I
L htein 15 = Correct Match Count |
cvensiiten | 20 = Correctly Located Count
| | | | I I I I I

1 1 1 1 1 1 1 I I
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 4
Correctly matched and located formulae

SequenceMatcher —j 27 | L
Jaro - | 40 5

Hamming - |44 |
Levenshtein ‘ ‘ ‘ ‘ ‘ | | 37 | %In(‘torrect Match C‘ount 5

26 28 30 32 34 36 38 40 42 44
Incorrectly matched formulae

The data shows that Levenshtein Distance and Hamming Distance achieve relatively bad results
with only 20 and 13 correct matches and 37 and 44 incorrect matches, respectively. When

38

7. Evaluation

using Hamming Distance, the system matches over 3 formulae incorrectly for every correct
match. This makes the similarity measure unfit to be used in an actual application. Levenshtein
Distance does not show significantly better results and should therefore also be avoided.

Jaro Distance and SequenceMatcher show much better results. Both of these similarity mea-
sures correctly match around 80% of the existing formulae, of which almost all are correctly
located as well. The biggest difference between these measures lies in the amount of incorrect
matches. SequenceMatcher results in about 32% less incorrect matches than Jaro Distance,
while only being slightly worse in the other two metrics, which is the reason why it is chosen
as the string similarity measure to be used in the system.

An assumption as to why the first two similarity measures are significantly worse than the
latter two is that the first two measures use very simple approaches that might perform well
for word comparisons but do not preform well when used on sub-sentences.

7.6. Longest Consecutive Matching Word Count (LCMWC)

This subchapter examines if using Longest Consecutive Matching Word Count improves the
system’s results. The base system for this comparison is the system using SequenceMatcher
from the previous subchapter. The underlying dataset contains 43 actual formulae.

System Specification ‘ Correct Match Count Correctly Located Count Incorrect Match Count
Without LCMWC 34 30 27
With LCMWC 37 33 25

The results show an improvement in all three metrics when Longest Consecutive Matching
Word Count is being used to reduce the amount of possible formulae for a match by removing
all formulae with a short LCMWC. 3 more formulae are correctly matched and located and 2
fewer formulae are incorrectly matched in the test dataset.

The example in Chapter 6.3.3.3 demonstrated, that there are cases in which using LCMWC
can improve the match results. The data from our test set demonstrates that cases like this
actually occur in the transcript of lectures. Based on these examinations, Longest Consecutive
Matching Word Count is included in the system.

7.7. Penalties

7.7.1. Variable-Difference Penalty

The Variable Difference Penalty reduces the match score by a certain amount for every variable
contained in one formula, that is not contained in the other formula. The base system for this
comparison is the system using Longest Consecutive Matching Word Count from the previous
subchapter. The underlying dataset contains 43 actual formulae.

39

7. Evaluation

0.5 4 28 = Correct Match Count
’ | 31 = Correctly Located Count
29
0.4
| 32
i | 32
0.3 36
i | 34
02 | 38
i | 34
0.15 37
i | 35
0.1 39
i | 34
0.05 38
i | 33
0 37
| | | | | | | |
28 30 32 34 36 38 40 42

Correctly matched and located formulae for different Variable-Difference Penalty values

0.5

0.4

0.3

0.2 11

0.15

0.1+ 11

0.05 |

13

12

12

13

| 17

—Incorrect Match Count

| 25

10 12

14 16 18

20
Incorrectly matched formulae for different Variable-Difference Penalty values

22 24

26

The data shows an improvement for all values until 0.2 of Variable-Difference Penalty compared
to the approach with no penalty. The biggest improvement is in the decrease of incorrect

40

7. Evaluation

matches of up to 56%. The amount of correct matches and correctly located matches is also
improved slightly for almost all values until 0.2. The penalty values greater than 0.2 show a
decrease in correct matches, as well as in correctly located matches. Values higher than 0.5
are unlikely to achieve better results, as implied by the falling trend of correct matches and
correctly located matches for an increase in penalty value.

If two natural formulae contain different variables, the likelihood that they both describe
the same formula is rather unlikely. This is especially true in a lecture setting, where the
lecturer talks about a specific formula that is shown on a lecture slide and is therefore prone
to use the same variable names that are used in the formula on the slide. Thus, penalising
the use of wrong variables is likely to result in an decrease of incorrect matches. However, if
the penalty is too big, more matches fall below the valid match threshold and are therefore
discarded. This results in a decrease in correct matches for high penalty values.

The best results are achieved when using 0.1 as the penalty value, which shows improve-
ments in all three metrics. This value is therefore used for the system.

7.7.2. Gap-Size Penalty

Multiple threshold and penalty values are compared for the gap-size penalty. The threshold
determines the maximum contained gap size of a formula group, that does not result in a
gap-size penalty. For every additional gap size, the penalty value is subtracted from the match
score.

The threshold values 5 and 10 are compared together with the following penalty values:
0.01, 0.05 and 0.1, 0.2, 0.3. For the penalty values 0.05 and 0.1, the threshold values 2 and 3 are
also considered. These values were chosen after experimenting on a smaller dataset, which
achieved the best results for these values. The base system for this comparison is the system
using a Variable-Difference Penalty with the threshold 0.1 from the previous subchapter. The
underlying dataset contains 43 actual formulae.

41

7. Evaluation

Threshold:10-Penalty:0.3 35 30 L
Threshold:5-Penalty:0.3 13 38 L
Threshold:10-Penalty:0.2 | — 38 L
Threshold:5-Penalty:0.2 | — 38 L
Threshold:10-Penalty:0.1 s34 38 L
Threshold:5-Penalty:0.1 i — 38 L
Threshold:3-Penalty:0.1 | 137 L
01 (s o ames o |
Threshold:10-Penalty:0.05 | — 38 L
Threshold:5-Penalty:0.05 | 39 L
Threshold:3-Penalty:0.05 i — 37 L
Threshold:2-Penalty:0.05 % 137 L
Threshold:10-Penalty:0.01 i — 38 L
Threshold:5-Penalty:0.01 13 38 L
No-Gap-Size-Penalty 35 30 L

L L L L L L L L L

34 35 36 37 38 39 40 41 42 43
Correctly matched and located formulae for different Gap-Size Penalties

42

7. Evaluation

Threshold:10-Penalty:0.3 -| | 12 B
Threshold:5-Penalty:0.3 {1 10 B
Threshold:10-Penalty:0.2 -| | 13 3
Threshold:5-Penalty:0.2 | | 11 3
Threshold:10-Penalty:0.1 - | 12 -
Threshold:5-Penalty:0.1 | 12 -
Threshold:3-Penalty:0.1 | 12 -
Threshold:2-Penalty:0.1 | 11 = Incorrect Match Count | |-
Threshold:10-Penalty:0.05 | 12 -
Threshold:5-Penalty:0.05 -| | 11 B
Threshold:3-Penalty:0.05 - |14
Threshold:2-Penalty:0.05 | | 12 B
Threshold:10-Penalty:0.01 | 12 -
Threshold:5-Penalty:0.01 -| | 13 3
No-Gap-Size-Penalty | 11 B

| | | | |

1 1 1 1
10 10.5 11 11.5 12 12.5 13 13.5 14
Incorrectly matched formulae for different Gap-Size-Penalties

The use of gap-size penalty does not show an improvement in the system’s results. Except
for the specifications with threshold = 5 and penalty = 0.05, which performs exactly as well
as the approach without gap-size penalty, the results have worsened. For almost all of the
specifications, the amount of correct matches has decreased, while the amount of incorrect
matches has increased slightly. There is no clear trend for the amount of correct and incorrect
matches for specifications with different threshold and penalty values, besides the fact that
they are all not an improvement to using no gap-size penalty. The same is expected to be true
for other threshold and penalty value pairs.

A possible explanation for this observation is that an increase in gap size penalty leads to
smaller formula groups and therefore an increase in the amount of formula groups that are
so small, that they don’t fall within the definition of a formula group and are therefore dis-
carded. In chapter 6.2.1, the requirements of a formula group are discussed in more detail.
This effect might offset the improvement that the gap-size penalty brings by discarding overly
long formula groups that contain many gaps, which could lead to the results shown above.
Additionally, there can be natural formulae that span over long distances, for which the match
score is significantly reduced by introducing gap-size penalty. These formulae would have a
higher likelihood of being matched correctly without gap-size penalty.

Because the use of gap size penalty has not shown positive results on the test dataset, it
will not be used in the system.

43

7. Evaluation

7.8. Valid Match Threshold (Similarity Threshold)

The value of the minimum threshold a match score has to exceed so that it does not get discarded
is the object of the next analysis. This valid match threshold was introduced in chapter 6.3.3.2.
The exact values were chosen after experimenting on a smaller dataset, which achieved the
best results for the interval between 0.5 and 0.7. The specification with threshold = 0 represents
no Valid Match Threshold. The underlying dataset contains 43 actual formulae.

T T T
07 | 32 = Correct Match Count |
: | 35 = Correctly Located Count
| 33 |
0.65 137
i | 35 |
0.6 39
i | 34 |
0.55 38
| 34 |
0.5 38
i | 36 |
0 41
1 1 1 1 1 1 1 1 1 1 1 1

31 32 33 34 35 36 37 38 39 40 41 42 43

Correctly matched and located formulae for different Valid Match Thresholds

44

7. Evaluation

0.7 10 = Incorrect Match Count +

0.65 | 13 -

0.6 | 11 r

0.55 | | 18 -

0.5 | 22 -

01 33 |

8 10 12 14 16 18 20 22 24 26 28 30 32 34
Incorrectly matched formulae for different Valid Match Thresholds

The data clearly shows that the amount of incorrect matches decreases considerably when
using a higher valid match threshold. A decrease of 70% was achieved when using the threshold
0.7. However, the amount of correct matches also decreases slightly.

After a certain point, which the data indicates to be around 0.6, the decrease in incorrect
matches does not justify the decrease in correct matches. The amount of incorrect matches
decreases by 1 when increasing the threshold from 0.6 to 0.7. Meanwhile, the amount of correct
matches decreases by 4.

It is fair to assume that a threshold above 0.7 decreases the amount of correct matches further
and leads to worse results than the threshold of 0.6. Furthermore, a threshold below 0.5 has
most likely more than 20 incorrect matches and less than 39 correct matches, which makes it
worse than the threshold of 0.6. Because of these considerations, the threshold value of 0.6 is
chosen for the system.

7.9. Final Results

The final specification of the system is as follows:
« Classifier: RandomForest Tuned and Balanced (see chapter 7.2)
« Sentence Similarity Measure: SequenceMatcher

« With Base Rules

45

7. Evaluation

« With Longest Consecutive Matching Word Count

« Penalties:
— Variable-Difference Penalty with Threshold = 0.1
- No Gap-Size Penalty

« Valid Match Threshold = 0.6

The underlying dataset contains 43 actual formulae.

System Specification ‘ Correct Match Count Correctly Located Count Incorrect Match Count
Final System ‘ 39 35 11

The system correctly matches 91% of all formulae, correctly matches and locates 81% and
only incorrectly matches 11 formulae. For every three correct matches, an incorrect match is
expected. This result is sufficiently good to expect an improvement in comprehensibility when
the system is used as part of the Lecture-Translator.

The following example shows the system’s result for a sentence taken from an actual lec-
ture:

« Lecture slide!:

Eine formale Definition von Wortern
definiere fiir n € Ny Menge der n kleinsten nichtnegativen
ganzen Zahlen
Z,={ieNy|0<iundi<n}
Beispiele: Z4 = {0, 1,2,3}, Zl = {0} und ZO = {}

Ein Wort (iiber dem Alphabet A)
ist eine surjektive Abbildung w : Z,, —» B mit B C A.

n heifdt die Ldnge eines Wortes, geschrieben |w|
erst mal nur an n > 1 denken, das leere Wort kommt spater

Beispiel:
w=nhallo
formalw:7Zs — {a,h, 1,0} mit
w(0) =h,w(1) =a,w(2) =1, w(3) =1 und w(4) = 0.

GBI — Grundbegriffe der Informatik KIT, Institut fiir Theoretische Informatik 6/41

o All LaTeX formulae on the lecture slide:

Islide 10 from http://gbi.ira.uka.de/vorlesungen/k-04-woerter-folien.pdf

46

7. Evaluation

n\in \mathbb {N}_ {0}
- \mathbb {Z} _{n}=\left{ i \in \mathrm { N} _{0}|0\leq i \text { und } i < n \right}
- \mathbb {Z}_{4}={0,1,2 3}
- \mathbb {Z}_{1}={0)
-Z_{0})={}
— w:\mathbb {Z}_ {n} \rightarrow B
— B \subseteq A
- Jw]
- n\geq 1
- w=hallo
— w:\mathbb {Z}_ {5} \rightarrow{a,h,l,0}
- w(0)=h
-w(l)=a
-w(2)=1
- w(3)=1
- w(4)=o0
Sentence in German:

Also Film fiinf kann ich also haben als Abbildung von Z5, In, Die, Menge A, H, L, O, und,
die, muss.

Sentence in English:
So I can film five has to have a mapping of Z5, in the, lot of A, B, L, O, and the..

Correct formula:
{Z})_ {5} \rightarrow{a,h,l,0]}

Predicted formula:
{Z)_{5)\rightarrow{a,h,l,0}

Correct Match?:
Yes

47

8. Conclusion

In this thesis, a system was presented that can improve lecture transcripts by recognising
mathematical formulae in natural language and matching them with their mathematical rep-
resentation, which can then be used to supplement the sub-sentences in the transcript that
describe the mathematical formulae. This can lead to an improvement in comprehensibility for
transcripts with mathematical content.

This system was developed for the use as part of the Lecture-Translator, which is a website for
lectures that shows a video recording of the lecturer holding the said lecture, the transcript in
the original language, as well as translations of the transcript into multiple languages.

First, a naive system was presented that achieves very bad results. Thereupon, multiple
ideas for improvements were presented and evaluated based on empiric observations. The
first improvement was to use Base Rules for the classification subsystem that significantly
improved the system’s results. Afterwards, multiple ideas were presented for the classification
and matching subsystems. Those include different classifiers, sentence similarity measures,
penalties that make it less likely to match formulae with certain characteristics and values for
a valid match threshold that discard all matches below this threshold, which are likely to be
false positives.

The final system achieved 91% correctly matched formulae and 81% correctly matched and
located formulae on the test data that consists of 148 sentences taken from 4 lectures by 2
different lecturers. It also only matched 11 formulae incorrectly. This makes it suitable to be
used as part of the Lecture-Translator and is likely to increase the reader’s comprehensibility
when reading the supplemented transcript.

Besides improving lecture transcripts, the results of this thesis can be used to pave the way for
more research in the area of matching mathematics in natural language with its mathematical
representation. Additionally, some results of this thesis can help solve problems that deal with
completely different applications but also share the use of a binary classifier or a matching
algorithm. These results are the Base Rules for classification and the Variable-Difference penalty.

The next steps are to first incorporate the developed system into the Lecture-Translator and
test with the help of many students, whether the system can actually make a difference in
comprehensibility. A long-term plan is to replace the rule-based machine translation subsystem
with a neural machine translation approach that can support additional languages much more
simply. This would require significantly more training data to be labeled in order to properly
train the neural net. The classification algorithm would also benefit from more training data,
which can lead to an improvement in the overall quality of the system.

48

Bibliography

Richard Fateman. How can we speak math? Tech. rep. 2013. URL: http://www.Cs.cmu.
edu/usi.

Payam Refaeilzadeh, Lei Tang, and Huan Liu. C Cross-Validation. Tech. rep. URL: http:
//leitang.net/papers/ency-cross-validation.pdf.

Gavin C Cawley and Nicola L C Talbot. On Over-fitting in Model Selection and Subsequent
Selection Bias in Performance Evaluation. Tech. rep. 2010, pp. 2079-2107. URL: http:
//www.jmlr.org/papers/volumell/cawleyl0a/cawleylOa. pdf.

Jyothi Subramanian and Richard Simon. “Overfitting in prediction models — Is it a
problem only in high dimensions?” In: (2013). por: 10.1016/j.cct.2013.06.011. URL:
http://dx.doi.org/10.1016/j.cct.2013.06.011.

Marc Claesen and Bart De Moor. “Hyperparameter Search in Machine Learning”. In:
(Feb. 2015).

Hwanjo Yu and Sungchul Kim. SVM Tutorial: Classification, Regression, and Ranking. Tech.

rep. URL: https://pdfs.semanticscholar.org/cbc3/d8b04d37b2d4155f081cd423380220a91113.
pdf.

Lior Rokach and Oded Maimon. DECISION TREES. Tech. rep. URL: http://www.ise.bgu.
ac.il/faculty/liorr/hbchap9.pdf.

Leo Breiman. Random Forests. Tech. rep. 2001. URL: https://www.stat.berkeley.edu/
%7/B~%7Dbreiman/randomforest2001. pdf.

Tianqi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: ().
DOI: 10.1145/2939672.2939785. URL: http://dx.doi.org/10.1145/2939672.2939785.

Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. Tech.
rep. arXiv: 1301.3781v3. URL: http://ronan.collobert.com/senna/.

Wikipedia. Levenshtein distance — Wikipedia, The Free Encyclopedia. http://en.wikipedia.
org/w/index.php?title=Levenshtein%20distance&oldid=864222616. [Online; ac-
cessed 20-October-2018]. 2018.

Jaro distance - Rosetta Code. URL: https : // rosettacode . org/wiki/Jaro%7B%5C_
%7Ddistance (visited on 10/20/2018).

David E. Metzener John W. Ratcliff. JUL88: PATTERN MATCHING: THE GESTALT AP-
PROACH. URL: http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/
Website/articles/DDJ]/1988/8807/8807c/8807c.htm (visited on 10/20/2018).

Kevin Lin and Richard Fateman. SKEME, (Symbolic Keyboard and Mouse Editor) A Demon-
stration Program for Multimodal Input of Mathematical Equations. Tech. rep. URL: https:
//people.eecs.berkeley.edu/%7B~%7Dfateman/papers/SKEME. pdf.

49

Bibliography

[18]

[19]

[22]

[23]

Cassandra Guy et al. Math Speak & Write, a Computer Program to Read and Hear Mathe-
matical Input. Tech. rep. 2004. URL: http://www.cs.queensu.ca/drl/ffes/.

Arthur Karshmer, Gopal Gupta, and Enrico Pontelli. Mathematics and Accessibility: a
Survey. Tech. rep. URL: http://www.utdallas.edu/%7B~%7Dgupta/mathaccsurvey.pdf.

Mathtalk Scientific Notebook and Dragon Naturally Speaking to Dictate Mathematics -
YouTube. URL: https://www.youtube.com/watch?v=7pjnDI1IjuQ (visited on 10/20/2018).

Rik Koncel-Kedziorski et al. Parsing Algebraic Word Problems into Equations. Tech. rep.
URL: http://ai2-website.s3.amazonaws.com/publications/algebra-TACL2015. pdf.

Takuya Matsuzaki et al. “Semantic Parsing of Pre-university Math Problems”. In: (),
pp- 2131-2141. por1: 10.18653/v1/P17-1195. URL: https://doi.org/10.18653/v1/P17-
1195.

Minh Nghiem Quoc et al. Mining coreference relations between formulas and text using
Wikipedia. Tech. rep. 2010, pp. 69-74. URL: http://opennlp.sourceforge.net/.

Kitsuchart Pasupa and Wisuwat Sunhem. “A comparison between shallow and deep
architecture classifiers on small dataset”. In: Proceedings of 2016 8th International Confer-
ence on Information Technology and Electrical Engineering: Empowering Technology for
Better Future, ICITEE 2016 (2017). pO1: 10.1109/ICITEED.2016.7863293

Yoon Kim. Convolutional Neural Networks for Sentence Classification. Tech. rep., pp. 1746—
1751. URL: http://nlp.stanford.edu/sentiment/.

James Cannady. Artificial Neural Networks for Misuse Detection. Tech. rep. URL: https:
//csrc.nist.gov/csrc/media/ publications/ conference - paper/1998/10/08/
proceedings-of-the-21st-nissc-1998/documents/paperfl3.pdf.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. “On the Computational Efficiency of
Training Neural Networks”. In: NIPS. 2014.

Rehan Akbani, Stephen Kwek, and Nathalie Japkowicz. Applying Support Vector Machines
to Imbalanced Data Sets. Sept. 2004.

Chao Chen and Andy Liaw. Using Random Forest to Learn Imbalanced Data. Tech. rep. URL:
https://statistics.berkeley.edu/sites/default/files/tech-reports/666.pdf.

David A Cieslak and Nitesh V Chawla. Learning Decision Trees for Unbalanced Data.
Tech. rep. URL: https://www3.nd.edu/%7B~%7Dnchawla/papers/ECMLOS. pdf.

Zhenyu Wu, Wenfang Lin, and Yang Ji. “An Integrated Ensemble Learning Model for
Imbalanced Fault Diagnostics and Prognostics”. In: 6 (Feb. 2018), pp. 1-1.

Yoshua Bengio et al. A Neural Probabilistic Language Model. Tech. rep. 2003, pp. 1137-
1155. URL: http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. Tech.
rep. URL: https://cs.stanford.edu/%7B~%7Dquocle/paragraph%7B%5C_%7Dvector.pdf.

Ronan Collobert et al. Natural Language Processing (Almost) from Scratch. Tech. rep.
2011, pp. 2493-2537. URL: http://www. jmlr.org/papers/volumel2/collobertlla/
collobertlla.pdf.

50

Bibliography

[34]

[35]

Sreelekha S. Statistical Vs Rule Based Machine Translation; A Case Study on Indian Lan-
guage Perspective. Tech. rep. URL: https://arxiv.org/pdf/1708.04559.pdf.

Jorge Martinez-Gil. “An overview of textual semantic similarity measures based on web
intelligence”. In: Artificial Intelligence Review 42.4 (2012). DOI: 10.1007/510462-012-9349.
URL: https://hal.archives-ouvertes.fr/hal-01630890.

GermanWordEmbeddings. URL: https://devmount.github.io/GermanWordEmbeddings/
(visited on 10/20/2018).

Andrew P. Bradley. “The use of the area under the ROC curve in the evaluation of machine
learning algorithms”. In: Pattern Recognition 30.7 (July 1997), pp. 1145-1159. 1ssN: 0031-
3203. pOI: 10.1016/50031-3203(96)00142-2. URL: https://www.sciencedirect.com/
science/article/pii/S0031320396001422.

Takaya Saito and Marc Rehmsmeier. “The Precision-Recall Plot Is More Informative than
the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets”. In: 10 (Mar.
2015), e0118432.

51

A. Appendix

A.1. Data for Evaluation Graphs

A.1.1. Classifiers

Training data

Classifiers

ROC AUC Positive Accuracy Negative Accuracy

SVC Default

SVC Tuned & Balanced

Decision Tree Default

Decision Tree Tuned & Balanced
Random Forest Default

Random Forest Tuned & Balanced
XGBoost Default

XGBoost Tuned & Balanced

0.802
0.868
0.897
0.922
0.897
0.922
0.981
0.966

62.87%
86.51%
82.66%
95.62%
82.66%
95.62%
82.66%
90.72%

A.1.2. Sentence Similarity Measures

System Specification ‘ Correct Match Count Correctly Located Count

97.54%
87.07%
96.82%
88.79%
96.82%
88.78%
96.80%
90.95%

0.752
0.824
0.799
0.835
0.806
0.840
0.922

Test data
ROC AUC Positive Accuracy Negative Accuracy
53.24% 97.25%
78.42% 86.47%
64.03% 95.81%
79.14% 87.94%
64.75% 96.52%
79.14% 88.77%
64.75% 96.45%
76.98% 90.96%

0.907

Incorrect Match Count

Levenshtein Distance
Hamming Distance
Jaro Distance
SequenceMatcher

20
13
35
34

A.1.3. Variable-Difference Penalty

System Specification

Correct Match Count

Correctly Located Count

15
10
32
30

37
44
40
27

Incorrect Match Count

No Penalties
Variable-Difference-Penalty 0.05
Variable-Difference-Penalty 0.1
Variable-Difference-Penalty 0.15
Variable-Difference-Penalty 0.2
Variable-Difference-Penalty 0.3
Variable-Difference-Penalty 0.4
Variable-Difference-Penalty 0.5

37
38
39
37
38
36
32
31

33
34
35
34
34
32
29
28

25
17
11
13
11
12
12
13

52

A. Appendix

A.1.4. Gap-Size Penalty

System Specification | Correct Match Count Correctly Located Count Incorrect Match Count
No Gap-Size Penalty 39 35 11
Gap-Size Penalty, Threshold = 5, Penalty = 0.01 38 34 13
Gap-Size Penalty, Threshold = 10, Penalty = 0.01 38 34 12
Gap-Size Penalty, Threshold = 2, Penalty = 0.05 37 35 12
Gap-Size Penalty, Threshold = 3, Penalty = 0.05 37 34 14
Gap-Size Penalty, Threshold = 5, Penalty = 0.05 39 35 11
Gap-Size Penalty, Threshold = 10, Penalty = 0.05 38 34 12
Gap-Size Penalty, Threshold = 2, Penalty = 0.1 37 35 11
Gap-Size Penalty, Threshold = 3, Penalty = 0.1 37 34 12
Gap-Size Penalty, Threshold = 5, Penalty = 0.1 38 34 12
Gap-Size Penalty, Threshold = 10, Penalty = 0.1 38 34 12
Gap-Size Penalty, Threshold = 5, Penalty = 0.2 38 34 11
Gap-Size Penalty, Threshold = 10, Penalty = 0.2 38 34 13
Gap-Size Penalty, Threshold = 5, Penalty = 0.3 38 34 10
Gap-Size Penalty, Threshold = 10, Penalty = 0.3 39 35 12

A.1.5. Valid Match Threshold

System Specification | Correct Match Count Correctly Located Count Incorrect Match Count
Valid Match Threshold = 0 41 36 33
Valid Match Threshold = 0.5 38 34 22
Valid Match Threshold = 0.55 38 34 18
Valid Match Threshold = 0.6 39 35 11
Valid Match Threshold = 0.65 37 33 13
Valid Match Threshold = 0.7 35 32 10

A.2. List of Translation Rules with covered symbols

1. Summation (Sum, Integral, Product, Co-Product)

+ \sum, \int, \prod, \coprod
2. Function
3. Root
4. Power
5. Fraction

6. Operators

. =, +, -, <, \leq, >, \geq, \pm, \mp, \times, \div, *, \ast, \star, \circ, \bullet, \cdot, \cap,
\cup, \uplus, \sqcap, \sqcup, \vee, \wedge, \setminus, \wr, \diamond, \bigtriangleup,
\bigtriangledown, \triangleleft, \triangleright, \lhd, \rhd, \oplus, \ominus, \otimes,
\oslash, \odot, \bigcirc, \dagger, \ddagger, \amalg, /, !

7. Greek symbols

53

A. Appendix

« \alpha, \kappa, \psi, \digamma, \Delta, \Theta, \beta, \lambda, \rho, \varepsilon,
\Gamma, \Upsilon, \chi, \mu, \sigma, \varkappa, \Lambda, \Xi, \delta, \nu, \tau,
\varphi, \Omega, \epsilon, \theta, \varpi, \Phi, \aleph, \eta, \omega, \upsilon, \varrho,
\Pi, \beth, \gamma, \phi, \xi, \varsigma, \Psi, \daleth, \iota, \pi, \zeta, \vartheta, \Sigma,
\gimel

8. Trigonometry and special functions

« arg, cos, cot, csc, deg, det, dim, exp, gcd, hom, inf, ker, 1g, lim, In, log, max, min, pr,
sec, sin, sup, tan, arcsin, arccos, arctan, cosh, coth, liminf, limsup, sinh, tanh

9. Accents
« \hat, \widehat, \tilde, \widetilde, \overline, \bar

10. Numbers
11. Spacing

12. Braces

54

