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Abstract
Deep Neural Network (DNN) acoustic models are commonly
used in today’s state-of-the-art speech recognition systems. As
neural networks are a data driven method, the amount of avail-
able training data directly impacts the performance. In the past,
several studies have shown that multilingual training of DNNs
leads to improvements, especially in resource constrained tasks
in which only limited training data in the target language is
available.

Previous studies have shown speaker adaptation to be suc-
cessfully performed on DNNs. This is achieved by adding
speaker information (e.g. i-Vectors) as additional input fea-
tures. Based on the idea of adding additional features, we here
present a method for adding language information to the input
features of the network. Preliminary experiments have shown
improvements by providing supervised information about lan-
guage identity to the network.

In this work, we extended this approach by training a neu-
ral network to encode language specific features. We extracted
those features unsupervised and used them to provide additional
cues to the DNN acoustic model during training. Our results
show that augmenting acoustic input features with this language
code enabled the network to better capture language specific pe-
culiarities. This improved the performance of systems trained
using data from multiple languages.
Index Terms: Multilingual acoustic modelling, neural net-
works, low-resource ASR

1. Introduction
Building Large Vocabulary Continuous Speech Recognition
Systems (LVCSR) systems with decent performance requires
a fair amount of training data. While sufficient data is available
for languages like English, this is not the case for the majority
of languages in the world. Therefore, it is challenging to build
systems for those under resourced languages. The challenge is
even bigger if no (transcribed) acoustic training data is avail-
able. Multiple techniques have been explored regarding the use
of data from different languages to build a system for a partic-
ular target language. In the past, we explored different training
strategies to train artificial neural networks (ANNs) in a multi-
lingual fashion [1]. We showed, that using additional data from
multiple languages is helpful for training neural networks that
display a higher recognition accuracy.

Recently, we introduced language adaptive DNNs (LA-
DNN)[2] which are able to better capture language specific pe-
culiarities which resulted in a decrease of the word error rate
(WER). By explicitly adapting the network to a certain lan-
guage, the training data could be exploited in a more efficient
way. In this work, we extended our approach by transitioning
from an explicit to an implicit adaptation: Instead of modelling
the language information (LID) directly, we trained a neural net-

work to extract a language feature vector (LFV) that conveys
language specific features. We also demonstrate, that these fea-
tures carry a richer set of information than just the language
identity. In addition to that, we show that this technique is also
applicable to languages not seen during training.

For our experiments, we pretend English to be a low re-
source language. For building a LVCSR system we therefore
restricted the amount of available data to 30h per language. In
addition, we also evaluated our method for the task of phoneme
boundary detection. In this scenario, we used a small dataset
from Basaa, a sub-saharan African language. This data was
only used for testing, we did not train or adapt our systems,
hence this data and the language was not seen by our evaluated
system.

This paper is organized as follows: In Section 2, we pro-
vide an overview of related work. In the next Section (3), we
describe our proposed approach in detail. In Section 4 we de-
scribe our experimental setup, followed by the results in Section
5. We summarize our findings in the final Section 6 where we
also provide an outlook to future work.

2. Related work
Nowadays, ANNs are a common part of LVCSR systems. Neu-
ral networks are being used in components like feature extrac-
tion, language modelling and acoustic modelling. In this work,
we focus on the use of ANNs as part of the feature extraction
pipeline as well as the acoustic modelling.

2.1. GMM Based Multilingual Systems

Before the widespread emergence of neural networks in LVCSR
systems, using a GMM/HMM based approach for acoustic
modelling was common. GMM/HMM systems are known to
suffer in performance if trained multilingually. This problem of
training multi- and crosslingual HMM/GMM systems has been
addressed in the past. Techniques like ML-Mix or ML-Tag have
been explored to exploit data from multiple languages for build-
ing GMM/HMM based systems [3]. There exist also techniques
for building systems crosslingually [4].

2.2. Multilingual DBNFs

DNNs have shown to benefit from multitask learning [5]. The
authors in [6] showed that the pre-training step is language inde-
pendent. There exist multiple possibilities to use data from mul-
tiple languages during fine-tuning. One possibility is to share
the hidden representations among different languages, but keep
the output layers language specific ([7], [8], [9], [10]). Another
possibility is the use of a global phoneme set [11]. For our
approach, we used a global phoneme set to build a truly multi-
lingual LVCSR system.



2.3. Augmenting Input Features

Many works demonstrated that the concept of augmenting the
acoustic input features of neural networks with additional fea-
tures increases the recognition performance of ASR systems.
A common approach is to use i-Vectors [12] or Bottleneck
Speaker Vectors (BSV) [13] to provide information about differ-
ent speakers to the network. It is also possible to train a speaker
adaptive neural network [14].

2.4. Phoneme Boundary Detection

Languages without writing systems or no available written lan-
guage resources require different methods for building speech
recognition systems. A first step towards such a system is the
discovery of phoneme like units in order to build a system to
perform phonetic transcriptions. For discovering such units, the
audio has to be segmented. One approach is to detect acous-
tic changes in audio signals [15] in order to predict phoneme
boundaries. To evaluate such boundaries, there exist different
metrics [16]. The metric that we used to estimate the quality
of the phoneme segmentation in this work is the F-Score, along
with precision and recall.

3. Language Adaptive Deep Neural
Networks

As outlined in the related work section, using resources from
additional languages can increase the recognition performance
of LVCSR systems if little or no data from the target language
is available. We showed that augmenting the acoustic features
with language identity (LID) information increases the system
performance [2]. To add the LID to the acoustic features, we
used a one hot encoding to create a feature vector with one di-
mension per language. But using this LID encoding has two
drawbacks: The network has to be re-trained once a new lan-
guage is added and the actual language has to be provided to
the network in a supervised fashion. This approach requires the
knowledge of the language used in order to give the correct LID
information to the system.

In order to handle unseen languages, a new method is re-
quired. We propose a language feature vector (LFV) which is
extracted using a DNN for building language adaptive DNNs
(LA-DNNs). To extract this vector, we used an architecture
similar to DBNFs. We used a feed-forward DNN with a bot-
tleneck layer and took the output activations from that layer and
used them as LFVs.

Figure 1 shows the network architecture. The setup con-
sisted of two networks. The first network was used to extract
DBNFs from acoustic input features. It was trained using a
combination of lMel and tonal features with a context of 6
frames as input and CD phoneme states as targets. We trained
it in a multilingual fashion featuring multiple output layers, one
per language. The network featured 6 layers with 1000 neurons
each. The second last layer was a bottleneck layer with a size
of only 42 neurons.

The second stage network used the output of the BNF net-
work as input. As we considered language properties to be long-
term in nature, we used a larger context of 11 frames as input
into the second network. To stretch the range of this context
even further, we used only every n-th frame, thereby increasing
the range n-fold by omitting frames in between. We determined
the optimal context size in a series of experiments. The network
was trained to determine the language identity using audio data

from multiple languages. We added a bottleneck layer as sec-
ond last hidden layer of this network. For the extraction of the
language feature, we used the layers up until the bottleneck and
discarded the other layers.

4. Experimental Setup
We evaluated our approach in a series of experiments. We used
the Janus Recognition Toolkit (JRTk) [17] which features the
IBIS single-pass decoder [18]. We trained our neural networks
using a setup based on Theano [19]. For creation of the pronun-
ciation dictionaries, we used MaryTTS [20].

4.1. Corpora

Our experiments were based on a speech corpus consisting of
recordings from Euronews1, a TV news station [21]. It con-
sisted of approximately 70h of acoustic training data per lan-
guage. The audio was sampled at 16 kHz. We used data from
all 10 available languages—Arabic, English, French, German,
Italian, Polish, Portuguese, Russian, Spanish and Turkish—as
shown in Table 1. For testing, we used the provided English
test set containing 37 recordings with a total length of 1.2h.

In addition to the Euronews corpus, we also used approx.
1h of audio from Basaa for the task of phoneme boundary detec-
tion. This dataset contained only one speaker and was recorded
in a clean environment by re-speaking recordings that were
originally recorded in the field. For details about this dataset,
please refer to [22].

Language Audio Data # Recordings

Arabic 72.1h 4,342
English 72.8h 4,511
French 68.1h 4,434
German 73.2h 4,436
Italian 77.2h 4,464
Polish 70.8h 4,576
Portuguese 68.3h 4,456
Russian 72.2h 4,418
Spanish 70.5h 4,231
Turkish 70.4h 4,385

Total 715.6h 44,253

Table 1: Overview of the Euronews corpus

4.2. System Training

We carried out a first set of experiments using a combination
of data from 6 languages—English, French, German, Italian,
Russian and Turkish. The languages were selected based on
both the availability of pronunciations from MaryTTS and data
contained in the Euronews corpus. In this initial experiment, we
selected 30h of data from each language on a per speaker basis.
To bootstrap the initial models, we used a flat start approach.
We built a GMM/HMM based context dependent (CD) system
with 6,000 models.

4.3. DBNF Training

Based on this CD system, we extracted training data for train-
ing the DBNF network for the extraction of Bottleneck Fea-

1www.euronews.com



AF stack

DBNF

BNF stack LFV

Language Feature Network

Figure 1: Overview of the network architecture used to extract language feature vectors (LFV). The acoustic features (AF) are being
pre-processed in a DBNF in order to extract BNFs. These BNFs are being stacked and fed into the second network to extract LFVs.

tures (BNFs). As input features, we used a combination of
lMEL, fundamental frequency variation (FFV) [23] and pitch
[24] acoustic features. The use of tonal features had lead to
improvements in combination with DNNs, even for non-tonal
languages such as English [25]. We therefore included them as
part of our default audio pre-processing pipeline. Those fea-
tures were fed into the DBNF network using a context of 6
frames. In addition, we augmented the acoustic features with
LFVs.

The network for the extraction of BNFs consisted of 6 hid-
den layers. The second last hidden layer was a bottleneck layer.
While the other layers featured 1,000 neurons each, the bottle-
neck layer was very narrow, having only a size of 42 neurons.
The network was layer-wise pre-trained using de-noising auto-
encoders. For fine-tuning, we used stochastic gradient descent
with newbob scheduling to adjust the learning rate. The output
layers were trained on multilingual CD phoneme state targets.

4.4. Hybrid System Training

In order to obtain labels for training the hybrid system, we re-
trained the GMM/HMM system using BNFs. Using this re-
trained system, we obtained labels to train a second DNN with
BNFs as input and CD phoneme states as targets. We stacked
the BNF input features using a context of 7 and augmented them
with LFVs. The DNN in our hybrid system featured 6 hidden
layers with a size of 1600 neurons each. Similar to the DBNF
training, we also performed layer wise pre-training followed by
fine-tuning with newbob scheduling of the learning rate.

4.5. Language Feature Network Training

As outlined in section 3, network for extracting LFVs consisted
of two separate networks. We therefore trained it in two steps.
As we considered English to be a low resource language in this
work, we did not use any English data during training. By not
using any data from the target language, we demonstrate that
LFVs are powerful enough to encode relevant features even for
previously unseen languages.

In the first step, we trained the DBNF network using
data from 5 languages—French, German, Italian, Russian and

Turkish—70 hours each, resulting in 350 hours of acoustic
training material in total. The BNFs extracted via this network
were fed as input features into the second DNN. To train this
second DNN, we used data from all 9 languages (except En-
glish) contained in the Euronews data set. It was trained to de-
termine the language identity. As targets, we used the language
identity encoded using one hot encoding. The output layer con-
sisted of 9 neurons, one for each language.

We assumed the language information to be a more static
feature in contrast to single phonemes. To capture this long
term feature, we increased the context size of the network. For
this, we carried out a preliminary set of experiments testing dif-
ferent context sizes to be fed into the language feature network.
To evaluate the different context sizes, we divided the available
data into a training and validation set with 10% of the data con-
tained in the validation set and the rest in the training set. We
measured the performance of the different context sizes using
the classification error on the validation set.

4.6. Multilingual System

We evaluated our proposed method using a multilingual system
built with data from 6 languages—English, French, German,
Italian, Russian, Spanish and Turkish. We limited the amount
of training data to 30h per language, resulting in 180h total.
We trained a system without any language information as base-
line. As contrastive experiments, we included numbers from
systems trained using language identity information (LID). The
evaluation was performed on English test data from Euronews.
We used a 4-gram language model with a vocabulary of 100k
words.

4.7. Crosslingual Phoneme Boundary Detection

We also evaluated our method by performing crosslingual
phoneme boundary detection. We measured the accuracy of de-
tected boundaries using unseen data from Basaa. In order to
obtain phoneme boundaries as baseline, we used a multilingual
system and adapted the acoustic models by doing a forced align-
ment using the phonetic transcripts of the Basaa recordings. We
evaluated the F-score of the hypothesized phoneme boundaries



with respect to the baseline boundaries.
To determine the phoneme boundaries, we used a LVCSR

system in a special configuration. It was trained in the same
manner like the other systems, but we made some adjustments
to detect phoneme boundaries. For this, we used a pronun-
ciation dictionary containing only words consisting of single
phonemes. The LFVs were fed into the DBNF. We used
an unigram language model with equal probabilities for each
phoneme. For evaluation, we used only the boundaries of the
detected phonemes and discarded the phoneme identity infor-
mation. A detailed description of this setup can be found in
[22].

5. Results
In this section, we present the results that show improvements
by the addition of LFVs to the acoustic input features. The sys-
tem performance increases for both the LVCSR setup as well as
the phoneme boundary detection.

5.1. Context width of LFVs

To determine the optimal context width, we performed a se-
ries of preliminary experiments. We carried them out using
all available data from a subset of 6 languages—English, Ger-
man, French, Italian, Russian and Turkish. As error measure we
used the classification error on the validation set. Table 2 shows
the classification performance for different context widths. The
widths were varied using only very n-th frame, thereby increas-
ing the spread and to cover a larger area while keeping the di-
mensionality of the input features identical. By using a con-
text of 690ms, we observed a minimal validation error of 0.136.
Using smaller or bigger context sizes did not lead to improve-
ments.

Context width Spread Error

460ms 2 0.142
690ms 3 0.136
1380ms 6 0.139

Table 2: Overview of different context widths for LFV extrac-
tion

5.2. Multilingual System

We evaluated the use of language features as well as LID in
a multilingual system setup. The results are shown in Table
3. The first row shows the WER of GMM/HMM systems with
DBNF acoustic input features. Compared to the baseline, we
observed a slight improvement by 3% relative in WER. The im-
provements for both LID and LFV are identical. As for the
hybrid systems, by augmenting the acoustic input features with
LID, we see an decrease of WER by 7.9% relative. The impact
of LFVs is even bigger, resulting in a relative decrease of 9.3%
of WER from 17.7% to 16.2% compared to using LID.

These results indicate that LFVs carry a richer set of infor-
mation compared to LID alone. It is also important to note, that
the LFVs were able to extract relevant language characteristics
for English, even though the network was not trained on English
data. This shows that LFVs generalize across languages and are
not limited to the fixed set of languages they were trained on. By
extracting LFVs on an unseen language, we also avoid the net-
work taking advantage of non language related acoustic events

System Baseline LID LFV

DBNF GMM/HMM 21.4% 20.7% 20.7%
DBNF Hybrid 19.1% 17.7% 16.2%

rel. improvement — 7.9% 9.3%

Table 3: WER of multilingual systems, trained with LID or
LFVs

that may be different across languages like specific jingles or
music.

5.3. Crosslingual Phoneme Boundary Detection

As last evaluation, we evaluated the accuracy of detected
phoneme boundaries. We determined the accuracy by comput-
ing the F-Score and included numbers for precision and recall
as well. Table 4 shows the results. In this scenario, we observed
an increase in accuracy by adding LFVs to the acoustic input
features of the network. Improvements can be observed for Pre-
cision, Recall and F-Score. This shows that LFVs increased the
accuracy of the system in phoneme boundary prediction.

System Baseline with LFV

Precision 0.520 0.542
Recall 0.515 0.532

F-Score 0.518 0.537

Table 4: Overview of results for crosslingual phoneme segmen-
tation. The F-Score shows 3.7% relative improvement.

6. Conclusion and Outlook
Building systems for languages with limited resources is a chal-
lenging task. The shortage in training data can be circumvented
by using multi- and/or crosslingual modelling techniques. Sim-
ilar to the adaptation of neural networks to different speakers,
we have shown that it is possible to adapt networks to different
languages. We proposed an approach towards improving the
performance of ASR systems in low resource conditions. We
investigated the use of LFVs as an additional source of infor-
mation in combination with acoustic input features. Our exper-
iments showed that LFVs are more powerful than the language
identity information alone. Both evaluated tasks (LVCSR and
phoneme boundary detection) benefitted from the addition of
LFVs.

Our method enables DNNs to better learn and adapt to the
characteristics of different languages. LFVs have also shown
to be helpful on previously unseen languages. Future experi-
ments include the optimization of hyper parameters of the DNN
for LFV extraction. We would also like to investigate the use
of LFVs to capture language specific properties even in mono-
lingual environments. Similar to i-Vectors, LFVs could sup-
ply information about speaker specific language peculiarities to
ANNs.
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