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Abstract— The progress in humanoid robotics research has
led to robots that are able to perform complex tasks with a
certain level of autonomy by integrating perception, action,
planning, and learning capabilities. However, robot capabilities
are still limited in regard to how they externalize their internal
state and world state, i.e. their sensorimotor experience, and
how they explain which tasks they performed and how they
performed these tasks. In other words, their capability in con-
veying information to the user in a way similar to what humans
do is limited. To this end, we present a verbalization system
that generates natural language explanations of the robot’s past
navigation and manipulation experience. We propose a three-
layered model to represent robot experience which doubles as
a retrievable episodic memory. Through the memory system,
the robot can select a matching experience given a user query.
In order to generate flexible narrations, we use verbalization
parameters to capture user preferences. We show that our
verbalization algorithm is capable of producing appropriate
results based on these verbalization parameters. The proposed
verbalization system is able to generate explanations for naviga-
tion as well as grasping and manipulation tasks. The resulting
system is evaluated in a pick-and-place kitchen scenario.

I. INTRODUCTION

Humanoid household robots are able to execute tasks
in human-centered environments with a certain degree of
autonomy [2][3]. To automatically accomplish tasks specified
by users such as preparing salad and putting dishes in a
dishwasher, sophisticated robots employ symbolic planning
and manipulation skills which coordinate the robot’s motor
and perception capabilities. Progress in mechatronics, learn-
ing, interaction and system integration has led to robots with
advanced capabilities such as accomplishing complex assign-
ments and understanding human beings [4]. However, robot
capabilities regarding the externalization of their experience
are still very limited. Robots are still unable to explain which
tasks they performed and how they performed these tasks and
convey such information to the user. Sometimes things do not
go as expected, e.g. the task was not completed in a timely
manner or mistakes were made, and people would wonder,
what happened? To answer this question, a user friendly
interface that allows end users to comprehend the robot’s
experience needs to be provided. Therefore, we present a
verbalization system, which lets the robot narrate its past
experience in natural language. Fig. 1 shows the underlying
idea of having robots able to recall previous experience
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Fig. 1. The verbalization system generates a natural language description
based on recorded experience during task execution of the robot.

and generate natural language description of the executed
task. The work is inspired and is based on the verbaliza-
tion concept of autonomous robots presented in [1], where
verbalization of navigation tasks was investigated. In this
work, we build on this concept and explore the possibilities
of verbalization of manipulation tasks and demonstrate the
use of verbalization system in the context of household tasks.

Normally, humanoid household robots work in a human
centered environment. Therefore, we consider natural lan-
guage between human users and robots to be an efficient
interaction method to provide more transparency in the
robot’s behavior [4]. Additionally, it also increases users’
trust in intelligent systems [5]. In order to map humanoid
household robots’ past experience into natural language
narrations that satisfy user preferences, we developed a
modular verbalization system. The developed pipeline of the
verbalization system is shown in Fig. 2 and consists of six
major components. During the robots’ autonomous opera-
tion, a Log File Generator runs alongside it. The Log Files
Generator records significant events that happened during
the task execution. Later when users ask what the robot
did, the Verbalization Parameter Determination module will
capture the users’ interest and convert them into verbalization
parameters: specificity, abstraction, and semantic. The robot
will then select an experience from the episodic memory
according to users’ interest using Log File Filter. Because the
selected experience is still in the form of raw data, the Infor-
mation Fusion module fuses the selected experience with the
environmental information from the Memory System. Finally,
the system generates an appropriate interpretation of this
information through the Narration Generation module. The
resulting narration can vary in accordance to the levels in



specificity, abstraction, and semantic.

The paper is organized as follows. Section II gives an
overview of related work in the area of robot and cognitive
system narration. In Section III, we describe how robot expe-
riences are recorded and represented as the episodic memory.
In Section IV, we explain how robots narrate their past
experience in natural language according to user interests
through a flexible verbalization algorithm. We demonstrate
our concept by implementing the verbalization system on our
kitchen robot ARMARC-III [3], and evaluate the narration of
the robot’s past experience in the context of a pick-and-place
scenario in Section V. In Section VI, we conclude our work.

II. RELATED WORK

There exist several works in the field on automatically
generating a natural language narration of robot experience,
which consists of planned and executed behaviors ([1], [6]),
on interpreting perceived robot behaviors through natural
language ([7], [8], [9]), as well as on producing instructions
for people based on planned actions ([10], [11], [12]).

The work in [1] and [6] are most related to our work.
In [1], the verbalization concept is proposed to generate
description of navigation experiences, which converts tra-
versed route into natural language. Moreover, route narratives
are variable in representation according to user preferences
which are expressed by the verbalization space. In the
verbalization space, three parameters namely Locality, ab-
straction, and specificity are used to model users preferences.
The method in [6] allows robots to dynamically determine
values of the verbalization parameters through learning the
mapping from dialogue to verbalization space. However, both
works mainly focus on annotating navigation experience of
autonomous robot with natural language.

Related to the topic of explaining robot behaviors, robot
soccer commentator systems are capable of understanding
time-varying scenes and generating summaries of robot ac-
tions in the robot soccer game (see [7], [8]). The commen-
tator system accepts live feeds of RoboCup games [8] or
simulated RoboCup games [7] as input to perceive robot
behaviors from the outside. Afterwards, the system generates
live reports on the game after recognizing significant events.

Another related work discusses the generation of under-
standable guidance of planned navigation route for users. In
[10], a real time navigation system that understands drivers’
queries in natural language and generates appropriate answer
is implemented. The work in [11] proposes that navigation
systems should use landmarks and other visible features to
describe routes rather than only use street names and distance
if a natural language description is required. Furthermore,
Bohus et al. indicate in [12] that navigation directions should
take locations into account. Besides, directions should be
generated with different precision for different places.

Although natural language is widely used in human-
robot interaction, we realize that there are still no works
on the narration of humanoid robot experience with natural
language. Our research focuses on generating narration of
humanoid kitchen robots’ past experience, which provides a

possibility for the user to check what happened when the
robot worked alone. We propose an approach to generate
episodic memory for humanoid robots so that users can query
the robots’ past experience. In addition, by making use of
the episodic memory component, our verbalization system is
able to generate narrations of both high-level symbolic plans
and low-level sensor-motor events.

III. EpisSODIC MEMORY GENERATION

In order to narrate past experience, robots should be capa-
ble of memorizing and recalling significant past behaviors.
For the purpose of memorization, we create a model for
robot behaviors which uses the execution plan as well as
the sensorimotor perception data as input. Additionally, we
also develop a module to encode and generate an episodic
memory for platform and end-effector related events consid-
ering the type of robot tasks.

The episodic memory is a memory system that stores
information on autobiographical episodes or events, as well
as related time-indexes and spatial relations [13]. Such a
memory implemented in the robot system supports recording
or retrieving personal experience in a specific place and a
period of time. In [14] and [15], the episodic memory is
applied to a multi-agent cognitive robot system and human-
like robots. In order to achieve our ultimate goal, which is
to enable a humanoid robot to narrate its past experience,
we firstly have the robot generate episodic memory through
a Log Files Generator. In the next paragraphs, we discuss
how to encode episodic memory items and when to generate
a memory record.

A. Modeling of the Robot Experience

The episodic memory records the history of events and
tasks of the robot. Therefore, the encoding of memory
items is based on the experience of the robots that can be
demonstrated in various semantic granularity. For instance,
when the robot describes what happened over a period of
time in the past, it can either roughly tell people the activity,
such as “prepare salad”, or explain a sequence of actions
in detail, such as “taking out salad from the fridge, put
salad on the plate...”. We propose a layer-structured model
to represent robots’ experiences which consist of three levels
of abstractions:

Task: We define task as a representation of experience
at the high semantic level. Different robots are capable to
execute various duties ¢ € 7. The set T represents a domain
of tasks. In the case of household robots, we consider object
manipulation tasks as well as navigation tasks. The type of
task is inferred from a sequence of robot motions.

Action: A sequence of actions is a plan resulting from a
symbolic planner, such as PKS [16] as used in [4]. Actions
are defined with the planning domain definition language
(PDDL) [17]. In our case, we represent robots’ experiences
with a simplified action definition (N,L), where N is the
action name and L is the parameter list which contains agent
name, hand identifier, agent location and object name. For
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Fig. 2. The pipeline of verbalization system consists of six primary function modules which are shown in blue blocks. These blocks are organized in
order. Another three orange blocks that between two function modules mean outputs or data that processed by function modules.

example, the following is a PDDL representation of grasping
action:

(:action grasp
:parameters (?a : obj_agent_robot,
?h : obj_hand, ?1 : loc_surface,
?0 : obj_graspable))

Primitive Action: Primitive actions are elementary basic
actions or events that constitute a motion. Besides, primitive
actions are the most low-level representation of robots’
experiences which are directly detected in raw sensorimotor
data. In our case, we distinguish two types of primitive
actions:

o Platform related primitive action: Platform primitive
actions are segments of the whole navigation route,
which can be represented by (P;,P;,Ejj). The P; is the
start pose and Pj is the stop pose. Ejj is the direct path
from point i to point j.

e Tool Center Point (TCP) related primitive action: TCP
primitive actions contain TCP primitive movements and
grasping/releasing events. TCP primitive movements are
segments of trajectory which has the form (P;,Pj),
where P; and Pj are points on the trajectory and P;
is accessed earlier than P;.

B. Encoding of Episodic Memory Items

Based on the representation of robot behaviors, episodic
memory items are divided into four types. The first type
of memory item is related to the robot’s experience which
is represented on the action level. The other three types of
memory items are related to the robot’s experience which is
represented on the primitive action level. We encode different
types of memory items by defining formats of log file entries
separately. The first data field is reserved to indicate the
record type and each record has at least one timestamp. We
list the format definition as follows:

« In our robot system, the domain of actions is constrained

to grasp, put-down, move, open, close, pour, shift-
right, shift-left, stir, and wipe. However, developers can
scale the action set as wanted. Corresponding to the
action definition, items in the episodic memory are
length varying from action to action because of varied
parameters. We set up a look-up table to indicate data
fields’ meaning of the action parameter list. The record
item of a robot action is formalized in a tuple as

Laction = <ID7 Name, Listpara, Tstart, Tstop>

where ID = “action” and Name is the name of action
which is defined in the action domain. Listp,, is the
parameter list of the action which is defined through
the symbolic planning system. Tgy and T'gop are the
start and stop timestamps.

A record item of platform primitive action is defined as

Iplattorm = <ID7 Posestare, Posesop, Tstart, Tstop>

where ID = “plat form”, Poses,y and Posegyp are start
pose and stop pose. An instance of pose is represented
by (x,y,0) where (x,y) are coordinates in the two-
dimensional space and O is the orientation angle. Both
are given in the Cartesian world coordinate system.
Tstare and Top are the start and stop timestamps for
the primitive action.

Similar to the record of the platform, the record item of
a TCP primitive action is formalized as

Iend effector = <ID> Range, HandID, Positionsgri_world,
Positiongt base, POSitionsiop_worlds
POSitiO"stop,basc; T start, Tst0p>

where ID = “endE f fector” and Range specifies the

range of TCP’s movement. End-effectors manipulate
objects when the platform does not move, so the system



can infer the Range through the position of the platform.
HandID indicates if the TCP is the left hand or the right
hand. Position is a point (x, y, z) in the coordinate
system which can either be world system or arm base
system. The subscript shows the related coordinate
system at the start position and end position. 7 has the
same meaning as in platform primitive action records.

¢ The remaining two TCP actions are grasping and re-
leasing. The memory item is encoded as

Tend effector_grasp = (ID, Object, Thappen>

The value of ID is “grasp” or “release”, and Ob ject
is manipulated kitchen accessories which are grasped or
released. T'pappen TeCOrds timestamp as events happened.
The record “grasp vitaliscereal 1490757888 03/28/17
23:24:48.011” indicates the robot grasped a Vitalis
Cereal at the time 03/28/17 23:24:48.011. The
location and hand identifier information can be inferred
from other memory items, so we do not encode this
information in the memory items of grasping and re-
leasing events in order to avoid redundancy.

C. Trajectory Segmentation and Events Detection

The Log Files Generator creates and saves a new entry
through segmenting the TCP trajectory or platform route,
as well as detecting specific events. First, we focus on
events which usually occur in the context of grasping and
manipulation. In order to segment trajectory, when the TCP
moves the system samples points on the trajectory with
constant frequency. The sampling rate is adjusted to the
TCP velocity in order to get appropriate segments. We use
a Finite-State Automaton (FSA) to monitor TCP related
sensor data and detect the events when the TCP starts to
move. Then FSA generates a record for the TCP primitive
action every time a new point is sampled. For the platform
primitive action, the FSA oversees the current target of the
mobile base in the low sensor-motor level and generates
a record as the target changes as shown in Fig. 3. The
current target is set by the path planning module and is
an intermediate goal in the whole path, which the robot
can directly reach by a straight line. As for hand grasping
or releasing events, the FSA uses sensor data to check
the curvature of fingers’ joint. If the change of curvature
is larger than a threshold and has a closing tendency, the
grasping action is assumed to have happened, otherwise the
releasing action happens. Furthermore, the FSA monitors
currently executed steps of the plan and generates a record
if the new step begin to be carried out. Our ArmarX [18]
robot development environment offers a mechanism called
Statecharts to implement FSA [19].

IV. INFORMATION FUSION AND VERBALIZATION

So far, the original data of robot experience has been
logged in files. However, the raw data is not intuitive for
common users. We fuse environmental information with
original information and infer new knowledge from past

Got a new destination which
differs from last destination { idle -

taskSuccess

- Arrived at the destination
hasNewTask inTask

TaskFail
Got a new destination

Fig. 3. A memory item generator for platform primitive actions which is
based on FSA implemented as ArmarX statecharts.

experience. Finally, the system organizes all sources and
generates descriptions following a set of rules.

A. Fusion of Log Files and Maps

For the purpose of describing past primitive actions flu-
ently and naturally, we interpret position information refer-
ring to environment knowledge. The location of the mobile
robot platform that is represented by coordinates in the log
files can be annotated with a nearest prominent facility or
manually defined marks , if the distance is below a defined
threshold. Considering different sizes of the TCP workspace
and the platform movement range, we individually assign
appropriate environmental landmarks to the TCP and the
platform. Three types of maps are used to represent envi-
ronment information as follows:

Static Kitchen Map: The static kitchen map indicates
prior knowledge about the open kitchen area. This map is
a metric map that consists of several points p = (n,x,y),
where n is the static kitchen facilities’ ID name, and (x,y)
is the corresponding coordinate in the kitchen. This prior
knowledge is stored in the robot’s memory system and is
loaded to working memory during the execution time. The
data processing of platform related records is based on this
map.

Static Marks Map: The static marks map reflects topolog-
ical relationships between manually defined marks and static
kitchen facilities. The map comprises several significant
points that on static facilities p = (m,x,y,z,r), where (m,r)
indicates that a static mark m is on the related static kitchen
facility r and (x,y,z) is the position of the static mark in the
world coordinate system. Such a map is helpful to annotate
TCP localization constrained in a limited range.

Dynamic Objects Map: The dynamic objects map rep-
resents the world states which are the locations of kitchen
accessories. These locations may vary because robots can
manipulate the objects. We formalize points in the dynamic
objects map as p = (a,r,x,y,z,c), where (a,r) stands for the
kitchen accessory a is on or in the kitchen facility r, and c is
the characteristic of the kitchen accessory, for instance, the
flavor or color. The (x,y,z) means the accessory’s position.
Besides, the dynamic kitchen accessories map has different
instances during the task execution. We formalize this aspect
by M = (m,t) where m is the map ID and ¢ is the timestamp.



Our verbalization system is extendable because of these
maps. These maps enable the robot to work in others
kitchen environment. In order to annotate coordinates with
environment reference, we use two strategies. One is to find
the nearest neighbor on the map based on the Euclidean
distance. The other is to take orientation into account and
find the object at which the robot is looking.

« The Euclidean distance based nearest neighbor is the
neighbor, which has minimum Euclidean distance
to a given coordinate. This criterion is helpful to
fuse robot positions or end-effector positions in the
log files with the static kitchen map or the static
marks map. For example, if the mobile platform
moved from (3409.55,7100.15,-1.56999) to
(2932.31,5618.54,2.3293), the movement can
be represented in another form as “The robot moved
from a point near sideboard, then arrived at a point
near the control table”.

o The angular distance based nearest neighbor is crucial
for annotating the moving direction of TCP primitive
action with a static mark. The primitive action can be
represented as a vector as given in equation (1). We cal-
culate another vector that demonstrates the relationship
between primitive action and the object as given in equa-
tion (2). The (Xgtart; Ystart) and (Xgiop,Ystop) are the start
and stop point of the TCP, while (x,,Y,) is the location
of the mark. The angle distance between TCP primitive
actions and the object is the angle 6(7@,?@70). For
instance, we can interpret the tendency of TCP primitive
movement as “the TCP moved to the table center”,
where the table center is the nearest static mark.
Although the end-effectors move in the three-
dimensional space, we reduce the movement onto the
surface where manipulated objects are, namely x and y
axes.

. T
Ttep = [xend — Xstart; Yend — )’start} (L

- T
T'tcp_obj = [xobj — Xstart, Yobj _)’starl} (2)

T'tcp * T'tep_obj

3)

D angular = 6 (Fiep, Fiep_obj) = arccos — -
| Tep |7 tcp-obj |

B. Narration Generation

The Narration Generation module maintains a multiple
templates and uses a template-based approach to generate
descriptions of past robots’ behavior. The information is
directly extracted or indirectly mined from log files. The
newly mined information contains execution distance, ex-
ecution time, velocity and more. Besides, new interpretation
or knowledge is generated through information fusion as de-
scribed above. After generating episodic memory entities and
fusing log files with environmental information, the system
is finally capable to convert low level sensorimotor data as
well as high level plans into natural language descriptions
by choosing the appropriate information and filling them in
the templates slots.

TABLE I
NARRATED INFORMATION OF TCP RELATED EXPERIENCE UNDER A
SPECIFIED VERBALIZATION PARAMETER

Abstraction
Level 1 Level 2 Level 3
. nearest static marks
start point
— . or the nearest
— | coordinates, . . .
g stop point kitchen accessories moving tendency,
3 . of start and stop execution time
coordinates, . .
> . . points, execution
s execution time .
) time
g start point nearest static marks
f; coordinates, or the nearest
~ | stop point kitchen accessories moving tendency,
§ coordinates, of start and stop velocity, moving
3 velocity, points, velocity, distance, hand
moving moving distance, identifier
distance, hand hand identifier,
identifier object characteristic

1) Verbalization Space: The robot can already simply
narrate past experience by using function modules described
above, if user inclination is ignored. However, the robot
should consider various user preferences and interests. For
example, our robot researchers are interested in detailed and
precise narration while common users care about a concise
description. Therefore, we use the verbalization space to
quantify the user preference. The space consists of three
orthogonal parameters (E,A,S), where E stands for the
semantic level that specifies the representation of the robot’s
behavior, A is a parameter that determines the abstraction
degree of description, and S is the specificity that defines the
information amount of description. Once the verbalization
parameters are determined, the system filters out log files of
interest, generates useful information as wanted, and chooses
corresponding templates to generate utterances.

The kitchen robot conducts tasks mainly through coor-
dinated motion of the mobile platform and the two end-
effectors at sensorimotor level, which has different charac-
teristics. In order to generate proper interpretation of past
experience, we respectively define ranges of specificity and
abstraction for the platform and the end-effector. Table I
shows how to instantiate verbalizations for TCP related
experience under specified parameters.

Semantic E: The semantic level indicates which level
should be used to represent robot behaviors. At the high
semantic levels 1 and 2, the system generates descriptions
based on the task and the executed plan which represent the
robot experience. On the contrary, level 3 shows the senso-
rimotor related primitive actions. Abstraction and Specificity
works when semantic level is 3.

Abstraction A: Abstraction decides how to represent the
primitive action and how to add prior knowledge of the
environment into the interpretation. This parameter also
determines the corpus for the description generation. Level
1 is the most concrete level, the system gives out world
coordinates of the start point and stop point of an action. For
the platform, the position is interpreted by the nearest static



kitchen facilities in level 2. In level 3, the narration only gives
out a rough region of moving. For the end-effector, the start
and stop point of a TCP primitive actions are encoded with
static marks or manipulable kitchen accessories in level 2.
In abstraction level 3, the verbalization explains the moving
tendency of TCP such as “leftwards”, “upwards”.

Specificity S: Specificity quantifies the information
amount. Level 1 provides the least information that only
contains execution time. For platform, level 2 and level 3
add more information to the description. Level 2 adds infor-
mation about turn angle, moving distance, and movement
speed. Level 3 appends the information about the facing
direction at the start and stop point. As for the end-effector,
level 2 complements several information such as velocity and
moving distance.

2) Variable Verbalization Algorithm: The complete vari-
able verbalization algorithm is given in Algorithm 1 in
pseudocode. The algorithm accepts a user query as input and
synthesizes natural language description of past experience.
The user query includes time and objects of interest, as
well as the values of verbalization parameters. When the
system determines the user preference, entries in log files
are selected according to the user interest. Afterwards, the
system fuses filtered records with environmental information
and generates a variety of new information. Finally, the
system generates narration by filling in the corresponding
templates with proper information.

Algorithm 1 Algorithm for Verbalization
Input: query_user
Output: narrative
/I Record the history of robot’s behavior
1: logFiles + generateLogfile(plan_executed, sensorData)
// Determine values of verbalization parameters
2: (E,A,S) « getParameterValues(query_user)
/I Determine time and objects of interst
3: (time,object) < getlnterest(query_user)
// Filter log files according to users’ interest
4: logFilesFiltered < filterLogfile(E time,object,logFiles)
/I Load maps from memory system
5: maps < loadMaps(workingMemory)
/I Annotate locations with conspicuous marks
6: infoPool < fuselnformation(maps,logFiles)
/I Choose appropriate corpus
7: corpus < getTemplates(E, A, S)
/I Generate narration for past experience
8: narrative < generateNarration(infoPool,logFiles, E A, S)

V. EVALUATION AND APPLICATION

We evaluated the proposed system in context of the
humanoid robot ARMAR-III [2] with two 7-DoF arms, two
pneumatic five finger hands, a 7-DoF head with two stereo
camera systems (foveal and peripheral), and a holonomic
platform with 2D laser scanners. ARMAR-III is able to
perform tasks in a kitchen environment such as grasping
objects, opening the fridge, pouring, mixing, wiping the

table. We integrated our verbalization system in the robot
system and evaluated the system in the context of a pick-
and-place task as shown in Fig. 4. The robot system allows
to use a simulation or the real robot without needing to
change anything in high-level components like the proposed
verbalization system. The proposed verbalization system is
evaluated with the kinematic simulation of ArmarX. This
allows robust execution of the manipulation skills without
any failures during execution due to inaccuracies in the
execution or perception.

Our kitchen environment consists of basic kitchen facilities
such as oven, fridge, sink, dish washer, table, etc. Several
static marks are manually defined beforehand, e.g. table
center, table corner, fridge handle, etc., relating to static
kitchen facilities. The following section shows segments
of the static kitchen and marks map. Each map occupies
a segment in the memory system of the robot. In the
static kitchen map, the coordinates show the positions of
the facilities in the kitchen map. In the static marks map,
the coordinates show the positions of the marks in three-
dimension. We test our verbalization system in a pick-and-
place scenario taking place in this kitchen environment.

End users usually have a different preference when they
query the past experience of the robot. Some users want
to get a natural and detailed narration while others prefer
concise narration. Therefore, we demonstrate two typical use
cases using the following two examples.

(static kitchen map)

dishwasher (2500,9000)
fridge (4050,9260)
sideboard (3400,7000)
sink (2600,9500)
stove (3110,9500)

(static marks map)

tableCenter 4300,7165,1032) sideboard
tableCornerl 3800,6540,1032) sideboard
refrigeratorHandle (4150,9360,1100) fridge

Example 1: Natural and Detailed Verbalization

The user wants to get natural detailed information about
certain events that happened in a specific day. To represent
this user preference we select level 3 for semantic, to get
sensorimotor related narration. To get the natural narration
of the TCP and platform primitive actions, we select level
2 for abstraction and for the detailed information of the
TCP and platform primitive actions, we select level 2 for
specificity. Afterwards, the system fills in the provided
templates, which cover all possible actions. The following
shows all the templates for the verbalization parameters we
have previously assigned:

“[I]N [Started]v in the ViCinity of [”—]kitchenFacilityNearStartPose
and arrived around the vicinity of [___JobjectNearEndPose”

“[HN [moved]v around [———]NearestKitchenFacility”



Fig. 4. A sequence of images demonstrates that the robot executes a pick and place task in the kitchen. The robot (1) started in front of the sideboard
and moved right hand towards a box of cereal, (2) grasped the box, (3) raised right hand, (4) moved from the sideboard to the control table, (5) put down

the box, (6) released the hand.

“[My [moved]y a total of [___]gistance Mmeter with a speed
of [———]Velocity m/s and [rotated]v [———]rotationAngle degrees
with a speed of [___lrouatevelocity degree/s which [took]y
[———]timeToCompleteTask seconds”

“[My [moved]y my [ Jhandidentifier hand from [ JsuticMark
to [-——IstaticMark for a total of [___]gistance mm with a speed
of [———]Velocity mm/s”

“[Mn [grasped]y [-_object.”

The system selects memory records based on the time that
users are interested in. Records which were recorded at the
same date given by the user will be selected. Afterwards, the
system generates a corpus based on the assigned abstraction
level, e.g. the nearest landmark, execution time in “seconds”,
velocity in “mm/s”, and rotation angle in “degree”. Finally,
the system replaces the placeholders in the templates using
the information from the corpus, and generates utterances for
each log file entry.

I moved my right hand from tableCenter to
tableCornerl for a total of 44.345375
mm with a speed of 8.869075 mm/s.

I moved my right hand around tableCornerl
for a total of 92.628616 mm with a
speed of 18.525723 mm/s.

I grasped vitaliscereal.
I moved my right hand from tableCenter to
tableCornerl for a total of 99.198570
mm with a speed of 19.839714 mm/s.
I started in the vicinity of sideboard and
arrived around the vicinity of
controltable. I moved a total of
1.556575 meter with a speed 1.556575 m/
s and rotated 223.412857 degrees with a
speed 223.412857 degree/s which took
1.000000 seconds.

I released vitaliscereal.

I started in the vicinity of controltable
and arrived around the vicinity of
sideboard. I moved a total of 0.378236
meter with a speed 0.378236 m/s and
rotated 0.048699 degrees with a speed
0.048699 degree/s which took 1.000000
seconds.

Example 2: Concise Verbalization

In contrast to the previous example, the system can also
produce concise verbalization. The user wants to know
the experience of ARMAR-III on a different day and the
explanation has to be concise. The semantic level therefore
has to be set to level 2. To get the narration, first the system
checks the look-up table to decode action related memory
items. Afterwards, the system finds matching templates and
use them to generate narrative as follows:

I moved from sideboard2 to the sink. It
took 1 seconds.

I picked up green cup on the sink with my
right hand. It took 4 seconds.

I moved from sink to placesettingl. It
took 1 seconds.

I put down the green cup. It took 1

seconds.

We conducted our testing and evaluation of the verbal-
ization system on scenarios in a simulator. The system is
capable of generating matching narratives according to user
preferences. Preferences with a high level of specificity
result in narrations with more words, and preferences with
a high level of semantic result in more detailed narrations.
Additionally, the higher the level of abstraction, the more
human-like the narration becomes. Besides, the system also
generates correct descriptions for other graspable objects in
a pick-and-place scenarios.

The proposed verbalization system is also highly extensi-
ble. To use our verbalization system in a different environ-
ment, users only need to adjust the static marks map, static
kitchen map and templates. To use the verbalization system
with a different robot, the robot needs to provide information
about the position of the hands, the position of the robot in
the world, and the perceived objects. If the robot uses also
the ArmarX framework, only configuration adjustments are
needed.

VI. CONCLUSION

In this work, we presented a verbalization pipeline as a
method for mapping the experience of a humanoid house-
hold robot into natural language. The verbalization system
allows the robot to store past experiences and to generate



explanations of those experiences according to the given
user preferences regrading abstraction and specificity. The
produced explanations are not limited to sensorimotor related
experiences only, but also include high level experience, e.g.
the execution plan.

Our future work will focus on automatically determining
user preferences from dialogs between the robot and the user.
Additionally, we will also devise a method for the system to
learn templates by processing a natural language corpus in
order to refine our manually defined templates.
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