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Abstract Using supporting backchannel (BC) cues can make human-computer
interaction more social. BCs provide a feedback from the listener to the speaker
indicating to the speaker that he is still listened to. BCs can be expressed in different
ways, depending on the modality of the interaction, for example as gestures or
acoustic cues. In this work, we only considered acoustic cues. We are proposing an
approach towards detecting BC opportunities based on acoustic input features like
power and pitch. While other works in the field rely on the use of a hand-written
rule set or specialized features, we made use of artificial neural networks. They are
capable of deriving higher order features from input features themselves. In our setup,
we first used a fully connected feed-forward network to establish an updated baseline
in comparison to our previously proposed setup. We also extended this setup by the
use of Long Short-Term Memory (LSTM) networks which have shown to outperform
feed-forward based setups on various tasks. Our best system achieved an F1-Score of
0.37 using power and pitch features. Adding linguistic information using word2vec,
the score increased to 0.39.

1 Introduction

With dialog speech technology increasingly entering the mainstream of our every
day lives (Siri, Cortana, Alexa, . . . ), there is a growing interest in dialog systems that
are not only utilitarian (to answer questions or carry out tasks), but also to entertain
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and to be social. Humanoid robots, interactive toys, virtual assistants and even virtual
psychiatrists and pets attempt to add an emotional and social dimension to human
interaction that may go beyond improving the user experience of existing dialog
systems, and thus require increasingly skillful and adept social interaction. Social
dialogs are, however, much less well understood than goal directed ones. They do not
aim for a particular outcome other than the more indirect goals of growing a mutual
understanding, empathizing, bonding and entertaining between humans.

In the present paper, we are proposing a neural network based system to gen-
erate a social response. Our first attempt in this regard aims to predict a suitable
social response, when human speakers take “the floor” and are sharing thoughts and
experiences. The so-called “backchannel” (BC) involves short phrases (“uh-huh”,
“hum“, “yeah”, “right”, etc.) whose role is to signal to another speaker that one is
listening and paying attention. Further extensions also empathize, confirm, approve
or disapprove. In conversational speech, BCs complement turn taking where more
rapid questions and responses are exchanged. Despite its simple function, however,
the BC is surprisingly complex: It must be chosen properly, timed correctly and
placed at appropriate intervals. It also responds to content, emotion and discourse
state.

In this paper, we describe a neural network approach to learning the production
of proper BC cues. We will focus on short phrasal BC cues during longer stretches
of conversational speech, where another speaker has taken the floor. Appropriate
prediction of backchanneling is learned from human conversation and includes
acoustic and linguistic features. In our work, we use recurrent neural networks to
learn the choice and placement of appropriate BC cues from conversational data
(Switchboard). Special attention is given to producing “causal” backchanneling, i.e.,
so that the generation of a BC can be produced in real-time systems with information
of the past.

This paper is organized as follows: In the next Section, we provide an overview
of related work. In Section 3, we describe our approach in detail, followed by an
overview of the experimental setup in Section 4. The results of the experiments
are presented in Section 5. This paper concludes with an outlook to future work in
Section 6.

2 Related Work

Different approaches towards BC prediction have been proposed in the past. They
are based on different types of predictors and use a wide variety of input modalities.
These modalities include acoustic features like pause and pitch, but also visual cues
like head movement. In addition to these direct features, additional information
sources like language models or part of speech tagging exist.

Many approaches are rule based. [25] proposed a method that uses acoustic
features. The authors state that the most important acoustic phenomena for BC
prediction occur right before a BC. As features, they used pause information, as well
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as pitch (falling or rising slope). They conducted their experiments on a Dutch corpus
and report that the most important feature in their work is the duration of the pause.
[27] proposed a similar approach triggering BCs at low pitch and pause regions
in English and Japanese. But building a rule based system might prove difficult as
these rules have to be manually created, which is a time-consuming and difficult to
generalize. Other works included data-driven methods in which a classifier is trained
and the output of this classifier is then post-processed. [16] proposes an approach
that incorporates sequential probabilistic models like Hidden Markov Models or
Conditional Random Fields. They used a set of features including eye gaze and
several features derived from the audio signal, e.g., downslopes in pitch or certain
types of volume changes. In another approach, predicting different types of BC was
attempted [8]. Detecting BCs in real-time was also proposed [20] in the past.

There exists another category of systems that make use of artificial neural net-
works (ANNs). Being a data-driven method, NNs do not require handwritten rules.
They have shown to be a versatile tool with the ability to learn relevant features
automatically. A first approach towards detecting speech acts (including BCs) was
proposed by Ries [19]. He used an NN in combination with an HMM. Stolcke also
proposed NN based methods for modelling dialogue acts [23, 22]. In the past, we
also proposed an NN based approach [17] that was mainly data-driven, requiring
only minimal post-processing of the network outputs. In this first approach, we used
a very basic ANN based setup, which we now refined.

The objective evaluation of systems for BC prediction is difficult because BC
behaviour is very speaker-dependent and subjective. As an objective measurement,
the use of the F1-Score has been established. [11] provides a comparison of different
approaches for evaluation. In addition to objective measures, user studies are also a
possibility to evaluate BC systems, like we did in the past [17]. A general study about
the occurrence of BCs with respect to their role in facilitating attentive listening also
exists [7].

3 Backchannel Prediction

3.1 BC Utterance Selection

There are different kinds of phrasal BCs, they can be non-committal, positive, neg-
ative, questioning, et cetera. To simplify the problem of predicting BCs, we only
try to predict the trigger times for any type of BC, ignoring the distinction between
different kinds of responses.
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3.2 Feature Selection

A neural network is able to learn advantageous feature representations on its own.
Hence, feeding the absolute pitch and power (signal energy) values for a given time
context enables the network to automatically extract the relevant information such
as pitch slopes and pause triggers, as used in related research [16]. In addition to
pitch and power, we also evaluated using other acoustic features such as the funda-
mental frequency variation (FFV) [12] and the Mel-frequency cepstral coefficients
(MFCCs). Finally, we tried adding an encoding of the speakers’ word history before
the listener backchannel using word2vec [14] to assess whether our setup benefits
from multimodal input features.

3.3 Training and Neural Network Design

We assumed to have two separate, but synchronized audio channels and corresponding
transcripts: One for the speaker and one for the listener. We needed to decide which
areas of audio to use to train the network. As we wanted to predict the BCs in an
online fashion without using future information, we needed to train the network to
detect segments of audio from the speaker track that would potentially cause a BC in
the listener track. We chose the beginning of the BC utterance as an anchor and used
a fixed context before that as the positive prediction area. We also needed to choose
negative examples, so the network would not be biased to always predict a BC. We
did this by selecting the range a few seconds before each BC, because in that area
the listener explicitly decided not to give a backchannel response yet. This resulted
in a fully balanced training dataset.

We initially used a feed forward network architecture. The input layer consists of
all the chosen features over the previously selected fixed time context. The output
layer has two softmax neurons representing the “categories” [BC, non-BC]. We used
back-propagation to train the network on the outputs [1, 0] for BC and [0, 1] for
non-BC prediction areas. We only need to consider one of these outputs because the
softmax function guarantees that they add up to one. We evaluated multiple different
combinations of network depths and neuron counts. An example of the architecture
with two hidden layers can be seen in Figure 1.

The placement of future BCs is dependent on the timing of previous BCs. The
probability of a BC increases with longer periods without any listener feedback.
To accommodate for this, we want the network to also take its previous internal
state or outputs into account. We do this by modifying the above architecture to use
Long-short term memory (LSTM) layers instead of feed forward layers.
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Fig. 1: Example for a neural network architecture for BC prediction.

4 Experimental Setup

4.1 Dataset

We used the Switchboard dataset [3], which consists of 2,438 English telephone
conversations of five to ten minutes, 260 hours in total. Pairs of participants from
across the United States were encouraged to talk about a specific topic chosen
randomly from 70 possibilities. Conversation partners and topics were selected so
two people would only talk once with each other, and every person would only
discuss a specific topic once.

These telephone conversations are annotated with transcriptions and word align-
ments [4] with a total of 390k utterances or 3.3 million words. We split the dataset
randomly into 2,000 conversations for training, 200 for validation and 238 for eval-
uation. We used annotations from the Switchboard Dialog Act Corpus (SwDA)
[6] to decide which utterances to classify as BCs. The SwDA contains categorical
annotations for the utterances of about half of the data of the Switchboard corpus.

4.2 Extraction

We chose to use the top 150 most common unique utterances marked as BCs from
the SwDA. Because the SwDA is incomplete, we had to identify utterances as BCs
just by their text. We manually included some additional utterances that were missing
from the SwDA transcriptions but present in the original transcriptions, by going
through the most common utterances and manually selecting those that seemed
relevant, such as ‘um-hum yeah’ and ‘absolutely’. The most common BCs in the data
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set are “yeah”, “um-hum”, “uh-huh” and “right”, adding up to 68% of all extracted
BC phrases.

To select which utterances should be categorized as BCs and used for training, we
first filtered noise and other markers such as laughter from the transcriptions. Some
utterances such as “uh” can be both BCs and speech disfluencies, so we only chose
those that have either silence or another BC before them. With this method a total of
15.7% of utterances or 2.21% of words were labelled as BCs.

We used the Janus Recognition Toolkit [13] for parts of the feature extraction
(power, pitch tracking, FFV, MFCC). Features were extracted for 32 ms frame win-
dows with a frame shift of 10 ms, resulting in 100 samples per feature dimension per
second. Because most of the data does not change much every 10 ms, we also test
different context strides by only extracting every n-th frame. As an example, 800 ms
of context with a stride of 2 corresponds to 40 data frames. For word2vec, we chose
to also emit one frame every 10 ms for consistency, containing the encoding of the
last non-silent word that ended before or at the time of the frame.

4.3 Training

We used Theano [24] with Lasagne [1] for rapid prototyping and testing of different
parameters.1 To evaluate different hyperparameters, we trained multiple network
configurations with various context lengths (500ms to 2000ms), context strides (1 to
4 frames), network depths (one to four hidden layers), layer sizes (15 to 125 neurons),
activation functions (tanh and relu), optimization methods (SGD, Adadelta and Adam
[9]), weight initialization methods (constant zero and Glorot [2]), and layer types
(feed forward and LSTM).

The LSTM networks we tested were prone to overfitting quickly. We tried two
methods of regularization to overcome this. The first was Dropout training, where we
randomly dropped a specific portion of neuron outputs in each layer for each training
batch [21]. We evaluated dropout layer combinations from 0 to 50% while increasing
layer sizes proportionately, but this did not improve the results. The second was
adding L2-Regularization with a constant factor of 0.0001. This greatly reduced
overfitting and slightly improved the results.

4.4 Postprocessing

We interpret the output value of the neural networks as the probability of a BC
occurring at a given time. As the output is very noisy, we first apply a low-pass filter.
To ensure our prediction does not use any future information, we use a Gaussian filter

1 Our code for extraction, training, postprocessing and evaluation will be available at
https://github.com/phiresky/backchannel-prediction. The repository also
contains a script to reproduce all of the results of this paper.

https://github.com/phiresky/backchannel-prediction
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which is asymmetrically cut off at some multiple c of the standard deviation σ for
the side that would range into the future, and offset it so the last frame is at ±0ms
from the prediction target time. This means the latency of our prediction increases
by c ·σ ms. If we choose c = 0, we cut off the complete right half of the bell curve,
keeping the latency at 0 at the cost of accuracy of the filter.

After the low-pass filter, we select every area for which the value exceeds a given
threshold. We trigger either at the beginning of each of these areas or at their first
local maximum, depending on the largest acceptable latency. This varies depending
on the chosen allowed margin of error as defined in subsection 4.5. An example of
this postprocessing process can be seen in Figure 2.

Raw net output

Smoothed

Audio output
Trigger

if nothing else i tend to turnonthe television at eleven o'clock just to watch th

Threshold

Fig. 2: Postprocessing example

We determined the optimal postprocessing hyperparameters for each network
configuration and allowed margin of error automatically using Bayesian optimization
[15] with the validation F1-Score as the utility function. For a margin of error of [0 ms,
+1000 ms], the resulting standard deviation σ ranged from 200 ms to 350 ms, and
the filter cut-off ranged from 0.9σ to 1.4σ . With this margin of error, the prediction
can happen with a delay of up to one second after the ground truth. When choosing
a margin of error that only allows a smaller delay such as [-200 ms, +200 ms], the
selected standard deviation ranged from 150 ms to 250 ms, and the filter cut-off
ranged from 0.0σ to 1.0σ , causing the predicted trigger to happen earlier.

4.5 Evaluation

The training data contains two-sided conversations. Because the output of our predic-
tor is only relevant for segments with just one person talking, we run our evaluation
on monologuing segments. We define a monologuing segment as the maximum
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possible time range in which one person is continuously talking and the other person
is continuously not talking for at least five seconds. A person is continuously talking
iff they are only emitting utterances that are not silence or BCs. We only consider
segments of a minimum length of five seconds to exclude sections of alternating
conversation. This way we get segments where one participant is talking, and the
other is producing backchannels without taking the turn.

We define a prediction time as correct if it is within a given margin of error of
the onset of a correct BC utterance. We did most of the testing of our predictions
with an error margin of [0 ms, +1000 ms], but also provide results for other margins
used in related research. For comparison, we also evaluated a random predictor as a
baseline. This predictor knows the correct count of BCs for a audio file and returns a
uniformly distributed set of trigger times.

5 Results

We use “70 : 35” to denote a network layer configuration of input→ 70 neurons→
35 neurons→ output.

We tested different context widths. A context width of nms means we use the range
[−nms,0ms] from the beginning of the backchannel utterance. The results improved
when increasing the context width from our initial value of 500 ms. Performance
peaked with a context of about 1500 ms, as can be seen in Table 1a, longer contexts
tended to cause the predictor to trigger too late. We tested using only every n-th
frame of input data. Even though we initially did this for performance reasons, we
noticed that training on every single frame has worse performance than skipping
every second frame due to overfitting. Taking every fourth frame seems to miss too
much information, so performance peaks at a context stride of 2, as seen in Table 1b.

We tested different combinations of features, with using solely power in a first
approach. But adding prosodic features gives great improvements. Using FFV as
the only prosodic feature performs worse than FFV together with the absolute pitch
value. Adding MFCCs does not seem to improve performance in a meaningful way,
when also using pitch, see Table 1c for more details. Note that using only word2vec
performs reasonably well, because with our method it indirectly encodes the time
since the last utterance, similar to the power feature. Table 1d shows a comparison
between feed forward and LSTM networks. The parameter count is the number of
connection weights the network learns during training. Note that LSTMs have higher
performance, even with similar parameter counts. We compared different layer sizes
for our LSTM networks, as shown in Table 1e. A network depth of two hidden layers
worked best, but the results are adequate with a single hidden layer or three hidden
layers.

In Table 2, our final results are given for the completely independent evalua-
tion data set. We compared the results from [17] with our system. [17] used the
same dataset, but focused on offline predictions, meaning their network had future
information available, and they evaluated their performance on the whole corpus
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including segments with silence and with alternating conversation. We adjusted our
baseline and evaluation system to match their setup by removing the monologuing
constraint described in subsection 4.5 and changing the margin of error to [-200 ms,
+200 ms]. As can be seen in Table 2a, our predictor performs better. All other related
research used different languages, datasets or evaluation methods, rendering a direct
comparison difficult because of slightly different tasks.

Table 2b shows the results with our presented evaluation method. We provide
scores for different margins of error used in other research. Subjectively, missing
a BC trigger may be more acceptable than a false positive, so we also provide
a result with balanced precision and recall. Note that a later margin center with
the same margin width has higher performance because it allows more latency in
the predictions, which means we can choose better postprocessing parameters as
described in subsection 4.4.

6 Conclusion and Future Work

We have presented a new approach to predict BCs using neural networks. With
refined methods for network training as well as different network architectures, we
could improve the F1-Score in contrast to our previous experiments. In addition
to evaluating different hyperparameter configurations, we also experimented with
LSTM networks, which lead to improved results. Our best system achieved an
F1-Score of 0.388.

We used linguistic features via word2vec only in a very basic way, assuming the
availability of an instant speech recognizer by using the reference transcripts. As
low-latency speech recognition is possible [18], one of the next steps would be to
combine both systems. Further work is needed to evaluate other methods for adding
word vectors to the input features and to analyze problems with our approach. We
only tested feed forward neural networks and LSTMs, other architectures like time-
delay neural networks [26], also called convolutional neural networks, may also give
interesting results. Our approach of choosing the training areas may not be optimal
because the delay between the last utterance of the speaker and the backchannel can
vary significantly. One possible solution would be to align the training area by the
last speaker utterance instead of the backchannel start.

Because backchannels are a largely subjective phenomenon, a user study would
be helpful to subjectively evaluate the performance of our predictor and to compare it
with human performance in our chosen evaluation method. Another method would be
to find consensus for backchannel triggers by combining the predictions of multiple
human subjects for a single speaker channel as described by Huang et al. (2010) as
“parasocial consensus sampling” [5].

Acknowledgements This work has been conducted in the SecondHands project which has received
funding from the European Union’s Horizon 2020 Research and Innovation programme (call:H2020-
ICT-2014-1, RIA) under grant agreement No 643950.
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Table 1: Results on the Validation Set. All results use the following setup if not
otherwise stated: LSTM, configuration: (70 : 35); input features: power, pitch, ffv;
context width: 1500 ms; context frame stride: 2; margin of error: 0 ms to +1000 ms.
Precision, recall, and F1-Score are given for the validation data set.

(a) Results with various context
lengths. Performance peaks at
1500 ms.

Context Precision Recall F1-Score

500 ms 0.219 0.466 0.298
1000 ms 0.280 0.497 0.358
1500 ms 0.305 0.488 0.375
2000 ms 0.275 0.577 0.373

(b) Results with various context
frame strides.

Stride Precision Recall F1-Score

1 0.290 0.490 0.364
2 0.305 0.488 0.375
4 0.285 0.498 0.363

(c) Results with various input features, separated into only acous-
tic features and acoustic plus linguistic features.

Features Precision Recall F1-Score

power 0.244 0.516 0.331
power, pitch 0.307 0.435 0.360
power, pitch, mfcc 0.278 0.514 0.360
power, ffv 0.259 0.513 0.344
power, ffv, mfcc 0.279 0.515 0.362
power, pitch, ffv 0.305 0.488 0.375

word2vecdim=30 0.244 0.478 0.323
power, pitch, word2vecdim=30 0.318 0.486 0.385
power, pitch, ffv, word2vecdim=15 0.321 0.475 0.383
power, pitch, ffv, word2vecdim=30 0.322 0.497 0.390
power, pitch, ffv, word2vecdim=50 0.304 0.527 0.385

(d) Feed forward vs LSTM. LSTM outperforms feed forward
architectures.

Layers Parameter count Precision Recall F1-Score

FF (56 : 28) 40k 0.230 0.549 0.325
FF (70 : 35) 50k 0.251 0.468 0.327
FF (100 : 50) 72k 0.242 0.490 0.324

LSTM (70 : 35) 38k 0.305 0.488 0.375

(e) Comparison of different network con-
figurations. Two LSTM layers give the
best results.

Layer sizes Precision Recall F1-Score

100 0.280 0.542 0.369
50 : 20 0.291 0.506 0.370
70 : 35 0.305 0.488 0.375
100 : 50 0.303 0.473 0.369

70 : 50 : 35 0.278 0.541 0.367
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Table 2: Final best results on the evaluation set (chosen by validation set)

(a) Comparison with previous research. [17] did their evaluation without the
constraints defined in subsection 4.5, so we adjusted our baseline and evaluation
to match their setup.

Predictor Precision Recall F1-Score

Baseline (random) 0.042 0.042 0.042
Müller et al. (offline) [17] – – 0.109
Our results (offline, context of −750 ms to 750 ms) 0.114 0.300 0.165
Our results (online, context of −1500 ms to 0 ms) 0.100 0.318 0.153

(b) Results with our evaluation method with various margins of error used in other research [10].
Performance improves with a wider margin width and with a later margin center.

Margin of Error Constraint Precision Recall F1-Score

−200 ms to 200 ms 0.172 0.377 0.237
−100 ms to 500 ms 0.239 0.406 0.301
−500 ms to 500 ms 0.247 0.536 0.339

0 ms to 1000 ms Baseline (random, correct BC count) 0.111 0.052 0.071
Baseline (random, 8x correct BC count) 0.079 0.323 0.127
Balanced Precision and Recall 0.342 0.339 0.341
Best F1-Score (only acoustic features) 0.294 0.488 0.367
Best F1-Score (acoustic and linguistic features) 0.312 0.511 0.388
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