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Abstract
Connectionist Temporal Classification has recently attracted a
lot of interest as it offers an elegant approach to building acous-
tic models (AMs) for speech recognition. The CTC loss func-
tion maps an input sequence of observable feature vectors to an
output sequence of symbols. Output symbols are conditionally
independent of each other under CTC loss, so a language model
(LM) can be incorporated conveniently during decoding, retain-
ing the traditional separation of acoustic and linguistic compo-
nents in ASR.

For fixed vocabularies, Weighted Finite State Transduc-
ers provide a strong baseline for efficient integration of CTC
AMs with n-gram LMs. Character-based neural LMs provide
a straight forward solution for open vocabulary speech recog-
nition and all-neural models, and can be decoded with beam
search. Finally, sequence-to-sequence models can be used to
translate a sequence of individual sounds into a word string.

We compare the performance of these three approaches,
and analyze their error patterns, which provides insightful guid-
ance for future research and development in this important area.
Index Terms: automatic speech recognition, character based
language models, decoding, neural networks

1. Introduction
Traditionally, Acoustic Models (AMs) of an Automatic Speech
Recognition system followed a generative approach based on
HMMs [1] where the emission probabilities of each state were
modeled with a Gaussian Mixture Model. Since the AM works
with phonemes as a target, during decoding the information of
the AM had to be combined with a pronunciation lexicon, which
maps sequences of phonemes to words, and a word based LM
[2].

More recent work has been focused on solutions which
come close to end-to-end systems. Connectionist Temporal
Classification (CTC) acoustic models [3] can directly model the
mapping between speech features and symbols without having
to rely on an alignment between the audio sequence and the
symbol sequence. However, the CTC objective function re-
quires that its output symbols are conditional independent of
each other. While this assumption is essential to learn a map-
ping between the speech features and the output sequence, it
also entails to add linguistic information during decoding.

Other end-to-end approaches that are inspired by recent de-
velopments in machine learning system such as [4] are [5, 6].
By attending to different frames for each output symbol atten-
tion based speech recognition systems are able to map speech
features to an output sequence.

This approach has no need to assume conditional indepen-
dence between its output, and therefore is theoretically able to

jointly learn acoustic and linguistic models implicitly.
While “traditional” from a strictly end-to-end point of view,

the separation of acoustic model and language model allows for
domain independence and adaptation or re-use of speech recog-
nition components. In this work we therefore investigate differ-
ent decoding strategies for CTC acoustic models, and provide
a comparison of their individual characteristics using the same
acoustic model. We provide a performance comparison, and
analyze the differences in the output of the model.

We compare the following approaches:

• Greedy Search without linguistic information

• WFST search with word language model [7, 8]

• Beam search using character RNN language model [9,
10]

• Sequence to Sequence approach using neural machine
translation

For each of these categories we implement a search algo-
rithm and evaluate it on the Switchboard Task, thereby pro-
viding a fair comparison of the most promising decoding ap-
proaches.

2. Related work
The simplest decoding algorithm is to pick the most likely char-
acter at each frame. This is commonly used to provide Charac-
ter Error Rates (CER) during training of the acoustic model and
can also be used to calculate Word Error Rates (WER), given
that the acoustic model has a notion of word boundaries. Word
boundaries can be modeled with a space symbol or by capital-
izing the first letter of each word [11]. While decoding CTC
acoustic models without adding external linguistic information
works well, a vast amount of training data should be used to get
competitive results [12].

A traditional approach to perform decoding over CTC is
to add linguistic information on the word level. Early work
did this with an ordinary beam search, that means by perform-
ing a breadth first search in the time dimension and keeping a
fixed number of partial transcriptions at every time step. For in-
cluding linguistic information when adding a new character to
a transcription, word based LMs were preprocessed [13, 14].

Weighted Finite State Transducers (WFST) present a gen-
eralized word based approach [7, 15]. WFST provide a conve-
nient framework to combine a word based n-gram model and
a lexicon which maps a sequence of symbols to a word into a
single search graph. While this allows to process both character
and phonemes as the output of the acoustic model, it can only
generate sequences of words from a fixed vocabulary.



Due to recent developments of character based LMs [16,
17], it is also a competitive option to directly add character level
linguistic information during the beam search. Currently, one of
the most promising approaches is to use a character based RNN
and query it when a new character is added to the transcription
[9, 10]. With its theoretically infinite context a character RNN
can encourage the transcription to be linguistically correct while
adding its information as soon as possible.

The last approach presented is to treat the decoding prob-
lem as a general sequence to sequence task. For each frame the
acoustic model outputs a probability distribution over all labels.
This information can be processed by another CTC model [11]
or by an attention based system [4] to produce a more linguis-
tically reasonable transcription. Recent approaches combine a
CTC model with an attention based mechanism and are able to
train this model jointly [18].

3. Acoustic Model
The AM of our system is composed by multiple RNN layers fol-
lowed by a soft-max layer. RNN layers, which are composed by
bidirectional LSTM units [19], provide the ability to learn com-
plex, long term dependencies. A sequence of multiple speech
features forms the input of our model. For each input the AM
outputs a probability distribution over its target alphabet. The
whole model is jointly trained under the CTC loss function [3].

More formally, let us define a sequence of n-dimensional
acoustic features X = (x1, . . . ,xT ) of length T as the input
of our model and L as the set of labels of our alphabet. These
labels can be either characters or phonemes. We augment L
with a special blank symbol ∅ and define L′ = L ∪ ∅.

Let z = (z1, .., zU ) ∈ LU be an output sequence of length
U ≤ T , which can be seen as the transcription of an input se-
quence. To define the CTC loss function we additionally need
a many to one mapping B that maps a path p = (p1, . . . pT ) ∈
L′T of the CTC model to an output sequence z. This map-
ping is also referred as the squash function, as it removes all
blank symbols of the path and squashes multiple repeated char-
acters into a single one (e.g. B(AA∅AAABB) = AAB). Note
that we do not squash characters that are separated by the blank
symbol as this still allows us to create repeated characters in the
transcription. Let us define the probability of a path as

P (p|X) =

T∏
t=1

yt
k (1)

where yt
k is the probability of observing the label k at time t. To

calculate the probability of an output sequence z we sum over
all possible paths:

P (z|X) =
∑

p∈B−1(z)

P (p|X) (2)

To perform the sum over all path we will use a technique in-
spired by the traditional dynamic programming method used in
HMMs, the forward-backward algorithm [1]. We additionally
force the appearance of blank symbols in our paths by augment-
ing the sequence of output labels during training with a blank
symbol between each of the labels of z as well as at the begin-
ning and the end of the sequence.

Given a sequence of speech features X = (x1, . . . ,xT ),
we can now calculate the probability distribution over the aug-
mented label set L′ for each frame. In the remainder of the
paper let P t

AM (k|X) denote the probability to encounter label

k ∈ L′ at time step t given the speech features X . The de-
coding strategies of the subsequent chapter will process this in-
formation in different ways to create a linguistically reasonable
transcription.

4. Decoding Strategies
In this section we describe different approaches on how to gen-
erate a transcription given the static sequence of probabilities
generated by the acoustic model.

4.1. Greedy Search

To create a transcription without adding any linguistic informa-
tion we use the decoding procedure of [3] and greedily search
the best path p ∈ L′T :

argmax
p

T∏
t=1

P t
AM (pt|X) (3)

The mapping of the path to a transcription z is straight for-
ward and works by applying the squash function: z = B(p).
For character based CTC acoustic models this procedure can
already provide useful transcriptions.

4.2. Weighted Finite State Transducer

To improve over the simple greedy search, the Weighted Finite
State Transducer (WFST) approach adds linguistic information
at the word level. First of all we preprocess the probability se-
quence with the prior probability of each unit of the augmented
label set L′.

p(X|k) ∝ P (k|X)/P (k) (4)

This does not have a proper theoretical motivation since the re-
sult is only proportional to a probability distribution. However,
by dividing through the prior probability units which are more
likely to appear at a particular position than their average will
get a high value.

The search graph of the WFST is composed of three indi-
vidual components:

• A token WFST maps a sequence of units in L′ to a single
unit in L by applying the squash function B

• A lexicon WFST maps sequences of units in L to words

• A grammar WFST encodes the permissible word se-
quences and can be created given a word based n-Gram
language model

The search graph is used to find the most probable word se-
quence. Note that the lexicon of the WFST allows us to deal
with character as well as phoneme based acoustic models.

4.3. Beam Search with Char RNN

In contrast to the WFST based approach we can directly apply
the probabilities at the character level with this procedure. For
now assume that the alphabet of the character based LM is equal
to L. We want to find a transcription which has a high probabil-
ity based on the acoustic as well as the language model. Since
we have to sum over all possible paths p for a transcription z
and want to add the LM information as early as possible, our
goal is to solve the following equation:

argmax
z

∑
B−1(z)=p

T∏
t=1

yt
pt · P

′
LM (pt|B(p1:t−1)) (5)



Note that we cannot estimate a useful probability for the blank
label ∅ with the language model, so we set P ′LM (∅|p) = 1∀p ∈
P(L′). To not favor a sequence of blank symbols, we apply
an insertion bonus b ∈ R for every pt 6= ∅. This yields the
following equation:

P ′LM (k|p) =

{
PLM (k|p) · b, if k 6= ∅
1, if k = ∅

(6)

where PLM (k|p) is provided by the character LM. As it is in-
feasible to calculate an exact solution to equation 6, we apply a
beam search similar to [10]1.

For AMs which do not use spaces nor have another notion
of word boundaries, it is possible to add this information based
only on the character LM. This can be achieved by adding a
copy of each transcription appended by the space symbol at
each time step. This works surprisingly well, since spaces at
inappropriate position will get a low LM probability. To the
best of our knowledge this is a novel approach and can easily
be extended to a larger number of characters, for example to
punctuation marks.

While this approach is only able to deal with character
based acoustic models, it can create arbitrary, open vocabulary
transcriptions.

4.4. Attention Based Sequence to Sequence Model

The attention based approach is an example for a sequence to
sequence model. We apply greedy search to the information
provided by the acoustic model and get a sequence of units z ∈
P(L). This sequence provides the input to the attention based
system. As in common neural machine translation models the
input gets transformed into a sequence of words.

Therefore the system first encodes the character sequence
using a RNN-based encoder, creating a sequence of hidden rep-
resentations h = (h1, . . . , hT ) of length T. During decod-
ing we calculate an attention vector a = (a1, . . . , aT ) with∑T

t=1 at = 1 for each output word based on the current hid-
den state of the decoder. With the hidden representation and the
attention vector we can now calculate the context vector c:

c =

T∑
t=1

at · ht (7)

The decoder uses the context vector to create a probability dis-
tribution over the vocabulary of output words. During decoding
beam search is used to find the most probable word sequence
given the input sequence of characters. By transforming the
input to a word sequence the attention model is able to add lin-
guistic information and create an improved transcription.

5. Training
This section describes the training process of the acoustic model
and the linguistically motivated models used in the different de-
coding approaches.

5.1. Acoustic Model

We use the Switchboard data set (LDC97S62) to train the AM.
This data set consists of 2,400 two-sided telephone conversa-
tions with a duration of about 300 hours. It is composed of
over 500 speakers with different US accents talking about 50

1Code is included within EESEN: https://github.com/srvk/eesen

randomly picked topics. We pick 4000 utterances as our valida-
tion set for hyper parameter tunning. Our target labels are either
phonemes or characters.

We also augment the training set to get a more generalized
model using two techniques. First, by reducing the frame rate,
applying a sub sampling and finally adding an offset we aug-
ment the number of training samples. Second, we augment
our training set by a factor of 10 applying slight changes to the
speed, pitch and tempo of the audio files. The model consist of
five bidirectional LSTM layers with 320 units in each direction.
It is trained using EESEN [20].

5.2. Weighted Finite State Transducer

As stated in section 4.2 our WFST implementation is composed
by three individual components. These components are imple-
mented using Kaldi’s [21] FST tools. We determine the weights
of the lexicon WFST by using a lexicon that maps each word to
a sequence of CTC labels. The grammar WFST is modeled by
using the probabilities of a trigram and 4-gram language model
smoothed with Kneser-Ney [22] discounting. We create the lan-
guage model based on Fisher transcripts and the transcripts of
the acoustic training data using SRILM [23].

5.3. Character Language Model

We train the Character LM with Fisher transcripts
(LDC2004T19, LDC2005T19) and the transcripts of the
acoustic training data (LDC97S62). Validation is done on
the transcription of the acoustic validation data. These tran-
scriptions are cleaned by removing punctuation marks and
duplicate utterances. This results in a training text of about
23 million words and 112 million characters. The alphabet of
the character LM consists of 28 characters, a start and end of
sentence symbol, a space symbol and a symbol representing
unknown characters. We cut all sentences to a maximum length
of 128 characters. We use a embedding size of 64 for the
characters, a single layer LSTM with 2048 Units and a softmax
layer implemented with DyNet [24] as our neural model.
Training is performed with the whole data using Adam [25] by
randomly picking a batch until convergence on the validation
data. We retrain the resulting model on the Switchboard
training data using Stochastic Gradient Descent with a low
learning rate of 0.01, which is inspired by [26]. This procedure
results in an average entropy of 1.34 bits per character (BPC)
on the train set, 1.37 BPC on the validation set and 1.46 BPC
on the evaluation set (LDC2002S09).

5.4. Attention Based Sequence to Sequence Model

The attention based model was trained on the Switchboard
training data. We decode the acoustic model without any lin-
guistic information by applying the greedy method of Sec-
tion 4.1. The sequence of generated characters is used as the
input to our model and we use the sequence of words in the
reference transcription as our desired output during training.

For implementing the attention based encoder decoder, we
use the Nematus toolkit [27]. In our experiments we use GRU
units in the encoder and the target sequence is generated using
conditional GRU units [27].

We use the default network architecture, with an embed-
ding size of 500 and a hidden layer size of 1024 and our output
vocabulary consists of almost 30,000 words. For regularization,
we use dropout [28]. Due to time constraints, we only use seg-
ments with a maximum length of 100 tokens. The system was



trained using Adadelta [29] and a mini-batch size of 80. We
performed early stopping on the validation data.

6. Experiments
We use the 2000 HUB5 “Eval2000” (LDC2002S09) dataset for
evaluation. It consist of a “Switchboard” subset, which is simi-
lar to the training data, and the “Callhome” subset. These sub-
sets allow to analyze the robustness of the individual approaches
to some extend.

Table 1: Comparison of Word Error Rates for different decoding
approaches on the Eval2000 (E2), Call Home (CH) and Switch-
board (SW) (sub-)sets.

Search Method Ac. Model E2 CH SW
Greedy Character 37.2% 44.0% 30.4%

Char Beam Character 25.1% 31.6% 18.6%
WFST Character 23.6% 30.2% 17.0%
WFST Phoneme 19.6% 25.5% 13.6%

Seq2Seq Character 34.4% 40.6% 28.1%
Seq2Seq Phoneme 26.5% 33.1% 19.8%

Char Beam [9] Character 30.8% 40.2% 21.4%
Char Beam [11] Character 32.1% 19.8%

WFST [11] Character 26.3% 15.1%
Seq2Seq [11] Character 37.1% 24.7%

For the Greedy Search, we use an alphabet consisting of
upper and lowercase characters. As in [11], an upper case char-
acter denotes the start of a new word. For all other character
based AMs we only use lowercase characters without a space
unit. Table 1 shows the results, and compares our findings (top
part) against related results from the literature (bottom part).

While Open Vocabulary approaches such as the charac-
ter RNN approach are still slightly inferior to word-based ap-
proaches, adding linguistic information at the character level
yields competitive results compared to a tuned word based
WFST system. Using the character LM during the Beam Search
significantly reduces incorrectly recognized words, which did
not appear in the training text (199), by a factor of 30 compared
to a simple beam search (6274). This amounts to a rate of 0.5%,
which compares favorably to the out of vocabulary rate of the
WFST based approach 0.9%. These remaining errors are for the
most part very similar to valid English words, and could be con-
sidered spelling mistakes (“penately”) or newly created words
(“discussly”). Only on rare occasion does the Character LM
not add a space between words (“andboxes”). Most notably, the
Open Vocabulary approach was able to generate correct words,
which did not appear in the training corpora, including “boger”,
“disproven”, “ducting”, “fringing”, “spick” and “peppier”.

Table 2: Insertion Rate (I), Substitution Rate (S) and Dele-
tion Rate (D) for multiple decoding algorithm using Character
based AMs evaluated on the Eval2000 dataset.

Method I S D
Greedy 2.4% 26.2% 8.6%

Character Beam 3.6% 16.5% 5.0%
WFST 8.8% 13.0% 1.9%

Seq2Seq 6.6% 21.9% 5.9%

Table 2 shows the insertion, deletion, and substitution rates.
We consistently used an insertion bonus of 2.5 in our experi-
ments with the beam search. The application of an insertion

bonus every time when reducing the probability by the char-
acter based LM yields balanced insertion and deletion errors.
Additionally the logarithm of the insertion bonus corresponds
well with the entropy of the character language model on the
validation set (log2(2.5) = 1.3, validation entropy: 1.37 BPC).
Overall, the error patterns of all three systems seem remarkably
similar, even though the WFST system has been tuned more
aggressively than the other two systems, and thus exhibits un-
balanced insertions and deletions.

Table 3: Example output of a cherry picked utterance

Method Text
Reference he is a police officer

Greedy he’sapolifefolvisere
Character Beam he’s a police officer

While the attention based system was able to improve over
the greedy search results, it did not achieve large gains on the
character based AM. We speculate that it might not be the best
option to use the transcription of the greedy decoding as the
input to the attention based system. We argue that by provid-
ing the complete probability distribution over each character the
WFST is able to use more information and can outperform the
attention based system. Table 3 shows an example utterance to
visualize the characteristics of the different systems.

Our character based system is competitive to the recently
published results in [11], which represent state of the art results.
We are within 2% WER of the reported number for word based
WFST. For open vocabulary, character based speech recogni-
tion we report an improvement of over 1% WER compared to
previous results [11, 9].

7. Conclusions
In this paper, we compare different decoding approaches for
CTC acoustic models, which are trained on the same, open
source platform. A “traditional” context independent WFST ap-
proach performs best, but the open vocabulary character RNN
approach performs only about 10% relative worse, and produces
a surprisingly small number of “OOV” errors. The Seq2Seq ap-
proach produces reasonable performance as well, and is very
easy to train, given that the CTC model already produces a sym-
bolic tokenization of the input. This trick allows us to outper-
form true end-to-end approaches such as [30].

We believe that these results show that there is currently a
multitude of different algorithms that can be used to perform
speech recognition in a neural setting, and there may not be a
“one size fits all” approach for the foreseeable future. While
WFST is well understood and fast to execute, the Seq2Seq ap-
proach might integrate well with machine translation, while the
character RNN approach might perform well for morphologi-
cally complex languages.

We are continuing to further develop these approaches, in
order to better understand their characteristics also on non-
English data, with different vocabulary growth, or under vari-
able acoustic conditions.
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