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ABSTRACT  

The number of minimally invasive procedures is growing every year. These procedures are highly complex and very 

demanding for the surgeons. It is therefore important to provide intraoperative assistance to alleviate these difficulties. For 

most computer-assistance systems, like visualizing target structures with augmented reality, a registration step is required 

to map preoperative data (e.g. CT images) to the ongoing intraoperative scene. Without additional hardware, the (stereo-) 

endoscope is the prime intraoperative data source and with it, stereo reconstruction methods can be used to obtain 3D 

models from target structures. To link reconstructed parts from different frames (mosaicking), the endoscope movement 

has to be known. In this paper, we present a camera tracking method that uses dense depth and feature registration which 

are combined with a Kalman Filter scheme. It provides a robust position estimation that shows promising results in ex 

vivo and in silico experiments. 
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1. INTRODUCTION  

Minimally invasive surgery (MIS) is a challenging field of work. To assist the surgeons with the difficulties tied to it, 

computer assisted intraoperative support is becoming more and more important. For intraoperative assistance often a live 

target model out of the operating room (OR) is needed. The problem with stereo reconstruction of endoscopic images is 

that only a small field of the scene is reconstructed per frame. Therefore a mosaicking is needed, which assembles multiple 

frames together. In our previous work [1], we used a voxel based method that integrates each depth frame with the scene 

already stored in the voxel volume. The first depth frame and the associated camera position is set as the origin of the 

camera coordinate system. Every following camera movement is computed relative to the first image. This is possible as 

the depth frames are integrated dynamically before the next frame is computed. This frame-to-origin registration 

counteracts the camera drifting problem that occurs if frame-to-frame registration is used. 

The incremental movements between frames are estimated through Projective Data Association (PDA). The PDA allows 

us to use all depth pixels for the registration process in real time. This advantage over the common Iterative Closest Point 

(ICP) algorithm is achieved at the cost of a limitation described in section 2.1. 

The homogenous structures and challenging image characteristics in MIS can lead to failure in one registration step, which 

often results in a possibly unrecoverable system state. To prevent this, an additional tracking approach can be included. 

Feature based methods like [2] and [3] are presenting a promising addition, as they rely on texture information, which is 

not used by the PDA approach. 
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2. METHODS 

2.1 Mosaicking and Projective Data Association 

The Projective Data Association approach is based on the assumption, that the movement between incremental time steps 

is small [4]. Simple Iterative Closest Point algorithms usually compare every point in one set with all of the points from 

the other set. This would be too expensive for dense depth map comparisons. Using the PDA method, only points that are 

projected in proximity of the same camera pixel have to be taken into account because of the movement restriction. 

When the new camera position is computed, the current point cloud Ri can be transformed into the global world coordinate 

system. To store and refine the single partial maps, they are integrated into a voxel volume that represents a Truncated 

Signed Distance Function (TSDF) [5]. Every voxel p contains the distance to the next object surface point F(p) and a 

weight w(p) that corresponds to the certainty of this value (i.e. how often it was observed). F(p) and w(p) are computed as 

suggested by Newcombe et al. [6]. 
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2.2 Feature Matching and Tracking 

To compute a 3-dimensional pose, at least three corresponding 3D points in the reference and current frame are needed. 

However, dealing with image noise and matching errors, more points are sensible for a stable estimation. The first step to 

create 3D feature-points is detecting 2D features in the left and right image of the stereo-endoscope. We are using a SIFT 

[7] feature detector and descriptor, which is rotation and scale invariant. 

Stereo Feature Matching To compute 3D features, correspondences between 2D features detected in the stereo-images 

have to be found. For every feature descriptor in the left image, a set of nearest neighbors in the other image is computed 

using a kd-tree search. The resulting set is then checked against outliers using 

- the Lucas-Kanade optical flow implementation [8] 

- epipolar line restrictions 

- the matching quality given by the feature descriptor distance 

 

Feature Tracking The features between different time frames are matched similar to the stereo matching. Optical flow 

leads to possible correspondences. It thereby estimates the feature positons in the new image and restricts the search to an 

uncertainty ellipsoid. To reliably compute the endoscope pose, matching features in every frame are integrated into the 

system state of the extended Kalman Filter (EKF).   

 

2.3 Endoscopic Pose Estimation 

An extended Kalman Filter (EKF) is used for pose estimation. The Kalman Filter works with a prediction and measurement 

model [2, 9].  First, the position is predicted through the system state and is then corrected by a measurement step. In our 

case the measurement consists of the 3D positions from the detected features and the endoscope position computed with 

the Projective Data Association approach (figure 1). 

 



 

 
 

 

 

 
Figure 1. Pose estimation process  

 

The System State 𝒔𝑡 is composed of the endoscope pose position 
W

ty , the endoscope orientation quaternion 
WC

tq , the 

velocity 
W

tv , the acceleration 
W

ta , the angular velocity t and the ix 3D positions of the landmarks. 
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Process Model The translational movement of the camera system in the time interval dt is described with the state 

transition equation 
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The rotational change is represented with an incremental orientation quaternion as proposed in [10]. Assuming {𝐶} is the 

camera coordinate system at the time t, {�̃�} is the camera coordinate system at t+dt and {𝑊} the world coordinate system. 

The transformation from {�̃�} to {𝐶} can be computed approximately with the angular velocitys of the rotation axes: 
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Measurement Model The current system state vector 𝒔𝑡  is mapped onto the measurement with 
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The measurement equation is used for every landmark integrated into the Kalman Filter. 

 

 

3. RESULTS 

 

The evaluation consists of an in silico and an ex vivo data set (figure 2). The in silico liver sequence was made with a 

simulation framework and contains 100 images of a circular motion. The ex vivo data (porcine tissue) was created with a 

tracked Wolf PAL stereo endoscope and contains 134 images. The reference endoscope pose was tracked with a Polaris 

tracking system. 

 

 
 

Figure 2. sample images from in silico (left) and ex vivo (right) experiment 

 

 

 

 

 

3.1 Simulation Data 

 

The simulation results (table 1) are showing that the combined approach is working reliable. The PDA approach is also 

delivering good results while the feature tracking results are slightly worse than with the other methods. Within the 

controlled environment of the simulation every method is working without major failures. This explains why the combined 

method does not clearly surpass the individual methods. 

 

Method Error X-Axis Error Y-Axis Error Z-Axis Error Orientation 

Combined 4.37 (±2.72) 1.43 (±0.93) 7.41 (±2.88) 2.51 (±0.43) 
Feature Tracking 6.65 (±4.03) 1.28 (±1.00) 9.56 (±3.51) 3.31 (±0.69) 
PDA depth map 4.72 (±3.44) 1.34 (±1.09) 7.57 (±3.43) 1.72 (±0.46) 

 

Table 1. The absolute mean error and standard deviation for simulated data. Computed for each Axis and for orientation. 

 

  



 

 
 

 

 

3.2 Ex Vivo Data 

 

As with the simulated data, the ex vivo experiment (table 2 and figure 3) is showing promising results. The combined 

approach presents the overall smallest error. With the more realistic and challenging environment the combined method 

is proving the advantage of integrating different image qualities like structure and texture.  

 

Method Error X-Axis Error Y-Axis Error Z-Axis Error Orientation 

Combined 7.40 (±4.37) 1.77 (±0.95) 2.12 (±1.78) 5.56 (±3.31) 
Feature Tracking 8.85 (±5.88) 20.10 (±12.86) 2.87 (±2.85) 18.52 (±10.58) 
PDA depth map 7.35 (±4.27) 3.65 (±1.95) 3.32 (±3.02) 4.86 (±2.60) 

 

Table 2. The absolute mean error and standard deviation for simulated data. Computed for each Axis and for orientation. 

 

 

 
 

Figure 3. Estimated Axis values for ex vivo experiment. 
 

 

  



 

 
 

 

 

4. CONCLUSION 

We present a novel approach for robust endoscope tracking used for 3D mosaicking in laparoscopic interventions. The 

method is based on a Kalman Filter scheme that combines measurement inputs from dense depth and sparse stereo image 

feature tracking. The incorporation of two different tracking methods and the movement prediction model of the Kalman 

Filter is presenting a more robust way to deal with the challenging image scenes in laparoscopic surgery. The method 

shows promising results. Moving forward to the direction of real surgery, the visually more challenging in vivo datasets 

will show the benefit of using complementary image information for robust pose estimation. 

In our future work, we will focus on features particularly suited for laparoscopic image scenes. Classical feature methods 

like SIFT have shown a semi-optimal performance in the laparoscopic domain. A feature detector and descriptor 

specifically designed for the task could lead to great improvements in stability and accuracy. The soft tissue deformation 

during surgery is another big challenge that has great impact on the pose estimation accuracy. Biomechanical models and 

simulation are presenting themselves as a promising part of the solution. 
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