
Training Deep Neural Networks for Reverberation Robust Speech Recognition
Marvin Ritter, Markus Müller, Sebastian Stüker, Florian Metze, Alex Waibel
Institute for Anthropomatics, Karlsruhe Institute of Technology, 76131 Karlsruhe
Email: marvin.ritter@gmail.com, {m.mueller,sebastian.stueker,waibel}@kit.edu,
fmetze@cs.cmu.edu
Web: http://isl.anthropomatik.kit.edu/

Abstract
Recently hybrid systems of deep neural networks (DNNs)
and hidden Markov models (HMMs) have shown state of
the art results on various speech recognition tasks. Best
results were achieved by training large neural networks
(NNs) on huge data sets (≥ 2000h [11, 16, 20]). The
required training data is often generated using different
methods of data augmentation.

We show that a simple approach using room impulse
response (RIR) can be used to train systems more robust to
reverberation. The method does not require multiple mi-
crophones or complex signal processing techniques. On
a test set simulating large rooms we show improvements
from 59.7% word error rate (WER) down to 41.9%.

In case of known large lectures rooms with varying mi-
crophone positions the approach can be used to adopt the
system to the environment. We compare systems trained
with RIRs from one room, multiple rooms and simulated
rooms.

1 Introduction
Over the past 25 years speech to text (STT) has advanced
considerably and latest systems are now able to transcribe
read speech with word error rate (WER) close or within hu-
man range. However large vocabulary continuous speech
recognition (LVCSR) still remains challenging and for mi-
crophones far from the speaker system performance de-
grades drastically. Ambient noises and reverberation are
the main causes. We will focus on the reverberation prob-
lem. Figure 1 shows how reverberation effects log Mel-
frequency filterbank features. There are various ways to
deal with it and based on [27] we classify the approaches:
• Front-End based approaches aim to improve the fea-

tures passed to the acoustic model by inserting addi-
tional steps into the preprocessing. Depending on the
position there are three types:

– Time domain: Linear filtering exploits both the
amplitudes and phases of the signal, which is ad-
vantageous in terms of accuracy because reverber-
ation is a superposition of numerous time-shifted
and attenuated versions of a clean signal.

– Spectrum: The objective of spectral enhancement
is to restore the clean power spectrum coefficients.

– Log Spectrum: The Feature Enhancement meth-
ods try to model the effect of reverberation on log
Mel-frequency filterbank features.

• Back-End based approaches aim at adjusting the pa-
rameters of the acoustic model. Examples are max-
imum likelihood linear regression (MLLR) [1] and
layer adaption of DNN [4].
Many Front-End and Back-End based approaches ex-

ploit multiple microphone or make assumptions about the
environment to justify approximations. This might not al-

Figure 1: Log Mel-frequency filterbank features corre-
sponding to the utterance “invite use in” extracted from
clean and reverberant speech in a classroom.

ways be feasible. Instead we will focus on signal channel
and investigate if DNNs are capable to deal with reverber-
ated speech. It is widely known that NNs perform better if
the match between training and test data increases. Unfor-
tunately collecting and transcribing training data for many
conditions is very expensive. Therefore we use different
sets of impulse responses to transform close talk audio into
far field audio and train our acoustic model (AM) with it.
All other parts of the system remain untouched.

The Room impulse response (RIR) characterizes the
acoustics of a room. The response will depend on the
room dimensions, its reflection properties and positions of
source and receiver. By convolution of the speech signal
with the room impulse response in the time domain the
characteristics of the room can be added to an arbitrary
signal.

2 Related Work
Extensive work on Front-End and Back-End based ap-
proaches to dereverberation was done by participants of the
Reverberant Voice Enhancement and Recognition Bench-
mark (REVERB) challenge [13]. [4] denoised speech char-
acteristics close to that of clean speech in case of 8 chan-
nels. While most top performing systems used a strong
DNN based acoustic model [24] achieved very good re-
sults using various adaption techniques and a combination



database #rooms #RIRs
ACE [5] 7 14
AIR [12] 16 214
MARDY [25] 1 9
OMNI [23] 3 468
RWCP [18] 3 118
total 30 823

Table 1: Sources for professional recorded RIRs used for
training and testing. All audio files were downsampled to
16 kHz to match the speech audio files. In MARDY all
recordings were done in the same room, but the acoustic
characteristic (e. g. reflectivity of the walls) was varied.

of GMM-HMM systems.
Recently deep autoencoders were utilized for feature en-
hancement. Ishii et al. and Feng et al. trained a denoising
autoencoder (DAE) to output clean speech features from
noisy features [6, 10]. Their results prove that NNs are able
to deal with reverberation without prior knowledge. This
“blind” dereverberation can be combined with a “model-
based” approach, performing spectral subtraction based on
reverberation time estimation, as in [26]. Both, the addi-
tional DAE and the special model for spectral enhancement
increase the model complexity.

The Automatic Speech Recognition in Reverberant En-
vironments (ASpIRE) Challenge held last year by IARPA
forced participants to deal with far field recordings while
limiting the training corpus to close talk [8]. Algorithmic
transformations were allowed and many teams mixed in
noises and impulse responses to simulate different environ-
ments [9, 19]. While we are confident that adding noises
is necessary for real world environments the goal of this
work was to investigate the effect using RIRs separately.

3 Experimental Setup
In the following we will describe the data used for the ex-
periments and provide details of our systems. All experi-
ments were run with Janus and the IBIS decoder [7, 22].
DNN training was performed using a Python tool based on
theano [2].

3.1 Training Data
For training our system we used the following data:
• 167 hours of TED talks from the TED-LIUM corpus

release 2 excluding talks [21], excluding talks in our
test data.

• 10 hours of various noise data, such as snippets of ap-
plause, rustle and music

• 823 RIRs from different sources. Details are shown in
Table 1. 658 were used for training and 165 were held
out for testing.1

• RIRs generated using the “Room Impulse Response
Generator” tool from E. Habets 2. Parameters for the
room, source position and receiver positions were set
randomly for each utterance.

1Python code for downloading and organizing the databases is avail-
able on https://github.com/Marvin182/rir-database

2https://www.audiolabs-erlangen.de/fau/
professor/habets/software/rir-generator

3.2 Evaluation Set
Our systems are evaluated on the official evaluation set of
the International Workshop on Spoken Language Transla-
tion (IWSLT) 2013 (tst2013) [3]. It contains 28 English
TED talks, each from a different speaker, split into 2246
utterances. Utterance segmentations were provided as part
of the dev set for IWSLT 2015. The audio is close talk and
is used to measure the performance of the system on clean
speech. We did not target to improve on this test set, but
system should score similar to the baseline.

For evaluation reverberated speech we created a rever-
berated version tst_reverb by chose 28 RIRs from the held
out test set. By picking from different source and differ-
ent rooms we tried to maximize the variance of environ-
ments. In order to see how the RIRs effect the WER have
assigned each speaker a RIR instead of randomly picking
at utterance level. Similar we created tst_classroom test
set by only using RIRs for the “classroom” in the OMNI
database.

3.3 Baseline System
Our baseline system is a hybrid DNN-HMM system. We
use a frame shift of 10 ms and a window size of 32 ms
to compute 40 log Mel-frequency and 14 tone features.
As demonstrated in [15] the tonal features also give small
gains for non tonal languages as English is. The combined
features are stacked to a context of 13 frames (+/- 6) and
feed into a DNN.

The DNN has 5 hidden layers with sigmoid activation
and 1200 neurons each and a softmax output layer. First
the hidden layers are pretrained layer-wise DAE as de-
scribed in [28]. Afterwards the whole network was fine-
tuned to output probabilities for the 8000 context depen-
dent phone states. We use the New Bob schedule with
thresholds [0.005,0.001] and initial learning rate 1.0. For
systems with different versions of the training data we
evaluate against a validation after each version of the train-
ing data, otherwise after one epoch.

Our language model is the same as in [17]. The model
is a combined 4-gram model built from various sources
(7.8 billion words in total). The interpolation weights are
determined to maximize the likelihood of held-out tran-
scripts of TED talks. To kick-start our system we used
labels written with a GMM-HMM development system.

4 Training Reverberated Systems
For the reverberated systems we use the same setup as for
the baseline, but train the DNN on features from reverber-
ated audio. We obtain the feature matrix for an utterance
with the following steps:
1. Sample random RIR h(t) from training RIRs.
2. If necessary resample h(t) to match the sampling rate

of utterance.
3. Remove silence at the beginning of h(t). The silence

would only result in a delay after the convolution, but
not change the actual signal itself.

4. Convolve utterance audio with h(t). If available in-
clude samples before the utterance window that would
cause reflections within the utterance time frame. Re-
flections that occur after the utterance window are ig-
nored. The audio length remains the same and late re-
flections near the end get lost. This assumes very good
speech detection and segmentation on the test set.

https://github.com/Marvin182/rir-database
https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator
https://www.audiolabs-erlangen.de/fau/professor/habets/software/rir-generator


RIRs for training tst_classroom WER
0 (Baseline) 94.6 %
1 78.3 %
5 63.5 %
10 63.0 %
50 62.5 %
100 59.1 %
Reverb Gen 80.7 %
Reverb Real 60.2 %
Reverb Real* 69.5 %

Table 2: WER of systems trained with different number
of RIRs from the ‘classroom‘ in the OMNI database and
tested against other RIRs from the same room. The Reverb
Gen system is trained with simulated RIRs for rooms close
to the classroom dimensions. The Reverb Real systems
was trained with all 658 training RIRs which also include
RIRs from the classroom. For Reverb Real* these were
explicitly removed.

5. Continue with the preprocessing as described for the
baseline above.

For the supervised fine-tuning of the DNN we need labeled
feature vectors. Using the GMM-HMM development sys-
tem to write frame labels, as done for the baseline, would
give poor results because it was not trained for far field au-
dio. Instead we use the same labels it created for the clean
speech. In step 3 we remove the silence at the beginning
and therefore minimizing the shift of the direct sound in
the domain. Some early and all late reflections are likely
to effect following frames, but the first frame of a sound is
not shifted.

While it might be easier to convolve the whole audio
of a speaker with the same impulse response, using a dif-
ferent impulse response for every utterance leads to greater
diversity and better results as we will show.

5 Results
We did experiments for two scenarios. In the first case the
room is known and dimensions or even RIRs are available.
By using those we try to adapt the DNN to this single room.
The second scenario is more general and the system has to
learn to deal with reverberation and wide variety of rooms.
We call this Multi-Room Adaption.

5.1 Single-Room Adaptation
In this scenario the system should learn to deal with the
reverberation in the classroom from the OMNI database
[23]. The case of having no information of the room is
equivalent to the baseline which has a WER of 94.6 %. By
using only a single impulse response from the room we
can improve to 78.3 % (see Table 2). We can improve fur-
ther down to 63.0 % by adding 9 additional RIRs from the
room. This shows that the DNN is indeed able to deal with
the reverberation even so performance is still not level with
clean speech. Using more than 10 RIRs shows only little
gains and wouldn’t be pratical anyway. Using only RIRs
from other rooms for training yields a WER of 69.5 % and
a system trained with simulated impulse responses achives
80.7 %.

Further we evaluated how the performance correlates
with the distance between speaker and receiver. Figure 2
shows the results. For positions closer to the speaker the

Figure 2: WER depending on receiver position for a sys-
tem trained with the RIRs from the room. The source was
positioned at (4.5 m, 0.5 m) and the total size of the room
is 7.5 m3 ×9 m3 ×3.5 m3.

WER
tst2013 tst_reverb

Baseline 19.1 % 59.7 %
Reverb Gen 22.2 % 48.1 %
Reverb Real 26.2 % 41.9 %

Table 3: WER on the evaluation set of the IWSLT 2013.
Reverb Gen is trained with artificially generated impulse
responses while for Reverb Real real room impulse re-
sponses are used.

system could handle reverberated audio a lot better. The
worst results can be seen on the outsides of the first row.
This is similar to the findings in [14]. The authors suggest
that ASR system performance is better correlated with a
measure that depends not only on the distance but also on
the orientations of both speaker and receiver.

5.2 Multi-Room Adaptation
Our second scenario targeted the adaption to as many
rooms as 30. For the reverberated version of the tst2013
test set the performance of our baseline decreased from
19.1 % to a WER of 59.7 %, proving it unusable in rever-
berated environments.

We can improve on that by training with simulated
RIRs. For the presented numbers room dimensions were
between 4 m3 ×5 m3 ×2 m3 and 8 m3 ×9 m3 ×3 m3. Po-
sitions of source and receiver were sampled for each room.
The improvement by 10 % is promising, but still far from
WERs on clean speech. We did not see significant gains
by using bigger rooms.

Next we used the RIRs we collected from various
sources. Even so some of the impulse responses were
recorded in big lecture rooms and with reverberation times
around 2 seconds the DNN was able to find some features
and learn from them. The final WER was 41.9 %. Results
for the experiments are shown in Table 3. Testing against
tst2013 was performed to measure the performance losses
on clean speech. Both Reverb systems show performance
drops on tst2013, but score much better than on the rever-
berated speech.

As mentioned before we believe that convolving each



WER
tst2013 tst_reverb

per speaker 26.9 % 42.5 %
per utterance 26.2 % 41.9 %

Table 4: Convolving each utterance with a different im-
pulse response instead of using one for all utterances of
a speaker gives a small gain in system performance. Our
training set has 723 different speakers, for a smaller train-
ing set the difference should be bigger.

utterance of a speaker with a different impulse response
leads to greater diversity which is known to improve per-
formance of DNNs. This is true as seen in Table 4. Fur-
ther training with multiple versions of an utterance by sam-
pling more than 1 RIRs per utterance leads to further per-
formance improvements.

6 Conclusion
In this study we investigated how RIRs can be used to train
a DNN based acoustic model, and making it more robust
to reverberated speech, with very little effort. RIRs from
already available databases gave better results than simu-
lated impulse responses. The method does not introduce
new hyper parameters and no other optimizations are nec-
essary.

We will perform further experiments on how to bet-
ter utilize simulated impulse responses. Ideally multi-
condition training should lead to improvements for both
reverberated and clean speech.
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