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d Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne
Station 14, CH-1015 Lausanne, Vaud, Switzerland e-mail: {andrej.gams, tadej.petric,

bojan.nemec, ales.ude}@ijs.si,
{martin.do, asfour}@kit.edu

xmorimo@atr.jp

Abstract

In this paper we propose and evaluate a control system to 1) learn and 2) adapt

robot motion for continuous non-rigid contact with the environment. We present

the approach in the context of wiping surfaces with robots. Our approach is

based on learning by demonstration. First an initial periodic motion, covering the

essence of the wiping task, is transferred from a human to a robot. The system ex-

tracts and learns one period of motion. Once the user/demonstrator is content with

the motion, the robot seeks and establishes contact with a given surface, maintain-

ing a predefined force of contact through force feedback. The shape of the surface

is encoded for the complete period of motion, but the robot can adapt to a differ-

ent surface, perturbations or obstacles. The novelty stems from the fact that the
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feedforward component is learned and encoded in a dynamic movement primitive.

By using the feedforward component, the feedback component is greatly reduced

if not completely canceled. Finally, if the user is not satisfied with the periodic

pattern, he/she can change parts of motion through predefined gestures or through

physical contact in a manner of a tutor or a coach.

The complete system thus allows not only a transfer of motion, but a transfer

of motion with matching correspondences, i. e. wiping motion is constrained to

maintain physical contact with the surface to be wiped. The interface for both

learning and adaptation is simple and intuitive and allows for fast and reliable

knowledge transfer to the robot.

Simulated and real world results in the application domain of wiping a surface

are presented on three different robotic platforms. Results of the three robotic

platforms, namely a 7 degree-of-freedom Kuka LWR-4 robot, the ARMAR-IIIa

humanoid platform and the Sarcos CB-i humanoid robot, depict different methods

of adaptation to the environment and coaching.

Keywords: dynamic movement primitives, force control, coaching, human-robot

interaction

1. Introduction

Learning by demonstration, as an approach of acquiring trajectories in robotics

[1], can only be effective if it enables adaptation of the demonstrated policy to the

current situation of the task or the environment [2]. For example, when learning a

wiping behavior, which is a rather trivial skill for humans, the robot must acquire

the correct characteristics of motion, but must also maintain contact with the sur-

face it is wiping. Such skill transfer from a human to a robot, where not only the
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motion but also the constraints imposed by the task are important, is the motiva-

tion behind this paper. We propose a system that enables a robot to learn actions

which require continuous non-rigid contact with the environment through human

demonstrations and interactive coaching. The coaching mechanisms enable a hu-

man teacher to efficiently guide the robot towards a goal-directed execution.

Learning by demonstration often exploits the means of encoding the motion

characteristics of an action by generalizing demonstrated trajectories from the per-

forming subject and the current situation. Different approaches exist, for example

splines and wavelets [3, 4], which are effective for imitation learning, but do not

allow easy online modulation. Another option are Gaussian Mixture Regression

[5] and Gaussian Mixture Models [6, 7], used to estimate the entire attractor land-

scape of a movement skill from several demonstrations. To ensure stability of the

dynamical system toward an attractor point, a constraint optimization problem in

a nonconvex optimization landscape needs to be solved. Yet another option is the

use of Hidden Markov Models [8]. Different dynamical systems can also be used.

Another type of dynamical systems are dynamic movement primitives (DMPs)

[9], which focus on the representation of single movements by a set of differential

equations. A DMP can represent a control policy in a compact way and its attrac-

tor landscape can be adapted by only changing a few parameters. Compared to

representations proposed in [6, 7], only a simple system of linear equations need

to be solved. DMPs can be used for representing classes of movements using sta-

tistical learning techniques [2, 10], for combining trajectories in a dynamic way

[11, 12], and for reinforcement learning [13, 14, 15, 16]. In this paper we exploit

the DMP framework to enable continuous non-rigid contact with the environment,

based on force feedback.
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Adaptation of learned trajectories to external feedback was previously dis-

cussed in different settings and applications, using different trajectory representa-

tions. The use of force feedback to learn and improve task execution was widely

considered in robotics, see for example the book chapter by Villani and De Schut-

ter [17]. One of the best known approaches is the method proposed by Hogan

[18], where force feedback is used to change the output velocity of a manipulator.

This technology is the basis for the DMP adaptation proposed in this paper.

DMPs themselves were already used for adaptation to forces. In [19] the

authors used an interaction force and the parallel force/position control law to

modulate the velocity of the dynamical system. Pastor et al. [20, 21] have also

combined force controllers and DMPs in an approach for modifying DMPs at the

acceleration level, allowing for reactive and compliant behaviors. They used the

demonstrated trajectory profiles as reference, while [22] applied reinforcement

learning to further optimize the behavior. A modulation approach at the accel-

eration level of a DMP for physically coupled dual-agent tasks was reported by

Kulvicius et. al [23], but the learning was applied to acquire appropriate feed-

back gains instead of reference trajectories. On the other hand, Gams et al. [24]

utilized coupled DMPs with force feedback at the velocity level. Combined with

iterative learning control, their approach can achieve the desired force interaction

for rigid contacts. Iteratively approaching a desired behavior has been applied

for in some programming by demonstration approaches. For example, Sauser et

al. [25] showed grasp adaptation through human corrections, while Calinon and

Billard [26] showed gesture learning. On the other hand, iteratively approaching a

desired behavior was also shown in combination with DMPs in a peg-in-hole task

[27], where reference force-torque profiles were used as means for autonomously
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improving the execution performance. In this work the force controller was not

applied within the DMP framework. Haptic feedback for improving the teacher

demonstration was also used by Rozo et al. [28], who addressed the problem of

what to imitate based on the mutual information between perceptions and actions.

HMMs and GMR were used to encode the demonstrations and for the robotic ex-

ecution of the learned tasks. The method was augmented in order to be applicable

also for the task of pouring [29]. Adaptation of trajectories is not limited to one-

arm behaviors. An approach for bimanual operation based on dynamical systems

by adding local corrective terms was discussed by Calinon et al. [30].

In this paper we consider the transfer of skills from a human to a robot through

coaching. The transfer is not limited to the motion, but includes the execution of

the task in contact with the environment. We consider two problems of on-line

motion adaptation for the actual completion of the task. The first is the adaptation

to the external environment in order to achieve desired forces of non-rigid contact

throughout the complete trajectory. The second is adapting the trajectories to the

interventions of an instructor, modifying the trajectories through physical contact

or with the use of predefined gestures. The interaction puts the instructor into the

role of a tutor who coaches the robot to achieve the desired performance. Both

adaptation to the environment and coaching rely on the use of a unified trajectory

representation, i. e. the dynamic movement primitives (DMPs). The combination

creates an intuitive and user-friendly interface to learning and modifying robotic

trajectories with the potential of creating complex object-interaction trajectories.

Not many papers describe adaptation of learned trajectories for non-rigid con-

tacts. Initial results of DMP adaptation methods, expanded on in this paper, were

presented in [31, 32]. The approach was expanded on by Ernesti et al. [33] to
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include transient motions and [34] to include structural bootstrapping from ex-

perience. Wiping with a robot has also been studied from other perspectives,

including using dynamic models and operational space dynamics [35].

Coaching has been applied also in context of other robotic tasks. Gruebler et

al. [36] used voice commands as a reward function in their learning algorithm.

Verbal instructions of non-experts were used to modify movements obtained by

human demonstration [37]. Physical contact was also used, for example, by Lee

& Ott [38] who used kinesthetic teaching with iterative updates to modify the

behavior of a humanoid robot. Coaching based on gestures and obstacle avoidance

algorithms was applied to DMPs [39]. This approach is expanded on in this paper

with force feedback.

In the next section we provide the basics of DMPs and the algorithm of en-

coding them. Section 3 provides the core algorithm of the adaptation approach.

Three different methods are explained. Coaching, as the means to adapt parts of

the trajectory based on the user input is explained in Section 4, followed by the

results in Section 5 and a discussion with conclusions.

2. Learning of Periodic Dynamic Movement Primitives

In this paper we build on periodic dynamic movement primitives. For the sake

of completeness we provide the basics of the DMP notation and an algorithm for

extracting the frequency of the demonstrated signals. The algorithm of learning of

weights that encode a DMP follows. It is the basis for both adaptation to external

force and the coaching algorithms.
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2.1. Periodic DMPs

The formulation of DMPs in this paper is based on [2]. For a complete DMP

overview see [9]. The description is for clarity limited to a single degree of free-

dom (DOF), i. e. one of the external task-space coordinates, denoted by y. Tempo-

rally scaled velocity is denoted by z. Note that DMPs can be applied to joint space

coordinates as well. y and z should not be mistaken with the axes of a coordinate

system, which are in this paper denoted by xp, yp, zp.

A nonlinear system of differential equations that defines a periodic DMP is

given by

ż = Ω(αz (βz (g− y)− z)+ f (φ)) , (1)

ẏ = Ωz. (2)

The nonlinear part of (1), f (φ), known as the forcing term, is comprised of a

linear combination of N radial basis functions Γi(φ)

f (φ) =
∑

N
i=1 wiΓi(φ)

∑
N
i=1 Γi(φ)

r. (3)

Radial basis functions Γi(φ) are defined by

Γi(φ) = exp(hi (cos(φ−ci)−1)) . (4)

Parameter r is the amplitude control parameter, hi > 0 are the widths of the kernels

and ci spreads them equally along the phase φ from 0 to 2π in N steps. The

parameters αz, βz, > 0 and αz = 4βz make the system (1) – (2) critically damped.

The system oscillates as given by f (x) around the goal g. To realize multiple

DOFs we use separate sets of (1) – (2), and a single canonical system given by (5)

to synchronize them through the common phase.
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The phase variable φ provides the indirect dependency on time. It can increase

with constant rate, where the parameter Ω denotes the frequency

φ̇ = Ω. (5)

When learning the frequency does not have to remain constant, but needs to be

estimated, for example with adaptive frequency oscillators as in [40] and [41]. In

our case we used the system proposed in [41] for online extraction of frequency

of motion and to encode one period of motion with the weights wi, i = 1, . . . ,N,

where N is the number of kernel functions. The frequency estimation is based on

a feedback structure containing an adaptive frequency oscillator and an adaptive

Fourier series.

The adaptive frequency oscillator is governed by the following feedback struc-

ture

φ̇ = Ω−Keo sinφ , (6)

Ω̇ =−Keo sinφ , (7)

eo = ydemo− ŷ, (8)

where K is the coupling strength, φ is the phase of the oscillator, eo is the input

into the oscillator and ydemo is the input signal. The feedback loop signal ŷ in (8)

is provided by the Fourier series

ŷ =
M

∑
a=0

(αa cos(aφ)+βa sin(aφ)). (9)

Here M is the number of components of the dynamic Fourier series and αa, βa are

the amplitudes associated with the series. They are estimated as follows:

α̇a = η cos(aφ)eo, (10)

β̇a = η sin(aφ)eo, (11)
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where η is the learning constant and a = 0, . . . ,M.

2.2. Learning of DMPs

To encode a periodic trajectory as a DMP, we need to determine the duration

of one period of motion, for example by using the above-described adaptive fre-

quency oscillators. Once the frequency of the demonstrated motion is established,

we need to learn the weights of the DMP to encode the shape of the demonstrated

motion. The latter is accomplished using incremental locally weighted regression

(ILWR) [42]. The target data for fitting is constructed from the demonstration

trajectory ydemo, which is the desired trajectory of motion. The target function for

fitting, originating from (1)-(2) is therefore

ftarg =
1

Ω
2 ÿdemo−αz

(
βz (g− ydemo)−

1
Ω

ẏdemo

)
. (12)

It is obtained by matching y from (1) – (2) to ydemo, z to ẏdemo/Ω, and ż to ÿdemo/Ω.

This means that we basically learn how to force the otherwise critically damped

spring-mass system given by the linear part of (1) – (2) to follow the desired

trajectory.

Given ftarg, wi is updated incrementally for each time-step j as

wi, j+1 = wi, j +Γi, j+1Pi, j+1re j (13)

Pi, j+1 =
1
λ

(
Pi, j−

P2
i, jr

2

λ

Γi
+Pi, jr2

)
(14)

e j = ftarg, j−wi, jr. (15)

Γi are the kernel functions. Pi, in general, is the inverse covariance of wi [43]. The

recursion is started with wi = 0 and Pi = 1. r is the amplitude gain. The forgetting

factor is defined by λ ≤ 1. Useful range of λ is betweem 0.97 and 1. If λ < 1,
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then the incremental regression gives more weight to recent data, meaning that it

tends to forget older ones.

3. Adaptation to Environment

Adaptation to the environment, as proposed in this paper, assumes that the

environment can not change rapidly, i. e. an object, such as a table or a kitchen

sink, does not rapidly change shape or height. The setting of the environment,

on the other hand, can be completely arbitrary. This assumption allows gradual

adaptation of motion through learning, and is the basis of the proposed algorithm.

If the environment does not change rapidly, then a correct reference of motion

(if followed) will achieve the desired behavior. The referential trajectory is the

output of the DMP, and can be interpreted as a feed-forward control signal. This

is augmented with the feedback control loop for instantaneous reaction, and to

allow gradual adaptation. The use of the learned feed-forward component (the

output of the DMP) reduces the need for feedback adaptation, which allows for

greater accuracy. Furthermore, the use of the DMP allows for standard DMP

features, such as easy modulation with the change of only a few parameters.

In this paper we propose two means of applying force feedback to change the

output of the DMP, i. e. the feed-forward component of the control signal. The first

is in changing the reference for learning a DMP. The second is in bootstrapping

the force signal directly into the DMP weight adaptation.

3.1. Changing the Reference

The original use of DMPs allows the encoding of demonstrated trajectories

for imitation, i. e., the demonstrated trajectory is the reference. If the reference

is changing over time, so is the output of the DMP. In this algorithm we exploit
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force feedback to change the reference of the DMP, i. e. ydemo. The change of

the reference trajectory occurs through the change of the end-effector velocity as

a function of force, known as the velocity-resolved approach [17]

vr = Svvv +SF(Kie f +Kpė f ), (16)

e f = F0−Fm. (17)

The variable vr stands for the resolved velocities vector, Sv for the velocity selec-

tion matrix, vv for the desired velocities vector, Ki,Kp for the force gain matrices,

SF for the force selection matrix, Fm for the measured force and F0 the desired

force of contact. Essentially, the selection matrices Sv and SF determine which

directions of motion are affected by the force. They are determined by the user,

who knows which directions of motion need to be altered.

To get the desired positions we use

yr = ydemo +SF

(∫
vrdt

)
= ydemo +SF

(∫
Ki(F0−Fm)dt +Kp(F0−Fm)

)
.

(18)

Here yr is the resolved position (and possibly also orientation) of the robot, taking

the place of ydemo. We see in (18) that ydemo has both an integral and a proportional

feedback loop, with Kp being the proportional gain. Combining the two allows

for zero steady-state error within the integral loop and faster reactions to possible

unforeseen perturbations within the proportional loop.

When wiping a flat horizontal surface, such as an average table, (16) – (18)

become less complex. In this case the robot needs to establish contact in a ver-

tical direction, typically z. We obtain: Sv = 0, Ki = diag(0,0,ki,0,0,0), Kp =

diag(0,0,kp,0,0,0), SF = diag(0,0,1,0,0,0). Only the desired end-effector height
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zp is modified in each discrete time step ∆t, and (16) becomes (19).

żp(t) = kie f (t)+ kpė f (t), (19)

e f (t) = F0(t)−Fz(t). (20)

Taking into account the initial condition and numerical integration, it results

in (21)

zp(t) = zp0 + kie f (t)∆t + kpe f (t). (21)

Here zp0 is the initial zp value (starting height), ki and kp are positive constants

for force gains , Fz is the measured force in the zp direction and F0 is the desired

force of contact. The movement is constant in −zp direction when there is no

contact, or maintains contact force F0 when an object is encountered.

The learning of the DMP in the direction that is being modified by force,

for example in zp direction as shown in (19) – (21), is done by modifying the

weights wi for the selected DOF (determined by SF ) in every time-step by using

incremental locally weighted regression as given by (13) – (15). The demonstrated

trajectory is being constantly modified by the force feedback and therefore the

DMP weights are constantly re-evaluated until a steady-state is reached. Since

this approach uses the position of the end-effector as input, and not the force, it

has no difficulties with the noisy measured force signal.

The admittance control scheme given by (16) – (18) is subject to the gains Ki

and Kp. High gains will result in fast reactions when encountering a force. At the

same time, being subject to time discretization, specifically at low sampling rates,

too high gains may produce instabilities. A trade-off has to be made based on the

desired behavior. We empirically set Ki and Kp values and also limited the force

feedback to a maximum absolute value.
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3.2. Direct Adaptation of the DMP

The change of ydemo will inherently cause some delay typical for feedback

controllers. To cancel the delay of the algorithm that changes the reference for

learning, we exploit the incremental weight fitting algorithm (13) – (15) for learn-

ing of periodic DMPs. The basic idea here is that we replace the error signal for

weight fitting associated with imitation with a different signal, for example the

difference between the measured and desired forces in force interaction.

Let’s assume that a given trajectory is encoded as a DMP with weights w. The

trajectory follows the demonstrated trajectory if the error signal in (15) is equal

to e j = 0, meaning that w does not change. We now replace the imitation-related

error signal (15) with a force-dependent term

e j = kl(F0−Fm). (22)

By using e j from (22) in (13), the weights of the DMP will be updated when-

ever the measured and the desired forces are different. Therefore it will adapt

the trajectory to fulfil the condition of (22), which is that the actual force of con-

tact Fm is the same as the desired force F0 in the given direction. Parameter kl

is a positive constant, determined empirically. Note that the implementation of

adaptation should take care that the values of the inverse covariance Pi do not de-

crease to Pi ∼= 0 as this will stop the adaptation, given that the update of weights

is multiplied by P.

A feedback term can also be added to the acceleration level of the DMP for

instantaneous reaction, changing (1) into

ż = Ω(αz (βz (g− y)− z)+ f (φ)+d(F)) . (23)
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The feedback term can be a simple proportional control law with gain k f b > 0,

for example d(F) = k f b(F0−F). In this paper we name the trajectory adaptation

method based on (22) the Direct method.

In simulation, where we can model the forces of contact with displacement of

the elastic environment with stiffness kenv, we can rewrite (22) into F = kenv(y0−

y) = kenvy. Any difference of forces at end-effector will therefore introduce a

position difference klkenv(y0− y), which will through (13) reflect in f (φ). From

(1) – (2) we can see that through integration of the DMP differential equations,

f (φ) (and consequently y0−y) is integrated twice, which results in a slight delay.

From a physical standpoint, the linear part of (1) represents accelerations of a

spring-mass system, while f (φ) provides the modification for accelerations that

force the system to follow the desired trajectory (hence earning the name forcing

term). In order to exclude the above mentioned delay from position-difference

integration, we need to change (22) so that it provides proper accelerations for the

second order DMP spring-mass system. These are calculated according to (12).

We therefore write

e j =
1

Ω
2 k2ÿ−αz

(
βz (g− k2y)− 1

Ω
k2ẏ
)
, (24)

where k2y = klkenv(y0−y) models the forces. In this paper we name the trajectory

adaptation method based on error signal (24) the Derived method.

Table 1 provides the basic characteristics and differences of the three methods

described in this Section.
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Chg. Ref. Direct Derived

Property Velocity-resolved

approach (3.1)

changes the ref-

erence of DMP

learning

Error of DMP learn-

ing (3.2) is defined

with the error of

force tracking

Error of DMP

learning is defined

with the error of

force tracking,

modified into accel-

erations of the DMP

spring-mass system

Advantage Classical velocity

resolved approach

with well known

stability properties

and behavior

Simple; no addi-

tional parts of the

algorithm; core

of the coaching

algorithm.

Completely reduces

the error

Drawback Subject to delay due

to the integral part of

the force controller

Will not completely

cancel out the error

due to the delay of

integration

Subject to noise of

the derivation that

modifies the error of

force tracking

Table 1: Properties, advantages and drawback of the variations of the DMP adaptation to the

environment.
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4. Coaching

During trajectory learning the demonstrator repeats several periods of motion

and the collected data are given as reference to the incremental locally weighted

regression. The trajectory is learned, but it might not exactly perform the desired

task, as is often the case when giving instructions to another person on how to per-

form something. When the resulting motion is not satisfactory, the demonstrator

can coach the other person, specifying how to alter the motion in certain parts, or

simply showing the complete motion again.

In order to avoid re-learning of the complete trajectory, we can exploit the

same mechanism as was applied for the Direct method to change only parts of the

trajectory. We again rely on changing (15). If e j = 0, there is no learning and the

robot just repeats the trajectory it learned during the demonstration. Again, for a

single degree of freedom, we change (15) into

e j =C(input), (25)

making the error a function of the input, where input can be either the force applied

to the robot or the demonstrator’s pointing gesture, visually illustrating in which

direction to change the trajectory. For the case of force input, (25) changes into

e j = klF, (26)

where parameter kl scales the measured force F . The measured force in this case

should be the force exerted by the coach on the robot. If the robot is in contact

with an object, for example when wiping the table, one must distinguish between

the forces that arise from the contact with the table and as a result of friction, and

the forces applied by the human operator. A simple solution is to decouple forces

by direction.
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Pointing gestures can be used instead of the force. We used active motion

capture markers to first demonstrate a motion and later use the same markers and

their relative positions for tutoring. We defined the following repulsive force field

e j(x) =


0 p > 0.1

(0.001/p2−0.1)/40 p≤ 0.1, p1z > p2z

(−0.001/p2−0.1)/40 otherwise

(27)

where p stands for the distance between the robot and the closest marker attached

to the coach’s hand. Index iz is the zp axis location of the i-th marker. The given

force field has no effect on the robot if the closest marker is more than 10 cm

away, whereas its effect increases quadratically with proximity, effectively push-

ing the robot away if p ≈ 0. The relative location of the markers also defines if

the robot is being pushed away or pulled towards the tutor. The given force field

was determined empirically.

The design of the force field has a direct impact on the behavior of the robot.

Force fields have previously been applied to DMPs for obstacle avoidance [44].

The same field can be used for coaching. In this case we coach the robot through

predefined gestures as depicted in Fig. 1.

A 3-DOF DMP is defined by

ż = Ω(αz (βz(ggg−y)− z)+CCCy + fff ) , (28)

where yyy, zzz, ggg, CCCy, and fff are three dimensional values (for positions, additional

dimensions can be added for orientations). The definition of the coupling term CCCy

prescribes the behavior of the robot. We designed the coupling term as a modified

obstacle avoidance coupling term CCCy from [44], now given by

CCCy = γ s(||ooo− xxx||) exp(−βφ) ddd. (29)
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Figure 1: Experimental setup for coaching of periodic motion on the Sarcos CBi humanoid robot

using predefined gestures. A kinect RGB-D camera detected the posture of the human next to the

robot. The position and the choice of the arm (left or right) determined the coaching behavior.

Here xxx is the Cartesian position of the end-effector, ooo is the center position of

the perturbation potential field (defined by hand position), ddd is the perturbation

direction (defined by the pointing gesture), γ and β are the scaling factors, φ is

given by

φ = arccos
(

(ooo− xxx)T ẋxx
||(ooo− xxx)|| ||ẋxx||

)
. (30)

s(r) is defined as

s(r) =
1

1+ eη(r−rm)
, (31)

where η is the scaling factor and rm the distance at which the perturbation field

should start affecting the robot’s motion.
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5. Results

In this section we discuss simulated and real-world results of the adaptation to

the environment and the coaching.

5.1. Simulated results

We first present the results of a comparison of the three possibilities of adapt-

ing to the environment, namely by changing the reference trajectory and the two

methods of DMP adaptation - the Direct and the Derived methods.

The simulated experiment was designed to show adaptation of all three meth-

ods to a tilted flat surface. In the top plot of Fig. 2 we can see red line depicting

the reference, i. e. the table. As it is tilted and the robot is moving left-right, it is a

saw-signal. The three output signals of the adaptation are also shown. The green

line depicts the trajectory when using the approach of changing the reference for

learning, as given by (16) – (18). Note that there is some delay in the adaptation

as a consequence of the velocity-resolved force control approach of changing the

reference. The bottom plot shows that the error does not completely disappear,

but is reduced. The values of Ki, Kp were determined empirically.

The Direct and the Derived methods also need some time to adapt but consid-

erably reduce the error in the steady state. We can see that the derived method,

given by (24) and depicted in blue, completely cancels out the error, unlike the

direct method, which is given by (22) and is depicted in black. This is because the

transformation of the error signal is in fact an inverse of the DMP itself and the

adaptation is therefore linear at the output, while the direct method uses a second

order DMP system that receives linear correction signals. As stated in Table 1,

the derived method utilizes first and second order derivatives of the error signal,
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Figure 2: The results of simulated trajectory adaptation using three different control methods, with

a tilted flat surface as a reference. The experiment started with the robot already in contact with

the surface. We can see the reference (red) and the three resulting trajectories in the top plot. The

errors of adaptation are shown in the bottom plot. See the text for a description of separate lines.

which could prove extremely noisy.

5.2. Adaptation to Environment

This task was performed using a Kuka 7 degree-of-freedom LWR-4 robot,

controlled at 500Hz through Matlab Simulink. The wiping motion was first trans-

ferred from a human to a robot using an Optitrack motion capture system with

markers on the sponge. The recorded task-space motion was reproduced by the

robot while the method of changing the reference, given by (18), ensured that the

robot achieved the contact with a surface needed for effective wiping. Figure 3
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Figure 3: The complete 3-D trajectory resulting from the adaptation of the demonstrated trajectory

in pz direction using the approach of changing the reference. The force results are depicted in Fig.

5.

shows the 3-D trajectory resulting from an adaptation of the demonstrated motion

to a flat, yet slightly tilted surface. The tilting angle was set completely arbitrarily

and was not measured.

The force feedback signal for adaptation to a flat, horizontal surface is shown

in Fig. 4. The top plot shows the trajectory in the zp direction. Once the adaptation

has started, the robot approaches the table at a finite speed, which was limited

beforehand. The bottom plot of Fig. 4 shows the forces. Some oscillations are the

result of friction from dragging the sponge left-right during the wiping.
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Figure 4: The top plot shows real world results of adaptation of motion in pz direction (down-

wards). The resulting forces with the referential contact force set to 6 N (dashed line) is shown

in the bottom plot. As the robot performed left-right wiping motion, some oscillations due to the

contact are visible in the force measurement.

Figure 5 shows the results of wiping a slightly tilted surface, with the zp trajec-

tory in the top plot and the force profile in the bottom plot. Notice the hysteresis

of resulting forces, which shows that adaptation takes some time. The integral

part of adaptation in (18) introduces delays, which cause these force oscillations.

Just as in the simulated environment, the gains Ki, Kp determine the behavior of

the robot.

The real-world wiping experiment with different, arbitrarily tiled flat surfaces

and a curved surface is shown in Fig. 6. All experiments on the Kuka LWR-4
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Figure 5: The trajectory of motion when adapting to a flat but tilted surface in the top plot. The

resulting forces show a clear hysteresis resulting from moving up or down the slope in the bottom

plot. The oscillations in the force plot are a result of the delay of adaptation, caused by the integral

part of the adaptation in (18).

robot are depicted in the accompanying video.

We also implemented the direct method, given by (22). In this scenario the

robot was already in contact with the surface and the reference was a sinusoidal

force trajectory. Fig. 7 shows the results. A low value of kl was used in (22)

for safety. A higher value would reduce the time needed for adaptation, but a

too high value would make the contact unstable. The value used was determined

empirically.
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Figure 6: Kuka LWR-4 7DOF robot wiping differently tilted surfaces and a curved surface. Top

left: horizontal surface. Top right: right-tilted surface. Bottom left: left-tilted surface. Bottom

right: curved surface. Kuka LWR-4 robot experiments are also depicted in the accompanying

video.

5.3. Adaptation to the Environment and Coaching

In this section we show the results of changing only a part of the trajectory

using coaching. Results using force interaction are presented first, followed by
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Figure 7: The results of adapting the robot trajectory using the direct method, with a sinusoidal

referential force. The experiment started with the robot already in contact with the surface. The

referential and resulting forces are in the top plot, while the error signal, given by (22) is in the

bottom plot.

results based on coaching gestures.

Fig. 8 shows the robot end-effector trajectory before and after coaching. The

initial robot wiping motion is in green. The blue line shows the trajectory of

the robot during coaching, i. e. while the human was pushing/pulling on it. The

measured contact forces are shown in Fig. 9. Four clear peaks of force show

where the human pushed/pulled on the robot. The final wiping motion of the

robot after coaching is shown in red. The initial motion was performed using a

previously learned DMP, the one from Fig. 3. The robot found and maintained a

25



0.5 0.6 0.7
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

xp [m]

y
p
[m

]

Initial
Transient
Final

0.5 0.6 0.7 0.8
0.1

0.15

0.2

0.25

0.3

0.35

0.4

xp [m]

y
p
[m

]

Initial
Transient
Final

Figure 8: Left: X−Y plot of the end-effector motion depicts the initial motion in green, the motion

during coaching in blue, and the final trajectory in red. Right: the same result that led to a different

trajectory. The approach of (32) was used.

contact with a flat surface from the start of the experiment. Coaching was applied

in x direction only.

Instead of forces as the error of learning as defined in (26), we can also use

the position of the robot. By using impedance control mode for the robot and

setting a lower stiffness in the direction we want to coach the robot, for example

xp, it will move compliantly in that direction if pushed/pulled. We can now use

the difference between the desired and the actual position as the error signal for

learning,

e j = xp,des− xp,act. (32)

The results are shown in the right plot of Fig. 8. It should be noted that when

the robot is compliant, contact forces with the surface might affect its trajectory.

While this might be solved by changing the stiffness values during coaching and

during pure motion reproduction, in our experiment we kept the stiffness constant.

Modifying the stiffness is simply a matter of the interface.
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Figure 9: The top plot depicts the trajectory of motion in xp direction of the end effector of the

robot. The external forces applied by the tutor, depicted in the bottom plot, modified the motion to

achieve the intended result. The proposed method provides smooth transition from non-coaching

to coaching behavior.

The difference of plots in Fig. 8 comes from the compliance of the robots. If

the feedback term d(F) in (23) was set higher, the robot would give way much

more, and the same principle as in (32) could be applied. We observed that coach-

ing became much more intuitive when the robot was compliant.

When using gestures, we used pointing gestures to coach the robot as defined

in (28). We implemented this form of coaching on the JST-ICORP/SARCOS hu-

manoid robot CBi [45]. We used the Microsoft Kinect sensor and the associated

body tracker to capture human coaching gestures. Fig. 1 shows the experimental

27



setup, where the body tracking results can be seen on the display in the back-

ground.

To make coaching intuitive, the interface was set so that the human coach can

modify the trajectory by either pushing it away from him using his right hand

or pulling it towards him with his left hand. The coaching direction was calcu-

lated using the wrist and the elbow location. For the right hand, i. e. pushing the

trajectory away from the coach, the direction is given by

dddR =
xxxw,R− xxxe,R

||xxxw,R− xxxe,R||
, (33)

where the xxxw,R and the xxxe,R are the Cartesian positions of the right hand wrist

and the right hand elbow in the robot’s base coordinate system. For pulling the

trajectory, the direction is given by

dddL =−
xxxw,L− xxxe,L

||xxxw,L− xxxe,L||
. (34)

Here xxxw,L and the xxxe,L are respectively the Cartesian positions of the left hand wrist

and the left hand elbow in the robot’s base coordinate system.

The center of the potential field generated by each hand was moved slightly

away from the respective hand. For the right hand, the origin of the potential

field defined by the coaching gesture was moved in the direction of the coaching

gesture

oooR = xxxR +ξRdddR, (35)

where ξR is the scalar that defines the distance between the hand and the center of

the coaching point in the direction of dddR. Similar equation is used also for the left

hand which attracts the trajectory towards the hand.

oooL = xxxL−ξLdddL. (36)
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Here, the effective coaching point is moved in the opposite direction of perturba-

tion dddL. With such modifications the effective origins of potential fields are always

in front of the human hands in the direction of pointing at the distance defined by

ξR and ξL.

To determine which hand is active, we use the distance between both wrist

positions xxxw,L, xxxw,R and the robot’s end-effector position xp. The active hand is the

one which is closer to the robot’s hand position.

To show the applicability of the interface for online modification of the initial

rhythmic movement using human in the loop coaching gestures, we first provide

an example of pulling-in the task space trajectory. The parameters were set to

γ = 10, η = 10, rm = 0.15 and β =−10/π .

The adaptation is not limited to task space. To update the trajectories in joint-

space when they are perturbed in task space, with the coupling term denoted by

CCCy, a pseudo inverse of the task Jacobian is used. This essentially maps the task

space velocities into the joint space velocities with q̇qq = J†ẋxx. By applying a similar

transformation to CCCy we obtain

CCCq = J†CCCy. (37)

where CCCq = [Cq,1 Cq,2 ... Cq, j]
T and j is the number of the robot’s degrees of

freedom. The components of (37) are now used for updating the DMP weights wi

using (14) and (13). In this way we ensure that the joint space trajectories encoded

by the DMPs are properly modified according to the coach’s instructions.

Keeping the movement representation in the joint space is beneficial because

our initial movement trajectories, which are encoded by DMPs, are usually ac-

quired by kinesthetic guiding. By using joint space trajectories we avoid losing

information about the selected robot configuration during human guiding on a
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Figure 10: Left: Task space motion of the robot’s end-effector, where human coach was modifying

the motion pattern. The initial trajectory is in red and the final trajectory is in green. The time

evolution of the trajectory modification is indicated with grey line. Right: Joint space motion

in time of the robot’s right hand, while coaching. Vertical lines indicate the important events

described in text.

redundant robot.

Fig. 10-left shows the task space motion of the robot’s end-effector in the

(xp,yp) plane. We can see a successful modification of the motion based on the

human coaching gestures. In Fig. 10-right we show the corresponding joint space

trajectories as a function of time. The teaching of the new motion pattern begins

after 5 seconds, indicated with the first vertical line. The joint space trajectory was

modified successfully to achieve the desired task space motion. In Fig. 10-right we

can see that at approximately 50 seconds the human coach stopped modifying the

behavior and at approximately 55 seconds the new motion pattern was switched

back to the original motion pattern. At this point the difference between original

motion trajectory and the modified motion trajectory is even more evident.
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5.4. Human-Robot Interface Expansions

In this section we demonstrate the features of the complete system using an

advanced human-robot interface. The system allows the initial transfer of motion,

the adaptation to the environment and coaching based on predefined gestures and

force interaction. It has been implemented on the humanoid robot ARMAR-IIIa

and is used to train periodic DMPs for a wiping task in an online manner. Initially,

a DMP is learned from a human wiping movement which is demonstrated in a

predefined work space.

Given the color of the wiping tool, the robot tracks the movements of the tool

using the stereo camera system of its active head. For the subsequent force-based

adaptation of the learned DMP, we rely on the readings of the force torque sensor

installed at the humanoid’s wrist.

Using the implemented human-robot interface, the human coach can change

the learned and adapted DMP using hand gestures. For the recognition of human

hand gestures, the robot visually observes the predefined work space in order to

localize and track the fingertips of the coaching human hand. To do so, a finger-

tip tracking algorithm is used which has been introduced in [46]. The fingertips

are described with regard to the principal axes spanned by an ellipsoid which cir-

cumscribes the entire hand ares. Based on these positions a feature vector for the

representation of hand gestures was derived. To recognize a gesture, the feature

vector is compared with labeled examples which represent a certain gesture. For

each coaching mode we defined a distinctive gesture: 1-finger pointing, 2-finger

pointing, a fist, and an open hand gesture. The different gestures are depicted in

Fig. 11. The 1-finger pointing gesture generates a new target position which is

used to change the goal g of the DMP and thus the center of the wiping motion.
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Figure 11: The four hand gesture for the coaching: 1-finger pointing, 2-finger pointing, a fist, and

an open hand

The results of changing the center of the wiping motion are shown in Fig. 12.

In order to change the periodic pattern of the wiping motion, the two-finger

pointing gesture is used to pull the movements of the robot towards the coaching

hand. In contrast, a repelling behavior is triggered using the fist which pushes

the robots end-effector away from the human hand. The pushing and pulling

behaviours are generated by a virtual potential field imposed on the position of

the human hand and, thus, creating virtual forces for the coaching of the DMP.

An open hand denotes the approach movement of the coaching hand and invokes

a reduction of the frequency with which the wiping motion is reproduced. This

facilitates the coaching for the human and allows a smooth transition from vision-

based to force-based coaching. The system switches to force-based coaching once

an external force is applied on the robots wrist. Using the force-torque sensor, we

can coach and further adapt the DMP. During the force-based coaching, the active

head shifts its view towards the end-effector. The systems returns to the vision-

based coaching once the human hand leaves the currently observed work space.

Figure 13 depicts coaching of the ARMAR-IIIa humanoid robot with predefined

gestures.
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Figure 12: (xp− yp) plane trajectories of wiping and coaching on the ARMAR-IIIa robot in the

top plot. We can see that the center of the circular trajectory was changed through the coaching

interface. Separate directions of motion are depicted in the lower plots. Reduction of the frequency

during wiping can be observed in the bottom plots.

6. Discussion and Conclusion

The main advantage of learning the motion required for sustaining a contact is

that it allows the combination of feedback and feed-forward control loops. While

this by itself is nothing new, the novelty stems from the fact that the feed-forward

component is autonomously learned and encoded in a dynamic movement prim-

itive. By using the feed-forward component, the feedback component is greatly

reduced if not completely canceled, making the behavior exactly as desired. By

exploiting the DMP learning mechanisms, we remain in the framework which al-

lows easy modulation with only changing a small set of parameters. Mitigating

the need to create models beforehand, as they are learned through exploration

and coaching, allows non-experts to effectively transfer motion to the robot by

demonstrating everyday tasks.
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Figure 13: Coaching of the ARMAR-IIIa humanoid robot through the use of hand gestures.

In comparison to other approaches, several sub-areas of research need to be

considered. Force control has been applied in robotics in many different contexts.

The benefit of our method is that it allows easy and intuitive transfer of motion

from a human to the robot. This transferred motion adapts to the conditions of

the task – for example, that it needs to maintain contact with the environment.

As stated in the introduction, various techniques exist for that, but the methods

presented in this paper extend this feature to a well developed and extensively

applied framework. The approach can be used on position controlled robots, or

on torque controlled robots, exploiting the properties of different control methods,

such as impedance control as depicted in Fig. 8. On the other hand, it also allows

the use of position controlled robots, such as the ARMAR-IIIa, with the only

difference in behavior due to lower bandwidths.

For learning, the exploration of the trajectory space uses the learning algorithm

of the DMPs, which is computationally light and allows for quick adaptation.

In the case of periodic motions, this can be in the rank of a few periods [40].

The method of direct DMP adaptation, which was also applied in the context of
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coaching, observes similar principles as iterative learning control, and could be

considered an instance of it. It enables direct learning of the weights of DMP

kernel functions instead of the signal. Again, remaining in the DMP framework

has beneficial properties for robot control.

For motion adaptation by coaching, our approach thus retains the beneficial

properties of DMPs with time-invariance and the means of modulation, but ad-

ditionally enables the modulation of complex motions through intuitive coaching

gestures. An advanced but intuitive coaching interface, which was demonstrated

on the ARMAR-IIIa robot, has proven to be a viable solution.

Adaptation to the environment, as presented in this paper, exploits the knowl-

edge of the demonstrator to determine the needed references and directions for

adaptation. An open research issue remains, how such adaptations can be per-

formed autonomously. While a complex cognitive reasoning system behind this

is beyond the scope of this paper, simple conditions could greatly improve the

autonomy of adaptation. For example, in the context of wiping, we could direct

the robot to increase the force of contact with the surface in case the wiping does

not actually remove the identified dirt. Vision systems, specifically using RGB-D

sensors, are also efficient at detecting surfaces. These surfaces could be the tar-

gets of wiping when a wiping command is issued. Any such augmentation of the

interface can greatly improve the user experience.

In the paper we proposed and evaluated several methods for adaptation of

DMPs based on force feedback. We have shown that all can be effectively used

for acquiring and maintaining non-rigid contacts with the environment. They thus

offer a viable solution for an inclusion in future household assistants. In the future

we will combine the method of DMP adaptation, effectively applied to coaching,
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to modify feed-forward models of complex tasks. For example, one might update

the demonstrated DMP so that the postural stability of the robot is observed. An-

other possible application of our approach is the learning of the required torque

signals for robot control.
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