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ABSTRACT

With more than 7,000 living languages in the world and many
of them facing extinction, the need for language documenta-
tion is now more pressing than ever. This process is time-
consuming, requiring linguists as each language features pe-
culiarities that need to be addressed. While automating the
whole process is difficult, we aim at providing methods to
support linguists during documentation. One important step
in the workflow is the discovery of the phonetic inventory.
In the past, we proposed a first approach of first automati-
cally segmenting recordings into phone-line units and second
clustering these segments based on acoustic similarity, deter-
mined by articulatory features (AFs). We now propose a re-
fined method using Deep Bi-directional LSTMs (DBLSTMs)
over DNNs. Additionally, we use Language Feature Vec-
tors (LFVs) which encode language specific peculiarities in
a low dimensional representation. In contrast to adding LFVs
to the acoustic input features, we modulated the output of
the last hidden LSTM layer, forcing groups of LSTM cells
to adapt to language related features. We evaluated our ap-
proach multilingually, using data from multiple languages.
Results show an improvement in recognition accuracy across
AF types: While LFVs improved the performance of DNNs,
the gain is even bigger when using DBLSTMs.

Index Terms— speech recognition, low-resource, lan-
guage documentation

1. INTRODUCTION

For certain tasks speech recognition systems for resource-rich
languages like English have recently achieved human-like
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performance [1, 2]. But there exists a long tail of under-
resourced languages for which systems of such high recogni-
tion accuracy or even systems at all do not yet exist. Special
methods are required to handle low-resource scenarios and,
while progress has been made in recent years, there still is a
large gap in performance between systems for low-resource
languages compared to those of resource-rich languages.
Building systems requires different types of resources, among
them pronunciation dictionaries and audio recordings with
time-aligned transcriptions. Such resources do not exist for
unknown and potentially unwritten languages. Therefore,
when it comes to creating systems for supporting the doc-
umentation of a new language, these systems have to work
without the traditional resources used for training natural
language processing (NLP) systems. One of the first steps in
documenting an unwritten language is often to collect audio
data in the field. Documentary linguists then, among other
tasks, attempt to derive the phonetic inventory and vocabulary
of the language. This is a difficult and time-consuming pro-
cess, because many (unknown) language specific peculiarities
need to be considered. While this process is difficult to auto-
mate in its entirety [3], we aim at supporting linguists during
this process by providing an automatic phonetic transcription
process based on a set of automatically derived phone-like
units. Based on the automatically detected phonetic inventory
and the automatic phonetic transcription, linguists will then
have the opportunity to provide feedback. Based on this feed-
back, the inferred set of units can then be tuned further, e.g.,
by changing parameters of the transcription and inventory
detection systems.

Our transcription and inventory discovery process con-
sists of three steps: 1) the detection of phone boundaries, 2)
the automatic recognition of articulatory features (AF) of the
detected phone segments and 3) clustering the detected phone
segments into a phone inventory based on the detected AF.

In this paper, we focus on two aspects of this chain of
steps. We a) show how we can improve AF detection across
languages by utilizing language feature vectors and b) exam-
ine possibilities to predict the correct number of units to clus-
ter the detected phone segments into in order to obtain a con-
sist and close to the ground truth phone set.

In earlier work we used Gaussian Mixture Models (GMMs)



for detecting AFs [4] and showed that it is possible to detect
AFs across languages using multilingual models[5]. In re-
cent research, we improved monolingual and crosslingual AF
extraction by using deep neural networks (DNNs) [6], which
improved results over the GMM systems, and DBLSTMs [7]
which yielded yet better results. In this work, we propose
and improved DBLSTM based AF extraction, by enhancing
the feature inputs into the DBLSTMs with Language Feature
Vectors (LFVs) [8] to train neural networks that are better
able to detect articulatory features across languages.

When it comes to clustering of the detected phone units
into a coherent phone set, one of the challenges is to, explic-
itly or implicitly, determine the correct amount of units in the
inventory. One way to do this, is to cluster sets of different
sizes and to estimate the quality of the resulting clusterings in
an unsupervised manner. In this paper we thus examine meth-
ods of measuring the quality of clustering results and whether
from these measures the correct phone inventory size can be
derived.

To evaluate our setup, we pretended English to be an
unknown language. This allows us to evaluate against the
ground truth in order to assess the quality of the articulatory
feature detection and unit discovery.

The rest of this paper is organized as follows: In the next
Section, we provide an overview of related work in the field.
In Sections 3 and 4, we describe our proposed approach, fol-
lowed by the experimental setup in Section 5. The results are
presented in Section 6. This paper concludes with Section 7,
where we also provide an outlook to future work.

2. RELATED WORK

2.1. Articulatory Features

The use of AFs has been proposed for different tasks in the
past. For example, AFs were used to improve the robustness
of speech recognition systems [9, 10]. AFs describe the tar-
gets of the articulators in the human vocal tract for the phones
of a language. Thus, a phone can be seen as a shorthand nota-
tion for a specific bundle of AFs. Therefore AFs can be seen
as the atomic units describing the speech sounds produced by
the vocal tract.

Each language features a certain phone inventory, called a
phone set, while the total number of phones that can be pro-
duced by humans is naturally limited by the anatomy of the
human vocal tract. Phone sets from different languages of-
ten overlap to a certain degree. But as AFs are the building
blocks of phones, they are more language universal in nature
and their overlap among languages is generally larger than
that of phones. Hence, they are better suited for crosslingual
acoustic modeling [5].

2.2. Feature Augmentation for Multilingual AF Detection

Feature augmentation is a common technique to provide ad-
ditional input features to neural networks in order for the net-
work to be able to better compensate for certain modalities.
One of the most widespread methods for providing features
that help networks to compensate for speaker variability is
the use of i-Vectors [11] in addition to acoustic input features
for building large vocabulary continuous speech recognition
(LVCSR) systems. The addition of i-Vectors enables neural
networks to adapt to different speaker characteristics. It is
also possible to train a speaker adaptive neural network [12].

For multilingual automatic speech recognition, we pro-
posed a similar approach, but instead of adapting to multiple
speakers, we proposed a language code encoding language
properties in a multilingual scenario, demonstrating that lan-
guage properties could be encoded using a low dimensional
feature vector extracted in the notion of bottleneck features
[8].

In addition to augmenting input features, another adapta-
tion method has been proposed in [13]. The authors proposed
to combine several networks into a larger network using a
code to modulate the outputs of each individual network. We
use a similar approach by modulating the output of the last
LSTM layer in our setup.

2.3. Language Documentation

Documenting an unknown language poses several difficulties,
among them the discovery of the language’s phone inventory.
Creating a phonetic transcription manually is a time consum-
ing process that requires trained specialists. Next is the ques-
tion of detecting allophones among the found phones in order
to establish a phoneme inventory. While there are approaches
to automating these tasks [3], it has been shown that the entire
process is difficult, if not impossible, to automate. But there
are methods that are able to discover distinct acoustic units in
unknown languages. This was demonstrated by HMM based
approaches like [14], more recent approaches using neural
networks [15], but also GMM based methods [16] demon-
strated as part of the Zero Resource Challenge [17]. We also
demonstrated a first approach towards deriving a set of phone-
like units [6], but we assumed the number of acoustic units to
be known.

3. LANGUAGE ADAPTIVE DBLSTM BASED AF
EXTRACTION

In the past, we reported on AF classification methods based
on DNNs [18] and proposed a first approach using DBLSTMs
[7]. In total, we used 7 different types of AFs, as shown in
Table 1. These AFs can be divided into two classes: There
are 3 types of AFs for consonants with the prefix ’c’ and 4
types of AFs for vowels with the prefix ’v’. Similar to previ-
ous approaches, we trained individual networks for each AF



to prevent co-adaption to certain AF combinations that may
occur in one language but not in another. As each AF ap-
plies to either consonants or vowels, we added to each AF an
additional class indicating “does not apply”. In order to ob-

Table 1. Overview of AF types used

Type # Classes Description

cplace 8 Place of articulation
ctype 6 Type of articulation
cvox 2 Voiced

vfront 3 Tongue x position
vheight 3 Tongue y position
vlng 4 Type of vowel
vrnd 2 Lips rounded

tain training data for AFs, we used a LVCSR system to force
align transcriptions to recordings at phone level. This system
used 3 sub-phones per phone: begin, middle and end. We
trained the AF recognition networks only on sub-phones of
type middle. We assume that for these sub-phones the artic-
ulators will reach their targets to the most extent during their
continuous movement over the course of the speech produc-
tion process[18, 4].

In this work, we improve our DBLSTM based approach
for AF detection from [7] by incorporating language feature
vectors. Previous experiments have shown improvements for
DNNs when appending LFVs to the input features. But ap-
pending additional features to the input might not be ideal
for recurrent neural networks, especially if the features en-
code language specific peculiarities, which could be consid-
ered higher order features. A more suitable way of adding
these features is to incorporate them deep into the recurrent
network architecture. Our approach is based on the Meta-
PI network[13], but differs in that we did not train mixture
weights after training the network, but derived a language
representation beforehand instead and used it to modulate the
outputs of the last hidden BLSTM layer. The architecture is
shown in Figure 1.

The LFVs have a dimensionality of 42, hence we choose
the number of cells in each LSTM layer of the network to be
a multiple of 42. This way, we could divide the cells into 42
groups of equal size. The outputs of each group was multi-
plied (modulated) with one dimension of the LFVs. To ex-
tract these features, we used the same setup as in [8]: A feed-
forward DNN is trained to detect languages. The second last
layer of this DNN is a bottle-neck layer. After training, we
discarded the layers after this layer and used the output ac-
tivations as LFVs. The setup for LFV extraction consisted
of two networks. The first network was used to extract BNFs
from acoustic input features. It was trained using phone states
as targets and a combination of lMel and tonal features as in-
put. Using these BNFs, we trained the network for language
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Fig. 1. DBLSTM network architecture. The full sequence
gets propagated through LSTM layers. Only the final output
is retained after the last LSTM layer, being modulated and
forwarded to the output layer.

identification, which was then used to extract LFVs.
In preliminary experiments, we evaluated modulating the

output of different hidden layers with LFVs, but given the re-
sulting frame error rates, we chose to modulate the outputs of
the last DBLSTM layer. This can be considered a regulariza-
tion technique, similar to dropout. But instead of randomly
omitting the output of entire neurons, we force groups of neu-
rons to learn features depending on language properties by
weighting their output accordingly.

We chose the hyper parameters of the network based on
a setup for speech recognition [19]. The network featured 3
hidden bi-directional layers with 504 LSTM cells for each di-
rection. Based on preliminary experiments [7], we chose a
sequence covering a context of +/− 15 frames. This results
in a sequence length of 31, 15 frames of symmetric context
on each side centered around one middle frame. The full se-
quence output for both directions gets concatenated and then
forwarded to the next layer. After the final LSTM layer, we
only retain the final sequence output, modulate it with LFVs
and forward it to the output layer. The output layer is a feed
forward layer which maps the output of the final DBLSTM
layer to AF targets.

To further reduce the error rate, we applied a method sim-
ilar to newbob scheduling: We restarted the network training
with a decreased learning rate after an epoch if the recogni-
tion accuracy decreased. The training was restarted with the
learning rate being decreased by a factor of 0.5.

4. PHONETIC UNIT DISCOVERY

Our goal is to discover phone-like units for unknown, poten-
tially unwritten languages. Our proposed approach consists
of three steps: First, we detect phone boundaries in the au-
dio recordings of the new language, i.e. we segment the au-
dio into phone-like segments without assigning labels to the
segments. To do this we have demonstrated a method based



on DBLSTMs [20], achieving state-of-the-art performance on
TIMIT.

In the second step, we classify AFs for each of these seg-
ments, using the method presented here. Ideally, we would
have resorted to extracting AFs only on frames marked as
middle frames by the speech recognizer, but since we do not
have such an alignment, we approximated this by taking the
inner third of each segment. While not being ideal, this should
exclude co-articulation effects sufficiently well.

In the third step, the segments are clustered based on the
AF detected for them in order to derive a set of phonetic units,
using k-Means clustering [6]. This method requires the num-
ber of classes (phones) to be known beforehand, which is nor-
mally not the case in our scenario.

4.1. Evaluating the Cluster Count

To estimate the quality of the clustering, we used two meth-
ods. For determining the clustering performance in a su-
pervised way, we computed the adjusted mutual information
(AMI) score [21]. To evaluate the performance unsupervised,
the Mel Cepstral Distortion (MCD) [22] was used. While
it is primarily used to assess the quality of text-to-speech
(TTS) systems, it is also suited to evaluate the discovered
units: First, a TTS system is built based on the discovered
units, next the distortion of the generated speech is computed
[23]. The resulting MCD score serves as a measure of how
distorted the generated speech is. Higher values correspond
to high distortions and to a lower performance.

5. EXPERIMENTAL SETUP

5.1. Data Preparation

We based our experiments on the multilingual Euronews cor-
pus [24], which consists of TV broadcast news. It features
recordings from 10 languages, with 70h of data per language.
For training and evaluation of AFs, we used data from En-
glish, French, German and Turkish. In addition to data from
Euronews, we also evaluated our results on Mbosi, a language
from the Bantu family. The data we used was collected as part
of the BULB project [25]. The data was recorded in the field,
and then later re-spoken by a native speaker in a controlled
environment. To generate training data for the AF extractors,
we trained speech recognition systems for English, French,
German and Turkish and used these systems to force align the
transcripts to the recordings at a phone level. This selection
was based on the availability of pronunciations generated by
MaryTTS [26], whose language definition files we also used
to establish a mapping between phones and AFs. The sys-
tems were trained using the Janus Recognition Toolkit (JRTk)
[27] which features the IBIS single-pass decoder [28]. The
phone alignments were mapped to AFs in order to generate
training data. For the clustering of individual segments into

phone-like units and the evaluation of these clusterings, we
used Scikit-learn [29].

5.2. Neural Network Training

As contrastive experiments, we trained multilingual bottle-
neck features. The network we used for these experiments
was trained using data from French, German, Italian, Russian
and Turkish. We explicitly excluded English, that we consid-
ered a faux low-resource language in this paper. It was trained
multilingually with shared hidden layers, language specific
output layers and context-dependent sub-phone states as tar-
gets. It featured 5 hidden layers with 1,600 neurons each, ex-
cept for the second last layer which was the bottleneck layer
with 42 neurons. We used lMel and tonal features (FFV [30]
and pitch [31]), extracted using a 32ms window with a 10ms
frame-shift.

Based on BNFs extracted via this network, we trained the
network for LFV extraction, which was trained on data from
all available languages within Euronews (except English). As
input features, we stacked bottle-neck features using a con-
text of 33 frames, but only using every 3rd frame. We used
this increased context because the language information is
long-term in nature, and benefits from a larger context win-
dow compared to systems trained for speech recognition. The
second last layer was a bottle-neck layer, and the network was
trained with the language identity as targets, encoded using a
one-hot encoding. While the 5 hidden layers of the network
featured 1,600 neurons, the bottle-neck had a size of 42. The
setup was similar to [8].

Training the DBLSTM networks for AF extraction, we
used lMel and tonal features. We used Adam to compute
the weight updates with a mini-batch size of 256 and a se-
quence length of 31, which corresponds to a context of +/−
15 frames around a central frame. To train our networks, we
used a framework based on Lasagne [32] and Theano [33].

6. RESULTS

We divided the results section into two parts: First, we evalu-
ated our proposed AF extraction method. Second, we used the
extracted features to cluster phone-like segments into phone-
like units. We evaluated different features, as well as clus-
tering methods. We evaluated the best configuration on the
Embosi data, demonstrating the application of our proposed
approach in a real-world scenario.

6.1. Articulatory Feature Extraction

Tables 2 and 3 show the results for detecting AFs using multi-
ple approaches. We added numbers from recent publications
based on DNNs and DBLSTMs for reference. Adding LFVs
improves the classification performance for both DNN and
DBLSTM based approaches. Combining DBLSTMs with



LFVs results in the lowest FERs, throughout all AF types.
This indicates that AFs are, although being more universal in
comparison to a phone set, to a certain degree biased towards
different languages.

Table 2. Classification error of AFs for consonants, being
trained on German, French and Turkish using 70h per lan-
guage. The results show the FER on the validation set.

Network Type cplace ctype cvox

DNN 8.4 8.2 7.8
DNN + LFV 7.0 6.7 6.3

DBLSTM 5.7 6.4 7.1
DBLSTM + LFV 5.0 5.3 5.0

Table 3. Classification error of AFs for vowels, being trained
on German, French and Turkish using 70h per language. The
results show the FER on the validation set.

Network Type vfront vheight vlng vrnd

DNN 7.2 7.9 7.3 6.1
DNN + LFV 5.8 6.6 5.7 5.0

DBLSTM 6.1 6.0 6.9 5.7
DBLSTM + LFV 4.8 5.2 4.6 4.0

6.2. Phonetic unit discovery

As next step, we evaluated the use of different features for
clustering phone-like units. Based on both AFs and DBNFs,
we clustered segments using k-Means. Using k-Means clus-
tering, the number of classes has to be determined prior to the
clustering process. We compared the clustering performance
with a supervised analysis on English, using the AMI score
and by varying the number of classes.

As shown in Figure 2, the scores using DBNFs showed a
plateau over a wide range of class counts, while the scores of
the AF based clusterings show a peak at 33 classes. Although
the peak does not represent the actual number of phones
present in English (38), the score of the peak is close to the
score of the actual number of classes, as shown in Table 4.

Table 4. AMI Score for clusterings using either DBNFs or
AFs.

Feature Type 33 classes 38 classes

DBNFs 0.489 0.481
AFs 0.397 0.394
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Fig. 2. Comparison of adjusted mutual information (AMI)
scores using different class counts for k-Means clustering,
with features based on DBNFs and AFs

6.3. Evaluation on Embosi

Based on extracted AFs, we evaluated our pipeline of segmen-
tation and clustering on Embosi data. Based on the detected
phones, we built a TTS system and computed the MCD score.
As baseline, we used manually created phone labels. In com-
parison to that, we combined both the automatic segmentation
and clustering (“Segment + Cluster”). As shown in Table 5,
the MCD score rises from 5.25 to 5.78. While this indicates
an increased distortion, the clustered units could be used to
synthesize Mbosi speech.

Table 5. MCD Scores for different conditions
System MCD Score

Baseline 5.25
Segment + Cluster 5.78

7. CONCLUSION

We have presented approaches for both AF extraction, as well
as phonetic unit discovery. Using DBLSTMs in combina-
tion with LFVs, we could lower the FER of AF extractors.
Regarding the clustering of phone-like segments into a set
of phonetic units, we compared using DBNFs and AFs and
showed that AFs are better suited for this task. Based on
this approximation, a set of phone-like units could be derived.
Because of language specific peculiarities, deriving the phone
set is a task requiring linguists with expert knowledge. Hence,
we did not aim at deriving the exact phone set, but instead to
provide a first approximation. In addition we evaluated our
pipeline using data from Embosi. Future work includes the
evaluation of additional clustering methods and unsupervised
metrics with the goal of deriving phonetic units more accu-
rately in order to ease language documentation.



8. REFERENCES

[1] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Mike Seltzer, Andreas Stolcke, Dong Yu, and
Geoffrey Zweig, “The microsoft 2016 conversational
speech recognition system,” in Acoustics, Speech and
Signal Processing (ICASSP), 2017 IEEE International
Conference on. IEEE, 2017, pp. 5255–5259.

[2] George Saon, Gakuto Kurata, Tom Sercu, Kartik Au-
dhkhasi, Samuel Thomas, Dimitrios Dimitriadis, Xi-
aodong Cui, Bhuvana Ramabhadran, Michael Picheny,
Lynn-Li Lim, et al., “English Conversational Telephone
Speech Recognition by Humans and Machines,” arXiv
preprint arXiv:1703.02136, 2017.

[3] Timothy Kempton and Roger K Moore, “Discovering
the Phoneme Inventory of an Unwritten Language: A
Machine-Assisted Approach,” Speech Communication,
vol. 56, pp. 152–166, 2014.

[4] Florian Metze and Alex Waibel, “A Flexible Stream
Architecture for ASR Using Articulatory Features,” in
INTERSPEECH, 2002.
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