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Abstract

Posterior inference in directed graphical models

is commonly done using a probabilistic encoder

(a.k.a inference model) conditioned on the input.

Often this inference model is trained jointly with

the probabilistic decoder (a.k.a generator model).

If probabilistic encoder encounters complexities

during training (e.g. suboptimal complxity or pa-

rameterization), then learning reaches a subopti-

mal objective; a phenomena commonly called in-

ference suboptimality (Cremer et al., 2018). In

Variational Inference (VI)(Jordan et al., 1999),

optimizing the ELBo using Stochastic Varia-

tional Inference (SVI) (Rezende et al., 2014) can

eliminate the inference suboptimality (as demon-

strated in this paper), however, this solution

comes at a substantial computational cost when

inference needs to be done on new data points.

Essentially, a long sequential chain of gradient

updates is required to fully optimize approximate

posteriors. In this paper, we present an approach

called Pseudo-Encoded Stochastic Variational In-

ference (PE-SVI), to reduce the inference com-

plexity of SVI during test time. Our approach

relies on finding a suitable initial start point for

gradient operations, which naturally reduces the

required gradient steps. Furthermore, this ini-

tialization allows for adopting larger step sizes

(compared to random initialization used in SVI),

which further reduces the inference time com-

plexity. PE-SVI reaches the same ELBo objec-

tive as SVI using less than one percent of re-

quired steps, on average.

1. Introduction

Training directed graphical models using Variational In-

ference (VI) has a long history in machine learning re-

search (Jordan et al., 1999) . Commonly, inference is done
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using probabilistic inference models (Dayan et al., 1995)

such as a probabilistic encoder in VAE (Kingma & Welling,

2013). Using a parameteric model to perform inference

allows for fast inference given new datapoints. How-

ever, if inference network encounters difficulties, then max-

imization of ELBo is done suboptimally (Cremer et al.,

2018). Previous works have attempted to mitigate the infer-

ence suboptimality using fine-tuning (Hjelm et al., 2016),

ladder-based models (Sønderby et al., 2016) and Hessian-

based models (Kim et al., 2018). While these attempts

have been very successful in dealing with numerical in-

stabilities, inference suboptimality due to limited infer-

ence model capacity is intertwined with the nature of in-

ference models CITE. Alternatively, to avoid this inference

suboptimality altogether, as shown in this paper, one can

rely on Stochastic Variational Inference (SVI) using free-

form posterior parameterization and mean-field approxima-

tion (Rezende et al., 2014). However, using SVI, inference

for new datapoint requires a long gradient (or somewhat

faster alternative meta-gradient approaches) update chain,

which makes the inference suffer heavily during test time.

Essentially, parameters of approxiamte posteriors are ini-

tialized randomly and updated iteratively until ELBo maxi-

mization objective is reached.

In this paper, we assume the following separation about the

inference process of SVI: 1) a suboptimal initial inference

that a reasonably parameterized inference model can reach,

2) subsequent gradient-based updates to reach full ELBo

maximization. Using the above assumption, we reach

at a simple-yet-elegant framework called Pseudo-Encoded

Stochastic Variational Inference (PE-SVI): a framework for

test-time inference speed-up of SVI. The learning process

is separated in three parts: (a) Early Decoder Training:

which trains a decoder using SVI to maximize the lower-

bound of likelihood using tractable easy-to-sample approx-

imate posteriors. (b) Deferred Encoder Training: After

the decoder and approximate posterior parameters are fully

learned over the train set, a pseudo-encoder is trained in

a supervised fashion between input data points and their

respective approximate posterior parameters. Pace Adjust-

ment: After initial approximate posterior parameter esti-

mation using the trained encoder, the step size can be in-

creased and tuned for fast convergence. Such large step

sizes are often detrimental to SVI if approximate posterior

parameters are initialized randomly.

http://arxiv.org/abs/1912.09423v1
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The following summarizes, contributions and findings of

this paper:

• We present a speed-up framework for test-time

Stochastic Variational Inference (SVI), called Pseudo-

Encoded Stochastic Variational Inference (PE-SVI).

PE-SVI is easy to implement and does not require

complex or costly calculations during train time (e.g.

Hessian calculations (Kim et al., 2018)).

• PE-SVI is able to reach the same ELBo as SVI, with

a fraction of the required steps. In our experiments

over publicly available datasets, PE-SVI reaches simi-

lar performance as SVI in an average of 15.2 gradient

updates, while SVI takes substantially larger number

of steps with an average of 1826.1.

• To our surprise, ELBo loss achieved using PE-SVI’s

pseudo-encoder without any gradient steps in majority

of times is better than end-to-end training of both en-

coder and decoder for VI (i.e. VAE). In simple terms,

our experiments controversially hint that it is better to

train the decoder first and subsequently the encoder,

as opposed to training both end-to-end. This is further

discussed in Section 5.

2. Background and Related Works

In this section we first start with the background required

for VI and SVI. We subsequently discuss the comparison

between our approach and previous methods for improving

SVI inference complexity.

2.1. Variational Inference

Let samples drawn as (z, x) ∼ p(z)p(x|z) form a dataset

S = {(zi, xi)}
|S|
i=1. xi, zi are regarded as observed and la-

tent variables. Unfortunately zi, being the latent space gen-

erating the data xi, is not observable. Therefore, MLE on

the joint distribution is not possible. Considering a paramet-

ric distribution with parameters θ, the marginal likelihood

can be written as:

L(i)(θ) = log

∫
pθ(z, xi) dz =

−

∫
qφ(z|xi) log

pθ(z|xi)

qφ(z|xi)
dz

+

∫
qφ(z|xi) log

pθ(z|xi)pθ(xi)

qφ(z|xi)
dz

(1)

Calculating the MLE using the first line of Equation 1

is still not tractable due to the latents being unobserved.

Using Variational Inference (VI), a tractable and easy-to-

sample approximate posterior distribution qφ(·) can be uti-

lized as shown in the equation above. The second line of

Equation 1 denotes two distinct terms with the condition

that qφ(z|x) > 0 ⇐⇒ pθ(z|x) > 0. The first term de-

notes the KL divergence between the real and approximate

posterior distributions. Minimizing this KL term between

parametric posterior qφ(·) and true posterior pθ(·) would

allow for sampling from q(·) as proxy of pθ(·), however

the KL cannot be efficiently calculated due to true posterior

pθ(·) not being easy to sample from. The second term is the

Evidence Lower Bound (ELBo) of the likelihood which is

equal to the following:

ELBo = Eqφ(z|xi)[log pθ(x|z)]− KL(qφ(z|xi)||pθ(z))
(2)

The first term in the RHS of Equation 2 is the expected

reconstruction of the observed data using parametric prob-

abilistic model pθ , under approximate density qφ(·). The

seconds term encourages good prior density estimation for

qφ(·), with the prior pθ(·) often being a desired distribution

in practice.

A notable neural model that follows the above vari-

ational framework is Variational Auto-Encoder (VAE

(Kingma & Welling, 2013)). VAE uses an encoder to pa-

rameterize the distribution qφ(·). During learning, the

AEVB algorithm is used for training an encoder (or infer-

ence network) and decoder jointly together using a repa-

rameterization trick. An alternative framework is Stochas-

tic Variational Inference (SVI (Hoffman et al., 2013)),

where the approximate posterior parameterization is done

using well-known distributions as opposed to a neural

model. SVI has certain appealing applications, for example

SVI framework is used in Variational Auto-Decoder (VAD)

for learning generative models from data with severe miss-

ingness (Zadeh et al., 2019).

2.2. Amortization Gap

In a generative modeling framework, often the decoder

is considered the main component of the model. This is

conventionally the component that receives samples drawn

from a latent posterior distribution, and generates new data

points. Using SVI (Hoffman et al., 2013) with a mean-field

assumption, one can train such a model without the need for

an encoder (i.e. inference) network. However, if inference

is ever required during test time, such models suffer heavily

due to relying on test-time gradient (or meta-gradient) de-

scent (which is a non-parallelizable sequential operation).

Using an encoder allows the process of inference to become

more efficient; during test time, one can simply feed the

datapoint into an encoder to get the parameters of the pos-

terior distribution. This process is far less computationally

exhaustive than gradient-based inference (since operations

inside a network are usually parallelized).

However, if the inference network cannot be trained effi-
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ciently - e.g. has limited capacity, or undergoes difficulties

during training, or simply the nature of data is too hard

for dimensionality reduction using a neural structure - then

the process of learning a generative model may be subop-

timal. This is called an Amortization Gap (Cremer et al.,

2018), which can be somewhat mitigated using methods

that require second-order gradient of the model’s opti-

mizer (Kim et al., 2018). Amortization Gap is not a the-

oretical weakness of inference networks (note the universal

approximation theory of neural networks), but rather an em-

pirical phenomena best describable by finite-neuron neural

networks. A free-form mean-field approximate posterior in-

ference technique such as SVI can mimic an encoder with

very large capacity (due to mean-field assumption and full

independence of latent parameters), and does not suffer the

same gap (as shown in this paper). However, as mentioned,

this comes at the cost of inference time complexity.

3. Pseudo-Encoded Stochastic Variational

Inference

In this section, we outline the training process of the

Pseudo-Encoded Stochastic Variational Inference (PE-SVI)

framework. Training in PE-SVI is split into 3 parts: 1)

Early Decoder Training, 2) Deferred Encoder Training, and

3) Pace Adjustment.

3.1. Early Decoder Training

At the first step within PE-SVI framework, a decoder is

trained (without an attached encoder). Essentially, we use

Stochastic Variational Inference (SVI) with mean-field as-

sumption on latent dimensions. Assume samples z ∼
qφ(z|xi) are drawn from a given known family of distribu-

tions (e.g. Gaussian). To generate data similar to xi, these

samples are then used as input to a decoder Dθ(zi). The

reconstructed samples of this probabilistic decoder should

show high resemblance such that ELBo (Equation 2) is

maximized w.r.t θ, and φ.

pθ(x|z) in turn can be defined as:

pθ(x|z) = N (Dθ(z);xi,Λi) (3)

The high likelihood is therefore attributed to the low

squared distance (as measure) between the output recon-

struction of Dθ(·) and the ground-truth xi. Λi is the co-

variance matrix of the above likelihood. The approximate

posterior is not parameterized by an encoder, but rather by

well-known distributions such as a Gaussian (in this paper):

qφ(z|xi) := N (z;µi,Σi) (4)

At the beginning of training, parameters of the approxi-

mate posterior qφ(·) are initialized randomly (e.g. uni-

form), same as parameters θ of the probabilistic decoder

pθ(·). Within each batch of the training data, the gradient

of lower-bound is calculated and the parameters of qφ(·)
and pθ(·) are updated. Since there is no encoder attached to

the network, backpropagation is only done to the decoders

parameters (θ). In the meantime, backpropagation also hap-

pens for parameters of the approximate posterior (φ). Up-

dates on the parameters of approximate posterior qφ(z|xi)
are only done once in an epoch, when backpropagating the

ELBo for xi. Training is done until convergence w.r.t both

θ and φ. The output of the Early Decoder Training phase is

the trained approximate posteriors qφ∗(z|xi) as well as the

trained decoder Dθ∗(·).

3.2. Deferred Encoder Training

After training is done, we use a neural model, also re-

ferred to as pseudo-encoder in this paper, Eγ(x) to per-

form a similar role as an encoder. Unlike conventional

encoder-decoder architectures (in which encoder is trained

end-to-end alongside the decoder) in PE-SVI, the pseudo-

encoder is trained only after decoder is fully learned. The

learned approximate posteriors qφ∗(z|xi) of the Early De-

coder Training phase are passed to Deferred Encoder Train-

ing phase, essentially to be approximated. The objective

(and a supervised one at that) is to learn a mapping be-

tween xi and φ∗ = {µ∗
i ,Σ

∗
i }. Eγ(x) is therefore trained

in a supervised manner for this purpose, to output φ∗ given

xi. This training can be done like any other supervision,

using gradient descent approaches. After training is done

Eγ∗(x) is used to provide a good estimate of the parame-

ters of the true approximate posterior. For a datapoint xi,

we denote the estimates of the approximate posterior gen-

erated by Eγ∗(x) as φE = {µE
i ,Σ

E
i }.

3.3. Pace Adjustment

For ith input xi, the parameters of the approximate poste-

rior qφE (z|xi) are first obtained using the pseudo-encoder

Eγ∗(xi). Subsequently, these parameters can be refined us-

ing SVI to achieve the final posteriors qφ∗(z|xi). This by

itself reduces the number of SVI steps required to maxi-

mize the ELBo to a significant amount (naturally due to ap-

proximation of the φ∗ = {µ∗
i ,Σ

∗
i } using φE = {µE

i ,Σ
E
i },

also shown in experiments in this paper). However, during

Pace Adjustment phase, one can switch to SVI step1 sizes

that are most suited for convergence, given the initial esti-

mates of approximate posterior parameters φE . Therefore,

higher learning rates, which are often detrimental if approx-

imate posterior is initialized randomly, can be used to max-

imize ELBo w.r.t φ (initialized with φE ). Thus, a further

reduction in number of steps can be made by simply taking

1In this paper, we use Adam (Kingma & Ba, 2014) as the opti-
mizer for approximate posterior parameters.
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larger steps. One can simply treat the adjusted learning rate

as a hyperparameter, and pick the one with fastest and most

accurate convergence to φ∗. Any hyperpatameter optimiza-

tion method (e.g. Bayesian hyperparameter optimization

approaches (Snoek et al., 2012)) may be used for more ac-

curate localization of a suitable pace. For the sake of this

paper, we simply suffice to treating the adjusted learning

rate as a hyperparameter found using random (yet sensible)

grid search.

4. Experiments

In this section, we discuss the details of the experiments

for this paper. We first start by discussing the studied

datasets, followed by methodology and hyperparameter

space search.

4.1. Datasets

We use the following set of datasets in our experiments:

Synthetic Data: As the first dataset in our experiment,

we study a case of synthetic data where we control the

distributional properties of the data. In the generation

process, we first acquire a set of independent dimen-

sions randomly sampled from 5 univariate distributions

with uniform random parameters: {Normal, Uniform,

Beta, Logistic, Gumbel}. Often in realistic sce-

narios there are inter-dependencies among the dimensions.

Hence we proceed to generate interdependent dimensions

by picking random subsets of the independent compo-

nents and combining them using random operations such

as weighted multiplication, affine addition, and activation.

Using this method, we generate a dataset containing N =
50, 000 datapoints with ground-truth dimension d = 300.

CMU-MOSI Dataset: CMU Multimodal Opinion Senti-

ment Intensity (CMU-MOSI) is a dataset of multimodal

language specifically focused on multimodal sentiment

analysis (Zadeh et al., 2016). It is among the most well-

studied multimodal language datasets in NLP commu-

nity. Multimodal sentiment analysis extends conventional

language-based sentiment analysis to a multimodal setup

where both verbal and non-verbal signals contribute to the

expression of sentiment. CMU-MOSI contains 2199 video

segments taken from 93 Youtube movie review videos. The

train, validation and test folds of the CMU-MOSI con-

tain 1248, 229 and 686 segments respectively (Chen et al.,

2017). We use expected multimodal context for each sen-

tence, similar to unordered compositional approaches in

NLP (Iyyer et al., 2015).

300-W: (Sagonas et al., 2013a;b) is a meta-dataset

of four different facial landmark datasets: Anno-

tated Faces in the Wild (AFW) (Zhu & Ramanan,

2012), iBUG (Sagonas et al., 2013c), and LFPW + He-

Model \ |z| 16 32 64 128

CMU-MOSI

VAE 0.7176 0.5871 0.4681 0.2623

SVI 0.0470 0.0010 0.0006 0.0003

PE-SVI-0 0.0516 0.0064 0.0090 0.0063

PE-SVI-25 0.0482 0.0010 0.0007 0.0003

300-W

VAE 0.2349 0.2123 0.1450 0.0922

SVI 0.0012 0.0009 0.0006 0.0004

PE-SVI-0 0.0798 0.0775 0.0697 0.0592

PE-SVI-25 0.0011 0.0008 0.0007 0.0002

Synthetic

VAE 78.6053 73.9616 66.1229 60.1511

SVI 0.0331 0.0117 0.0021 0.0005

PE-SVI-0 0.9706 0.5561 0.5282 0.4197

PE-SVI-25 0.0348 0.0119 0.0039 0.0027

SST

VAE 0.4860 0.4162 0.3801 0.3233

SVI 0.1411 0.1228 0.0895 0.0506

PE-SVI-0 0.3781 0.3605 0.3559 0.3499

PE-SVI-25 0.1417 0.1229 0.0887 0.0517

Table 1. The results of experiments on Arch1. Refer to Section 5

for discussion and analysis.

len (Belhumeur et al., 2011; Le et al., 2012) datasets. We

used the full iBUG dataset and the test partitions of LFPW

and HELEN. This led to 135, 224, and 330 images for

testing respectively. They all contain uncontrolled images

of faces in the wild: in indoor-outdoor environments, under

varying illuminations, in presence of occlusions, under

different poses, and from different quality cameras. For the

purpose of statistical shape modeling, only the landmarks

are used.

SST: The Stanford Sentiment Treebank (SST) is a dataset

of movie review excerpts from Rotten Tomatoes web-

site (Socher et al., 2013). The dataset is annotated for both

root and intermediate nodes of parsed sentences. We only

use the root nodes in our experiments. Similar to CMU-

MOSI, we use an unordered compositional approach for

the input sentence embeddings.

4.2. Methodology

For all the datasets, we study the following feed-forward

encoder-decoder or decoder-only architectures. For all

the architectures, |z| is the dimensionality of the latent

space. The encoder has the same architecture as the de-

coder, only inverted. The following decoder architectures
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Model \ |z| 16 32 64 128

CMU-MOSI

VAE 0.5778 0.3644 0.2767 0.2257

SVI 0.0642 0.0170 0.0020 0.0015

PE-SVI-0 0.0686 0.0214 0.0068 0.0060

PE-SVI-25 0.0644 0.0171 0.0020 0.0019

300-W

VAE 0.1711 0.1279 0.1090 0.0489

SVI 0.0022 0.0014 0.0012 0.0010

PE-SVI-0 0.0698 0.0692 0.0669 0.0614

PE-SVI-25 0.0047 0.0042 0.0031 0.0020

Synthetic

VAE 47.6520 29.7762 23.5845 17.8166

SVI 0.0940 0.0491 0.0172 0.0155

PE-SVI-0 0.5445 0.5283 0.5242 0.4968

PE-SVI-25 0.0730 0.0530 0.0292 0.0156

SST

VAE 0.4552 0.3994 0.3040 0.2576

SVI 0.1718 0.1434 0.1302 0.0808

PE-SVI-0 0.3951 0.3624 0.3268 0.2417

PE-SVI-25 0.1728 0.1444 0.1273 0.0804

Table 2. The results of experiments on Arch2. Refer to Section 5

for discussion and analysis.

are used in this paper: [Arch1] DA1
θ (z) : z 7→ x, [Arch2]

DA2
θ (z) : z 7→ R

min(z×2,128) 7→ x, [Arch3]DA3
θ (z) : z 7→

R
min(z×2,128) 7→ R

min(z×2,128) 7→ x. All the models are

ReLU activated.

The following models are studied in this paper:

VAE: Variational Auto-Encoder uses and encoder to per-

form posterior approximation and a decoder to reconstruct

a given input. Encoder and decoder are trained together

end to end. The amortization gap essentially may happen

during training (Cremer et al., 2018).

SVI: We use Stochastic Variational Inference directly on

free-form latent parameters. We make a mean-field assump-

tion for amortizing the posterior approximation. The free

parameters of the latent space are essentially the parameters

of a Gaussian distribution.

PE-SVI-0: Essentially, this is the proposed model in this

paper without the adjustment steps in Section 3.3. The la-

tent inference is simply done using the trained encoder in

Section 3.2.

PE-SVI-25: This is essentially PE-SVI-0, with 25 steps

with adjusted learning rate as discussed in Section 3.3.

For all the models, we assume no particular prior distribu-

tion for latent space, therefore, in this paper we are only

concerned with expected likelihood under the approximate

posterior distribution (first term of ELBo in Equation 2).

This essentially compares the models for their reconstruc-

tion power. Note, we do not argue that a good generative

model has more properties than just good reconstruction;

however, good reconstruction is required for good genera-

tive modeling. In theory, the second term in ELBo has no

direct dependency on the reconstruction as it simply forces

the latent space to follow a particular distribution. This

term is the same for both SVI and VAE, and therefore, both

models can be adapted to follow a particular desired latent

space distribution. To compare the reconstruction perfor-

mance of both models, we directly maximize the expected

log-likelihood reconstruction term within ELBo, and report

the negative of its value.

4.3. Hyperparameter Space Search

The VAE models in this paper are trained using Adam with

learning rates {1, 5, 8} × 10e − {2, 3, 4, 5} for a total of

3000 epochs. SVI and PE-SVI models are trained using

10e− {2, 3} for model parameters and 10e − {1, 2, 3} for

latent parameters (model and latent learning rates are in-

dependent). The best models are picked based on the per-

formance on validation-set, and directly applied to the test-

set of each dataset (random 10% held out for validation

and test). The Reduced Adaptation Steps are a total of 25
epochs and the learning rates of {1, 5} × 10e − {0, 1, 2}.

The hyperparameter space is searched with 12× Tesla

V100 gpus.

5. Results and Discussion

The results of experiments over all datasets, baselines and

architectures are reported in Tables 1, 2, 3 respectively for

Arch1,2,3. We report the observations from these tables as

follows:

Performance Comparison (VAE, SVI): Firstly, we report

whether or not a gap exists between SVI and VAE perfor-

mance. Tables 1, 2, 3 demonstrates superior performance

for SVI over VAE, by a rather large margin in certain

cases. This gap signals a performance suboptimality for

VAE model, also observed in previous works (Cremer et al.,

2018; Hjelm et al., 2016).

Performance Comparison (VAE, PE-SVI-0): Surprisingly,

we observe that in majority of our experiments, PE-SVI-

0 performs better than VAE. Both models use an identical

encoder architecture to perform approximate posterior in-

ference. However, the decoder training is different across

the models. We suspect that the lack of a performance gap

when training using SVI (in Early Decoder Training phase),
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Model \ |z| 16 32 64 128

CMU-MOSI

VAE 0.4900 0.3623 0.2180 0.2771

SVI 0.0980 0.0835 0.0032 0.0026

PE-SVI-0 0.1062 0.0870 0.0061 0.0065

PE-SVI-25 0.0987 0.0837 0.0033 0.0027

300-W

VAE 0.1466 0.1142 0.0742 0.0351

SVI 0.0021 0.0013 0.0011 0.0009

PE-SVI-0 0.0489 0.0492 0.0475 0.0146

PE-SVI-25 0.0046 0.0041 0.0030 0.0020

Synthetic

VAE 35.4315 29.5171 25.6991 25.4315

SVI 0.1209 0.0937 0.0354 0.0185

PE-SVI-0 0.6167 0.5527 0.5262 0.4420

PE-SVI-25 0.1181 0.0922 0.0310 0.0227

SST

VAE 0.3618 0.2966 0.2008 0.1611

SVI 0.2140 0.1871 0.1462 0.1010

PE-SVI-0 0.5243 0.4633 0.4871 0.5589

PE-SVI-25 0.3149 0.1872 0.1504 0.1098

Table 3. The results of experiments on Arch3. Refer to Section 5

for discussion and analysis.

allows subsequent training of the encoder (in Deferred En-

coder Training phase) to be more successful; as compared

to training with both which can essentially lead to subopti-

mal performance for both encoder and decoder. It should

be noted that the ultimate purpose of PE-SVI is to reduce

the steps required for SVI inference, and this comparison

was made as byproduct of our experiments.

Performance Comparison (SVI, PE-SVI-25): PE-SVI-25,

which performs 25 adjusted steps (see Section 3.3) after

PE-SVI-0, is able to closely approximate the performance

of the SVI model. For SVI, the number of required steps for

inference convergence is usually higher than 1000 across

all our datasets. For example, convergence steps for SST

Arch1 (Table 1) with |z| = 128 is 2381 with learning

rate of 0.001 (non-convergent with 0.01), while PE-SVI-

25 reaches the same performance in 12 steps (and plateaus

afterwards) with learning rate of 0.1. Thus higher learn-

ing rate (different than used for random initialization) can

successfuly be used with PE-SVI, after Pace Adjustment.

Performance Comparison (SVI, PE-SVI-0): The compari-

son between SVI and PE-SVI-0 suggests the latent space

learned by SVI is complex, and not perfectly recon-

structable using an encoder, which naturally has limited

inference capacity. Such a suboptimality naturally takes

a toll at the training process (Hjelm et al., 2016), as also

observed from comparison between SVI and VAE.

Performance Comparison (SVI across Arch1,2,3): Surpris-

ingly, depth of the decoder seems to negatively impact the

performance of SVI. This demonstrates that in many cases,

a small decoder may be enough to learn a generative model

with good reconstruction. However, this depth positively

impacts PE-SVI-0 and VAE, signaling that more power-

ful encoders are better capable at approximating the latent

space learned by SVI. Regardless, PE-SVI-25 follows the

performance of SVI. We did not observe any pattern in

higher or lower number of epochs required for convergence

of PE-SVI-25 across different depths.

Performance Comparison (|z|): Unanimously across all

models, architectures and datasets, increasing the dimen-

sionality of the latent space improves the performance.

6. Conclusion

In this paper, we presented a new approach called Pseudo-

Encoded Stochastic Variational Inference (PE-SVI), to re-

duce the inference complexity of SVI during test time. Our

approach relies on finding a suitable initial start point for

gradient operations, which naturally reduces the required

SVI steps. Furthermore, this suitable start point allows

for taking larger SVI step sizes during test-time inference

(compared to random initialization) which further reduces

the required SVI steps. Essentially, we learn a parametric

model to output this start point. In our experiments, PE-

SVI achieves similar performance to SVI, however with a

fraction of required inference steps. Furthermore, we ob-

serve that the initial PE-SVI start point (without any SVI

steps) shows better performance than jointly training a de-

coder with an inference model (e.g. VAE).
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