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Abstract
Self-attention is a method of encoding sequences of vectors
by relating these vectors to each-other based on pairwise simi-
larities. These models have recently shown promising results
for modeling discrete sequences, but they are non-trivial to
apply to acoustic modeling due to computational and model-
ing issues. In this paper, we apply self-attention to acoustic
modeling, proposing several improvements to mitigate these is-
sues: First, self-attention memory grows quadratically in the se-
quence length, which we address through a downsampling tech-
nique. Second, we find that previous approaches to incorporate
position information into the model are unsuitable and explore
other representations and hybrid models to this end. Third, to
stress the importance of local context in the acoustic signal, we
propose a Gaussian biasing approach that allows explicit con-
trol over the context range. Experiments find that our model
approaches a strong baseline based on LSTMs with network-
in-network connections while being much faster to compute.
Besides speed, we find that interpretability is a strength of self-
attentional acoustic models, and demonstrate that self-attention
heads learn a linguistically plausible division of labor.1

Index Terms: speech recognition, acoustic model, self-
attention

1. Introduction
In order to transform an acoustic signal into a useful abstract
representation, acoustic models must take into account the com-
plex interplay of local and global dependencies in an acoustic
signal. At a local, temporally constrained level, we observe con-
crete linguistic events (phonemes), while at a global level the
signal is influenced by factors such as channel and voice prop-
erties. Traditional acoustic models reflect this intuition about
global and local dependencies by first applying a normalization
phase, a global operation that aims at producing invariance with
respect to channel and speaker characteristics. After this, tra-
ditionally a hidden Markov model is applied over polyphones,
modeling only local dependencies (beads-on-a-string view [1]).
This restriction has in part been motivated by the intuition that
global effects should be removed from the signal at this stage.

However, the empirical success of recurrent neural net-
works (RNNs) for acoustic modeling [2] has challenged this in-
tuition and indicated that considering the global context is still
beneficial at this stage. Unfortunately, RNNs suffer from slow
computation speed and may not be able to optimally exploit
long-range context. Self-attentional architectures [3, 4, 5] have
recently shown promising results as an alternative to RNNs for
modeling discrete sequences [6]. These models relate different
positions in a sequence by computing pairwise similarities, in
order to compute a higher level representation of the sequence.

1Code at http://msperber.com/research/self-att

Self-attention is attractive (1) computationally because it can be
efficiently implemented through batched tensor multiplication,
and (2) from a modeling perspective because it allows direct
conditioning on both short range-context and long-range con-
text, without the need to pass information through many inter-
mediate states as is the case with RNNs.

In this paper, we explore self-attentional architectures for
acoustic modeling, by using the listen-attend-spell model [7]
and replacing its pyramidal encoder component with self-
attention.2 In order to make self-attentional architectures work
for acoustic modeling, several challenges must be addressed.
First, self-attention computes the similarity of each pair of in-
puts, so the amount of memory grows quadratically with re-
spect to the sequence length. This is problematic for modeling
acoustic sequences, because these can get very long, e.g. our
training utterances contain up to 2026 frames (800 on average).
To address this issue, we apply downsampling by reshaping the
sequence before self-attentional layers.

The second challenge is incorporating positional informa-
tion into the model. Unlike an RNN, self-attention has no inher-
ent mechanism of modeling sequence position. Vaswani et al.
[6] propose an additive trigonometric position encoding, which
is problematic in the case of acoustic modeling because our in-
puts are fixed speech features rather than flexibly learned word
embeddings. While concatenating positional embeddings in-
stead provides some remedy, we find it necessary to design a
hybrid self-attention/RNN architecture to obtain good results.

The third challenge is effective modeling of context rel-
evance. Speech frames contain much less information than
words and it is therefore more difficult to estimate the impor-
tance of pairs of frames with respect to each other. Based on the
intuition that locality of context plays a special role in acoustic
modeling, we propose to apply diagonal Gaussian masks with
learnable variance to attention heads. This gives attention heads
more control over context relevance and improves word error
rates consistently, by up to 1.59%. We observe that while bot-
tom layer attention heads converge toward diversity in context
range, higher layers use long-range context.

Attention mechanisms improve the often criticized poor in-
terpretability of neural end-to-end models because they enforce
an explicit expression of dependencies. Self-attention brings
this interpretability inside the encoder, making it possible to ex-
amine how speech is encoded before making the final recog-
nition decisions. Our analysis reveals that different attention
heads measure similarity along different linguistically plausible
dimensions such as phoneme clusters, indicating that they func-
tion in part to reduce acoustic variability by establishing aver-
aged versions of matching acoustic events across the utterance.

2We also refer to independent work that has concurrently addressed
similar questions [8].
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Figure 1: Block diagrams of baselines and the core model.

2. Attentional Models for ASR
2.1. Listen, Attend, Spell

Our ASR model is based on the listen-attend-spell model [?],
an attentional encoder-decoder model [9, 10, 11] where the en-
coder component serves as an acoustic model, taking speech
features as input. Because acoustic sequences are very long,
the encoder performs downsampling to make memory and run-
time manageable. This is achieved through a pyramidal LSTM
(Fig. 1a), a stack of LSTM layers where pairs of consecutive
outputs of a layer are concatenated before being fed to the next
layer, such that the number of states is halved between layers.

2.2. Existing Encoders for Speech

Several improvements over the pyramidal LSTM encoder have
been proposed [12]. As a second baseline, we employ a state-
of-the-art model [12] that stacks blocks consisting of an LSTM,
a network-in-network (NiN) projection, and batch normaliza-
tion (Fig. 1b). The top LSTM/NiN block is extended by a final
LSTM layer. NiN denotes a simple linear projection applied
at every time step, possibly performing downsampling by con-
catenating pairs of adjacent projection inputs.

3. Self-Attentional Acoustic Models
Self-attention is applied to a sequence of state vectors and trans-
forms each state into a weighted average over all the states in the
sequence, with more relevant states being given more influence.
The underlying intuition is that states at each time step should
be conditioned on the most relevant states across the whole se-
quence. Our basic form of self-attention follows Vaswani et
al. [6], where relevance is measured by computing dot product
similarity after applying a linear projection to both vectors. For
acoustic sequences, neighboring frames are naturally similar if
they represent parts of the same acoustic event. When an event
with similar acoustic characteristics appears at different places
in an utterance, those occurrences would be deemed relevant, as
well. Following [6] we use 8 attention heads where each head
can compute this similarity independently.

Our model is specifically computed as follows (Fig. 1c):
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MultiHeadAtt = concat(head1, head2, . . .) (3)
MidLayer = LayerNorm [MultiHeadAtt +X] (4)

SAL = LayerNorm [FF (MidLayer) + MidLayer] (5)

Here, X∈Rl×d, Qi,Ki, Vi∈Rl×d/n denote inputs and their
query/key/value transformations for attention heads indexed
by i∈{1, · · · , 8}, sequence length l, and hidden dimen-
sion d. SAL denotes the final output of the self atten-
tion layer. WQ

i ,W
K
i ,W

V
i ∈ Rd×d/n are parameter matri-

ces. FF is a position-wise feed-forward network intended
to introduce additional depth and nonlinearities, defined as
FF(x)=max (0, xW1 + b1)W2 + b2. LayerNorm is accord-
ing to [13].

4. Tailoring Self-Attention to Speech
4.1. Downsampling

To introduce downsampling so that the model described in § 3
fits in memory, we apply a reshaping operation before every
self-attention block. This reduces the sequence length by a fac-
tor a and increases the vector state dimension accordingly:

X ∈ Rl×d →reshape X̂ ∈ R
l
a
×ad

We then compute (1) through (5) as before, with the shape
of weight matrices adjusted toWQ

i ,W
K
i ,W

V
i ∈ Rda×d/n. This

reduces the memory consumption of the attention matrix by fac-
tor a2. It is crucial to apply reshapes also before the bottom
layer so that the large bottom attention matrix is scaled down.
Note that this approach is very similar to downsampling as in
the pyramidal LSTM, except that it is applied to a sequence
feature matrix instead of per-timestep, and also applied before
the bottom layer.

4.2. Position Modeling

Position information is crucial in sequence-to-sequence mod-
els, but self-attention is completely agnostic to sequence posi-
tions. Prior works added trigonometric position encodings [6]
or learned position embeddings [14] to input vectors, but we
found that this approach does not work well for acoustic se-
quences. This is intuitive, as the inputs are fixed feature vectors
rather than trainable word embeddings, making it difficult for
the model to separate position and content for each state.

4.2.1. Concatenated Position Representation

A straight-forward solution to enable separation of position and
content for fixed inputs is to concatenate position representation
instead of using a sum. We explore three variants: First, con-
catenating trigonometric encodings [6] to the input feature vec-
tors. Second, concatenating learned embeddings [14] to inputs.
Third, concatenating separately learned position embeddings to
the queries and keys (Q,K in Equation 1) so that the key and
query position can be taken into account when computing rele-
vance at each layer.

4.2.2. Hybrid Models

RNNs are effective at keeping track of positional information.
We can exploit this by introducing recurrent layers into our en-
coder. We explore two alternatives:

Stacked hybrid model. Here, we stack 2 LSTM/NiN
blocks (Fig. 1b) without downsampling, followed by a final
LSTM, on top of our self-attention layers. This approach does
not make the self-attention layers themselves position-aware,
but the final encoder states are position-aware. Reversing the
order of self-attention and LSTM/NiN is also conceivable but
would compromise speed because slow recurrent computations
are applied before downsampling.



Interleaved hybrid model. Another option is to replace the
feed-forward operation (FF in Equation 5) by an LSTM. Note
that this introduces LSTMs before the sequence is fully down-
sampled and therefore compromises some of the speed gains.
On the other hand, it allows the higher self-attention layers to
take advantage of position information encoded by lower inter-
leaved LSTMs.

4.3. Attention Biasing

Self-attention allows direct conditioning on the whole sequence,
but it is unclear to what extent this is beneficial for our acous-
tic model. While context required to model polyphones may
span only a relatively small temporal window, remaining chan-
nel and speaker properties may require long-range context. To
account for the special role of context locality in acoustic mod-
eling, we introduce an explicit way of controlling the con-
text range by using a bias matrix M ∈ Rl×l and computing

headi = softmax(
QiK

T
i√

d
+ M)Vi. By setting values around

the diagonal of this mask to a higher value, we can bias the self-
attention toward attending in a local range around each frame.

4.3.1. Local Masking

We can apply hard masking by settingM as an inversely banded
matrix of bandwith b ∈ Nodd with

Mjk =

{
0 |j − k| < b

2

-∞ else
.

As a result, all attention weights outside the band are set to
0, so that the self-attention is restricted to a local region of size
b. The hyperparameter b can be set prior to training such that the
model effectively attends to a range similar to polyphone con-
text in hidden Markov models. Notice the similar idea explored
concurrently in independent work [8].

4.3.2. Gaussian Bias

For more flexibility, we use a soft Gaussian mask by defining

Mjk =
−(j − k)2

2σ2
.

σ is a trainable standard deviation parameter. It is learned sepa-
rately for each attention head so that the context range can differ
between attention heads. Besides more modeling expressive-
ness, the learned variances can also be inspected and may help
us to understand and interpret the model.3 Note that this bears
some resemblance to prior work [16] who use a linear distance
map instead of a Gaussian and do not include trainable parame-
ters, making their model less flexible and less interpretable.

5. Experimental Setup
We focus our experiments on the TEDLIUM corpus [17], a
widely used corpus of 200h of recorded TED talks, with the
development split used as validation data. Our implementation
is based on the XNMT toolkit, with which we have previously
demonstrated competitive ASR results on two benchmarks [18].

The training settings follow [18] where relevant. We extract
40-dimensional Mel filterbank features with per-speaker mean

3To overcome trainability issues and encourage the optimizer to ad-
just the variance parameter, we found it necessary to re-parametrize it
using τ2 = σ and optimize τ via back-propagation.

Table 1: Comparison to baselines. Training speed (char/sec)
was measured on a GTX 1080 Ti GPU.

model dev WER test WER char/sec
pyramidal 15.83 16.16 1.1k

LSTM/NiN 14.57 14.70 1.1k
stacked hybrid 16.38 17.48 2.4k

interleaved hybrid 15.29 16.71 1.5k

and variance normalization using Kaldi [19]. We exclude ut-
terances longer than 1500 frames to keep memory requirements
manageable. The encoder-decoder attention is MLP-based, and
the decoder uses a single LSTM layer. The number of hidden
units is 128 for the encoder-decoder attention MLP, 64 for tar-
get character embeddings, and 512 elsewhere unless otherwise
noted. The model uses input feeding [20], variational recur-
rent dropout with probability 0.2 and target character dropout
with probability 0.1 [21]. We apply label smoothing [22] and
fix the target embedding norm to 1 [23]. For inference, we use
a beam size of 20 and length normalization with exponent 1.5.
Self-attention layers use a hidden dimension of 256 and feed-
forward dimension of 256, and attention dropout with proba-
bility 0.2. When LSTMs are part of the encoder, we use bidi-
rectional LSTMs with 256 hidden units per direction. Concate-
nated position representation vectors are of size 40.

The vocabulary consists of the 26 English characters, apos-
trophe, whitespace, and special start-of-sequence and unknown-
character tokens. We set the batch size dynamically depending
on the input sequence size such that the average batch size was
24 (18 for LSTM-free models). We use Adam [24] with initial
learning rate of 0.0003, decayed by 0.5 when validation WER
did not improve over 10 epochs initially and 5 epochs after the
first decay.

6. Quantitative Results
6.1. Comparison to Baselines

The first set of experiments compares the proposed hybrid mod-
els to the baselines. The results are summarized in Table 1. We
observe similar word error rates, with the interleaved model out-
performing the stacked model and outperforming the pyramidal
LSTM baseline on the development data but not the test data.
The LSTM/NiN baseline was strongest. In terms of training
speed, the stacked model is fastest by a large margin, followed
by the interleaved model and the LSTM/NiN model. To con-
firm that the attention mechanism is actually contributing to the
hybrid model and not just passing on activations, we performed
a sanity check by training a stacked hybrid model with atten-
tion scores off the diagonal set to −∞, and observed a drop of
1.25% absolute WER.

6.2. Position Modeling

Next, we evaluate the different approaches to position model-
ing (§ 4.2). The results are summarized in Table 2. When using
additive positional encodings the model diverged, while con-
catenating embeddings converged, albeit to rather poor optima.
The key/query positional embeddings in isolation diverged, and
combination with concatenated input embeddings did not im-
prove results. Only the hybrid models were able to obtain re-
sults comparable to the baselines. We also tried combining hy-
brid models with positional embeddings, but did not see im-
provements over the model without positional embeddings.



Table 2: WER results on position modeling.

model dev test
add (trig.) diverged

concat (trig.) 30.27 38.60
concat (emb.) 29.81 31.74
stacked hybrid 16.38 17.48

interleaved hybrid 15.29 16.71

Table 3: WER results on attention biasing.

model dev test
stacked hybrid 16.38 17.48

+ local masking 15.42 16.17
+ Gauss mask (init. small) 16.05 16.96
+ Gauss mask (init. large) 14.90 15.89

interleaved hybrid 15.29 16.71
+ local masking 15.44 16.19

+ Gauss mask (init. small) 16.43 16.89
+ Gauss mask (init. large) 15.00 15.82

6.3. Attention Biasing

This set of experiments tests the effect of introducing explicit at-
tention biases that enable the model to control its context range
(§ 4.3). The local diagonal mask was set to constrain the con-
text to a window of 5 time steps, and Gaussian biasing variances
were initialized to 9 (small setting) or 100 (large setting). Re-
sults are summarized in Table 3. For the stacked model, it can
be seen that the biasing helps in general. The strongest model
variant was the learnable Gaussian mask. Interestingly, it was
important to initialize the Gaussian to possess a large variance.
We hypothesize that this improves gradient flow early on in the
model training, similar to how initializing LSTM forget gate bi-
ases to 1 (no forgetting) improves results [25]. The interleaved
hybrid model shows similar trends. Note that the sometimes
inconsistent ordering between dev and test results can be ex-
plained by the fact that the TEDLIUM dev set is relatively small
with only 500 utterances.

The Gaussian mask allows inspecting its trainable variance
parameter. Fig. 2 shows how the parameter evolves when ini-
tialized to a large value. It can be seen that in the first layer,
diversity seems to be desirable, with some attention heads fo-
cusing on a small local context, and others on larger contexts.
In contrast, the second layer does not appear to benefit from
limiting its context. This partly confirms the idea of hierarchi-
cal modeling, where the modeling granularity increases across
layers, but also shows that even at the bottom layer a controlled
amount of long-range context is desirable.

7. Interpretability of Attention Heads
We hypothesize that certain attention heads respond to certain
types of acoustic events. To test this hypothesis, we correlate
the average attention that each attention head places on frames
with the corresponding phoneme labels obtained via forced de-
coding. We re-train the stacked hybrid model with phonemes
instead of characters as targets, and use encoder-decoder at-
tention scores, summed over phoneme types, to obtain a soft
alignment of phoneme labels for each frame. This gives us a
measure for how much each frame in the sequence corresponds
to the phoneme type under inspection.
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Figure 2: Evolution of the variance parameters for each of the
8 attention heads over course of training (left: first layer, right:
second layer).

Table 4: Analysis of function of attention heads. Note that we
conducted a small amount of cherry picking by removing 4 out-
liers that did not seem to fit categories (OY from head 1, ZH
from head 3, EH and ER from head 7). Entropy is computed
over the correlation scores, truncated below 0.

i top phonemes entropy comments
1 S, TH, Z 3.7 sibilants
2 </s> 1.9 silence
3 UW, Y, IY, IX 3.6 ”you” diphthong

B, G, D voiced plosives
M, NG, N nasals

4 XM, AW, AA, AY, 3.2 A, schwa
L, AO, AH

5 ZH, AXR, R 3.5 R, ZH
6 ZH, Z, S 3.2 sibilants

IY, IH, Y, UW ”you” diphthong
7 S, </s>, TH 3.4 fricative, noise

CH, SH, F
8 mixed 3.7 unfocused

We now correlate these phoneme activations to each of the
first layer’s 8 attention heads. We average the matrices across
rows to obtain the overall attention that each frame receives. We
then compute the Pearson correlation coefficient of the summa-
rized self-attention and encoder-decoder attention sequences,
concatenated over utterances.

Table 4 shows the most highly correlated phonemes for
each attention head, along with an attempt to classify these man-
ually according to linguistic categories. This works remarkably
well and we can clearly see a linguistically plausible division
of labor, even though categories are neither exhaustive nor dis-
junct. Notice that head 2 seems to always focus on the utter-
ance end where we usually expect silence, and head 8 is mostly
unfocused, which we may interpret as these heads establishing
channel and speaker context.

8. Conclusion
Applying self-attention to acoustic modeling is challenging for
computational and modeling reasons. We investigate ways to
address these challenges and obtain our best results when us-
ing a hybrid model architecture and Gaussian biases that al-
low controlling context range. This model is almost as good
as a strong LSTM-based baseline at much faster computation
speed. We highlight interpretability as an advantage over con-
ventional models. Future work includes investigation of self-
attention with other sequences of low-information states such
as characters, and of transferring results on controlling context
range and interpretability to text modeling.
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