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Abstract

This paper describes our German and English Speech-
to-Text (STT) systems for the 2016 IWSLT evaluation cam-
paign. The campaign focuses on the transcription of unseg-
mented TED talks. Our setup includes systems using both
the Janus and Kaldi frameworks. We combined the out-
puts using both ROVER [1] and confusion network combina-
tion (CNC) [2] to archieve a good overall performance. The
individual subsystems are built by using different speaker-
adaptive feature combination (e.g., lMEL with i-vector or
bottleneck speaker vector), acoustic models (GMM or DNN)
and speaker adaption (MLLR or fMLLR). Decoding is per-
formed in two stages, where the GMM and DNN systems are
adapted on the combination of the first stage outputs using
MLLR, and fMLLR.

The combination setup produces a final hypothesis that
has a significantly lower WER than any of the individual sub-
systems. For the English TED task, our best combination
system has a WER of 7.8% on the development set while our
other combinations gained 21.8% and 28.7% WERs for the
English and German MSLT tasks.

1. Introduction
For many years now, the International Workshop on Spo-
ken Language Translation (IWSLT) offers a comprehensive
evaluation campaign on spoken language translation. The
evaluation is organized in different evaluation tracks cover-
ing automatic speech recognition (ASR), machine transla-
tion (MT), and the full-fledged combination of the two of
them into speech translation systems (SLT). The evaluations
in the tracks are conducted on TED Talks1, short 5-25min
presentations by people from various fields related in some
way to Technology, Entertainment, and Design (TED) [3].
In this years installment, an additional track was added using
recordings from Skype (MSLT).

The goal of the TED ASR track is the automatic tran-
scription of fully unsegmented TED lectures. The quality
of the resulting transcriptions is measured in word error rate
(WER).

1http://www.ted.com/talks

This system paper describes our English and German
ASR setups with which we participated in the TED ASR
and MSLT tracks of the 2016 IWSLT evaluation campaign.
Similar to previous years’ evaluation [4], we used the Janus
Recognition Toolkit (JRTk) [5] which features the IBIS
single-pass decoder [6] to build several complementary sub-
systems and combined them with an additional system based
on the TED-LIUM recipe of the Kaldi toolkit [7]. Our Janus-
based systems employ different speaker-adaptive features,
acoustic models or speaker adaption techniques. While the
Kaldi-based system employs the same training database, se-
quence training and RNN based language models for rescor-
ing.

The rest of this paper is structured as follows. Section 2
describes the data that our system was trained and tested on.
This is followed by Section 3 which provides a description
of the acoustic front-ends used in our system and Section 7
which describes our segmentation setup. An overview of the
techniques used to build our acoustic models is given in Sec-
tion 5. We describe the language model used for this evalua-
tion in Section 6. Our decoding strategy and results are then
presented in sections 8 and 9. We conclude the paper with
Section 10.

2. Data Resources
2.1. Training Data

Table 1 and Table 2 show the data sources we used for the
acoustic model training of our systems. This year we in-
cluded more 80 hours of broadcast news which results a total
of 483 hours for the English systems. For the German sys-
tems, we used the same training data as last year.

Source # Amount

Quaero from 2010 to 2012 200 hours
Broadcast news [8] 80 hours
TED-LIUM v2 [9]
excluding disallowed talks 203 hours

Total 483 hours

Table 1: English acoustic modeling data.



Source # Amount

Quaero from 2009 to 2012 180 hours
Broadcast news 24 hours
Baden-Württemberg parliament 160 hours

Total 364 hours

Table 2: German acoustic modeling data.

2.2. Test Data

For this year’s evaluation campaign, the evaluation test sets
“tst2015” and “tst2016”, as well as the development test sets
“tst2013” and “tst2014” were provided for the English TED
evaluation campaign. All development test sets featured a
pre-segmentation provided by the IWSLT organizers. For the
test set, automatic segmentation was required. For the MSLT
task, development sets were provided as well. In contrast to
the TED evaluation data, manual segmentation was provided
for both development and test sets.

3. Feature Extraction
Our systems are built using several different front-ends as
previously described in [4] including 40-dimensional log
scale mel filterbank (lMEL), 20-dimensional mel frequency
ceptral coefficient (MFCC), 20-dimensional minimum vari-
ance distortionless response (MVDR) and 14-dimensional
tonal (T) features. These features can be augmented with
i-vectors (Section 3.2) or bottleneck speaker vectors (Sec-
tion 3.3) to be directly used for acoustic modeling or fed into
deep bottleneck networks (Section 3.1) for extracting bot-
tleneck features. The extracted bottleneck features are then
transformed using feature-space maximum likelihood linear
regression (fMLLR) and augmented with i-vectors to build
speaker-adaptive features (Section 3.4). Our detailed feature
extraction pipeline is explained in [10].

3.1. Bottleneck Features

We employed the deep bottleneck architecture described by
[11], which consists of a stacked denoising auto-encoder of
4-5 layers each containing 1600-2000 units, followed by a
42 unit bottleneck, a hidden layer and the classification layer.
The stacked auto-encoder is first pre-trained layer-wise [12],
then the whole network is fine-tuned to discriminate target
phoneme states. For the extraction of bottleneck features
(BN), the layers after the bottleneck were removed and the
output activations of the bottleneck layer were used as BN.

3.2. I-vectors

To extract i-vectors, a full universal background model
(UBM) with 2048 mixtures was trained on the training
dataset using 20 Mel-frequency cepstral coefficients with
delta and delta-delta features appended. The total variabil-

ity matrices were estimated for extracting 100 dimensional
i-vectors. We tuned the size of the i-vectors in a series of pre-
liminary experiments for optimal recognition performance.
The UBM model training and i-Vector extraction was per-
formed by using the sre08 module from the Kaldi toolkit [7].
I-vectors as well as tonal features were always used in com-
bination with other features.

3.3. Bottleneck Speaker Vectors

In addition to i-vectors, we also used Bottleneck Speaker
Vectors (BSVs) [13]. While they serve the same purpose,
they are entirely neural network based. We used the same
setup as for our hybrid systems, but trained the network to
recognize different speakers instead of phonemes using a
one-hot encoding of the speaker identities. To extract the
BSVs, we used a bottleneck layer as second last layer of the
speaker classification network and discarded all layers after
this layer after training. For obtaining the final speaker vec-
tor, we averaged the output activation of this hidden layer on
a per speaker basis or on utterance level if no speaker infor-
mation was available (MSLT task).

3.4. Speaker Adaptive Features

To build speaker-adaptive features (SAF) for GMM sys-
tems, we first train deep bottleneck network from 11 stacked
frames of regular features and i-vectors. The extracted BN
features are then spliced for 11 consecutive frames and trans-
formed using Linear Discriminate Analysis (LDA) which are
known to make inputs more accurately modeled by GMMs.

The speaker-adaptive features for DNN systems are ob-
tained after transforming BN features using fMLLR transfor-
mation and then augmented with i-vectors. The process of
fMLLR estimation was performed as traditional approach.
During the training, we used the adaption data of the same
speaker and the reference transcriptions to do the alignment,
while the same GMMs were used as first-pass systems to
generate transcriptions in the testing.

4. Phoneme and Dictionary

For English, we used the CMU dictionary2. This is the same
phoneme set as the one used in last year’s systems. It consists
of 45 phonemes and allophones. We used 7 noise tags and
one silence tag. Missing pronunciations were created using
the FESTIVAL [14] Text-to-Speech Engine.

Our German system uses an initial dictionary based on
the Verbmobil Phoneset [15]. Missing pronunciations are
generated using both MaryTTS [16] and FESTIVAL [14].

2http://www.speech.cs.cmu.edu/cgi-bin/cmudict



5. Acoustic Modeling
5.1. HMM CD-Phone

All GMM and hybrid models classify context-dependent
quinphones with three states per phoneme and a left-to-right
HMM topology without skip states. The English acoustic
models use 8,156 distributions and codebooks derived from
decision-tree based clustering of the states of all possible
quinphones. The German acoustic models use 18,016 dis-
tributions and codebooks.

5.2. GMM Models

The GMM models are trained by using incremental splitting
of Gaussians training (MAS) [17], followed by optimal fea-
ture space training (OFS) which is a variant of semi-tied co-
variance (STC) [18] training using a single global transfor-
mation matrix. The model is then refined by one iteration of
Viterbi training.

For the evaluation, we trained two GMMs using SAF
features with different front-ends for the English TED task.
The front-ends include standard lMEL and a combination
of MFCC, MVDR and tonal features (M2+T). For the En-
glish MSLT task, we use the combinations of lMEL+T and
lMEL+IVec to build two GMM systems.

5.3. Hybrid Models

All the DNN models also share the same architecture which
has 5-6 hidden layers with 2000 units per layer. The input
of the DNNs are 11 stacked frames of 42-dimensional trans-
formed bottleneck features or 40-dimensional lMEL, with or
without combining i-vectors and tonal features. We used the
sigmoid activation function for the hidden layers and soft-
max for the output layer. DNN systems were trained using
the cross-entropy loss function to predict context-dependent
states. The same training method is applied for all DNNs
which includes pre-training with denoising auto-encoders
and followed by fine-tuning with back-propagation. We used
an exponential schedule to update the learning during the
neural network training.

This year, we built two DNNs using SAF features with
different front-ends for the English TED task. The used
front-ends are the same as for the GMM systems. For En-
glish MSLT task, we employed 4 DNN systems which have
different speaker-independent features as listed in Table 6.

The German setup for the MSLT task consists of 5 DNN
systems based on different combinations of input features as
shown in Table 7

6. Language Models
6.1. Vocabulary and Kneser-Ney Models

For language model training and vocabulary selection, we
used the subtitles of TED talks, or translations thereof, and
text data from various sources (see Tables 3 and 4). Text

cleaning included tokenization, lowercasing, number nor-
malization, and removal of punctuation. Language model
training was performed by building separate language mod-
els for all (sub-)corpora using the SRILM toolkit [19] with
modified Kneser-Ney smoothing. These were then linearly
interpolated, with interpolation weights tuned using held-out
data from the TED corpus. For German, we split compounds
similarly as in [20].

For the vocabulary selection, we followed an approach
proposed by Venkataraman et al.[21]. We built unigram
language models using Witten-Bell smoothing from all text
sources, and determined unigram probabilities that maxi-
mized the likelihood of a held-out TED data set. As our
vocabulary, we then used the top 150k words for English,
and 300k words for German.

6.2. Feed-forward Neural Language Model

During decoding the probabilities of a feedforward neural
network language model were linearly interpolated with the
baseline language model. Due to performance considera-
tions, the most recent 40k queries for this language model
were cached and we constrained the output vocabulary to the
20k most frequent words which appeared in the text corpora.
We used 200 dimensional word embeddings trained with the
Skip-gram model [22]. Three words were considered as the
context, while the rest of the network consisted of three hid-
den layers followed by a softmax output layer. The train-
ing text consisted of 30M words for German and English.
The German text was selected from the callhome, HUB5 and
newscrawl data, while in English the training data was cho-
sen from the TED and TEDLIUM corpora.

6.3. Recurrent Neural Language Model

We also trained a recurrent neural network language model
for n-best rescoring, using 2 layers of long short-term mem-
ory [23, 24], with 650 hidden units each. We added short-
cut connections as in [25]. We used BPE subword units
[26] to handle rare words, the vocabulary size was 50k. We
first trained on a large background corpus until convergence,
and then fine-tuned parameters via continued training on in-
domain data. We extracted 1000-best lists from the lattice
or system combination output, and used MERT [27] to find
rescoring weights for acoustic model scores, Kneser Ney lan-
guage model scores, recurrent language model scores, and
word and filler penalties. English background data was the
TEDLIUM corpus, for German we used the newscrawl cor-
pus. In-domain data and development data were taken from
TED for the English TED task, from Fisher for the English
MSLT task, and from Callhome and HUB5 for the German
task (see Tables 3 and 4).

7. Automatic Segmentation
In this evaluation, the test set for the ASR track was pro-
vided without manual sentence segmentation, thus automatic



Text corpus # Words

TED 3.6m
Fisher 10.4m
Switchboard 1.4m
TEDLIUM dataselection 155m
News + News-commentary + -crawl 4,478m
Commoncrawl 185m
GIGA 2323m

Table 3: English language modeling data.

Text corpus # Words

TED 2,685k
News+Newscrawl 1,500M
Callhome 159k
HUB5 20k

Table 4: German language modeling data after cleaning and
compound splitting.

segmentation of the target data was mandatory. We utilized
an approach to automatic segmentation of audio data that
is SVM based. This kind of segmentation is using speech
and non-speech models, using the framework introduced in
[28]. The pre-processing makes use of an LDA transforma-
tion on DBNF feature vectors after frame stacking to effec-
tively incorporate temporal information. The SVM classifier
is trained with the help of LIBSVM [29]. A 2-phased post-
processing is applied for final segment generation.

We generated the segmentations for both English and
German using this SVM based segmentation. The parame-
ters for the SVM segmenter were chosen on a per language
basis after preliminary experiments.

8. Systems and Combination
Table 5 shows our systems built for the English TED submis-
sion. In the first-pass, we used two GMM and two DNN sys-
tems with the acoustic models and 4-gram language model
described in Section 5 and Section 6. Their decoded lattices
are sent to a consensus decoding system (CNC) to produce
combined hypotheses and confidence scores for the adaption
in the second-pass. Two GMM systems are fully adapted
as transitional approach using both feature space adaption
(fMLLR) and model adaption (MLLR). The DNN systems
are adapted by training the DNN acoustic models one more
epoch on the adaption data of each speaker. The adaption
data is obtained by performing alignment of the CNC de-
coded results with the speaker audio and filtering out the
frames with the confidence scores higher than 0.7. In the
second-pass, we employed the feed-forward language model
described in Section 6 instead of the 4-gram language model.
All these systems were built using Janus Recognition Toolkit
(JRTK) [15].

Beside that we also trained a different system using the
TED-LIUM receipe (s5) with the Kaldi toolkit [7]. The same
train database is used for acoustic modeling but we used the
Cantab-Tedlium [30] language model for decoding and our
RNN language model for lattice rescoring. Our final submis-
sion for the English TED task consists of a ROVER of this
Kaldi based system and the adapted systems. The results of
the single and adapted systems as well the combined system
are presented in Table 5.

This year we also participated in the new MSLT task.
Since the MSLT data is provided without the speaker infor-
mation, it was difficult to employ speaker adaptive features
or apply our speaker adaption techniques. Only very limited
gains could be achieved. In German, the WER decreased
from 32.6% to 32.5% using lMEL+T in combination with
BSVs, as shown in Table 7.

We archived the recognition improvement by combin-
ing several systems and using the RNN language model for
rescoring as described in Section 6. Tables 6 and 7 show the
results of many systems that we made and their combination.

9. Results
For the English TED task, we gained significant improve-
ments over building speaker adaptive features, DNN model
adaption, RNN language model rescoring and CNC combi-
nation. On the test set “tst2013” and “tst2014”, we archived
9.4% and 7.8% WERs relatively. For the English and Ger-
man MSLT tasks, the improvements was obtained by com-
bining multiple systems and using the RNN language model.
We archived WERs of 21.6% and 28.7% on “dev2016” for
the final results.

System tst2013 tst2014

GMM(SAF-lMEL) 13.5 11.0
GMM(SAF-M2+T) 13.4 10.9
DNN(SAF-lMEL) 12.0 10.4
DNN(SAF-M2+T) 12.3 10.0

CNC 10.5 8.6

GMM(SAF-lMEL) adapted 10.7 8.5
GMM(SAF-M2+T) adapted 10.5 8.6
DNN(SAF-lMEL) adapted 9.8 8.6
DNN(SAF-M2+T) adapted 10.2 8.8

Kaldi-s5 RNN rescored 11.8 8.6

ROVER 9.4 7.8

Table 5: Results for English talk task on ‘tst2013’ and
‘tst2014’ development sets.

In addition to our experiments on these two English
tracks, we also participated in the German MSLT task. The
results on the “dev2016” test set with and without neural net-
work language models are shown in Table 7.



System dev2016

GMM(lMEL+T) 26.7
GMM(lMEL+IVec) 26.6
DNN(lMEL+T) 27.1
DNN(lMEL+IVec) 27.6
DNN(BN-lMEL) 26.6
DNN(BN-M2+T) 26.7

CNC 22.9
CNC rescored 21.6

Table 6: Results for English MSLT task on ‘dev2016’ devel-
opment set.

System dev2016 + NN-LM

DNN(BN-lMEL+T) 33.7 32.6
DNN(BN-lMEL+T+bsv) 33.8 32.5
DNN(BN-M2+T) 33.0 32.1
DNN(BN-M2+lMEL+T) 32.7 31.6
DNN(Mod-M2+lMel+T) 32.3 31.0

CNC 30.8 28.8
CNC rescored – 28.7

Table 7: Results for German MSLT task on ‘dev2016’ devel-
opment set.

10. Conclusion
In this paper we presented our English and German LVCSR
systems, with which we participated in the 2016 IWSLT eval-
uation. All systems make use of neural network based front-
ends, HMM/GMM and HMM/DNN based acoustics models.
The decoding set-up of all languages makes extensive use of
system combination of single systems obtained by combing
different feature extraction front-ends and acoustic models.
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