
Nonprehensile Whole Arm Rearrangement Planning on
Physics Manifolds

Jennifer E. King⇤, Joshua A. Haustein†, Siddhartha S. Srinivasa⇤, Tamim Asfour†

⇤Carnegie Mellon University (CMU), †Karlsruhe Institute of Technology (KIT)
{jeking, ss5}@andrew.cmu.edu, joshua.haustein@student.kit.edu, asfour@kit.edu

Abstract—We present a randomized kinodynamic plan-
ner that solves rearrangement planning problems. We em-
bed a physics model into the planner to allow reasoning
about interaction with objects in the environment. By
carefully selecting this model, we are able to reduce our
state and action space, gaining tractability in the search.
The result is a planner capable of generating trajectories for
full arm manipulation and simultaneous object interaction.
We demonstrate the ability to solve more rearrangement
by pushing tasks than existing primitive based solutions.
Finally, we show the plans we generate are feasible for
execution on a real robot.

I. Introduction

In this work, we consider the task of rearrangement
planning [11, 26, 32, 35]. In these problems, a manip-
ulator must displace one or more objects in order to
achieve a goal. Allowing the robot to change the envi-
ronment makes impossible tasks possible and difficult
tasks easier. Consider a robot clearing items off of a
cluttered table, such as in Fig.1. Initial solutions to
such a problem focused only on using pick-and-place
actions [4, 30, 33] to move each object.

More recent solutions to the rearrangement problem
use physics based actions, such as pushing, to achieve
more efficient solutions [5, 12, 25]. For example, the
robot may use one arm to push each item to a location
where it can be grasped, lifted and stored using the
other arm.

The use of physics models led to far more expressive
solutions to rearrangement planning. However, these
planners are still bound to the use of high-level prim-
itives, such as straight line pushes. In addition, they
require the planner to explicitly reason about moving
objects in the scene one at a time, forbidding simultane-
ous interaction with objects. Finally, they often restrict
the interaction to a limited part of the manipulator. For
example, only allowing pushing using the end-effector.

These restrictions impose two key limitations on the
system. First, the use of motion primitives places a great
burden on the designer to develop high-level actions
that are both dexterous and efficient, transferring, in
some ways, computational complexity on to the de-
signer. Second, reducing the problem to an ordered list
of moved objects limits the planner to simply produc-
ing combinations of high-level primitives.

We develop a planner that can generate diverse
whole arm pushing actions. To do this we remove the

Fig. 1: An example rearrangement plan. The robot is tasked with
moving the green box to a pre-defined location where it can be
grasped by the right arm. Our algorithm plans an arm trajectory that
uses the whole arm to reconfigure clutter such as the blue box , red
can and grey bowl out of the way using physics-based nonprehensile
actions.

reliance on pre-defined motion primitives. We formu-
late the rearrangement planning problem as a search
over the combined state space of the manipulator and
objects. Then, we harness the power of a randomized
planner, such as the RRT [20], to quickly produce plans
in this high-dimensional space. The use of pushing
actions introduces non-holonomic constraints in the
planning problem. In particular, the motion of the
pushed objects is governed by the physics of the contact
between manipulator and object. To empower our plan-
ner to reason about object motion, we embed a physics
model into the core of the randomized planner.

The general solution would utilize a full dynami-
cal physics model, enabling modeling of many types
of contact, including pushing, toppling and throwing.
While attractive, this solution requires incorporation of
velocities into our state, doubling its size. Additionally,
it allows the manipulator to make any feasible motion,
creating a large action space. The combination of these
two attributes makes the search intensive.

In this work, we offer a solution to make solving
the rearrangement planning problem with a random-
ized motion planner tractable. To do this, we use a

2015 IEEE International Conference on Robotics and Automation (ICRA)
Washington State Convention Center
Seattle, Washington, May 26-30, 2015

978-1-4799-6923-4/15/$31.00 ©2015 IEEE 2508

    










    

Fig. 2: A solution to the rearrangement planning problem. (Top) Contact between manipulator and objects throughout trajectory. (Middle)
Trajectory snapshots at the indicated time points. Link(s) in contact at the time step are highlighted in green. (Bottom) Snapshots of the
trajectory execution. As can be seen, the planner generates simultaneous contact with movable objects. Additionally, the full arm is used
during rearrangement.

quasistatic model of planar pushing rather than a full
dynamical physics model. While this limits our solu-
tion space, the quasistatic assumption applies in many
manipulation applications [1–3, 8, 10, 24, 27, 36].

Using a quasistatic model of interaction allows us to
eliminate the need to consider velocities in our search
space, allowing planning in configuration space. Our
choice of model also allows us to focus our action
selection. In particular, we can project all actions to a
constraint manifold parallel to the support surface. This
increases the likelihood of an action leading to contact
with movable objects in the environment. For example,
in the experiment from Fig.1 all actions are projected
onto the plane 8cm above the table.

We show that our planner is capable of generating
solutions that use whole arm manipulation and allow
simultaneous interaction with multiple objects (Fig.2).
We demonstrate successful use of our planner on sev-
eral rearrangement problems.

The remainder of the paper is organized as fol-
lows. In Sec.II we formalize the rearrangement plan-
ning problem. We explain our method for modeling
the problem as a randomized kinodynamic planning
problem in Sec.III. We detail our choice of physics
model (Sec.III-A), sampling method (Sec.III-B), distance
metric (Sec.III-D) and action projection (Sec.III-C). Ad-
ditionally, we give an initial approach for smoothing
generated paths (Sec.IV). We provide several experi-
mental results in Sec.V. In particular, we show that
our algorithm is able to solve more problems than
existing primitive based solutions. In Sec.VI we discuss
the limitations of our algorithm and highlight areas for

future work.

II. The Rearrangement Planning Problem

A. Terminology
We use the standard terminology from Lavalle [21].

We work with a robot in a configuration space q 2 CR.
Our world is populated with obstacles that must be
avoided and also with M movable objects which can
be contacted and moved around. Each movable object
is endowed with a configuration space oi 2 C i, i =
1 . . . M. We define the state space X as the cartesian
product space of the robot and objects, given by X =
CR ⇥ C1 ⇥ · · · ⇥ CM. We denote a state x 2 X by
x =

�
q, o1, . . . , oM�

.
Following Lavalle [21] and Simeon et al. [30], we

define the free state space X f ree ✓ X as the set of all
states where the robot and objects are not penetrating
themselves, the obstacles or each other. Note that this
allows contact between entities, which is critical for
manipulation.

B. The Problem
Our task is to find a feasible path t : [0, 1] ! X f ree

starting from a state t(0) 2 X f ree and ending in a goal
region t(1) 2 XG ✓ X f ree.
Feasible plans. The state x evolves nonlinearly based
on the physics of the manipulation as its time derivative
ẋ = f (x, a) where a 2 A is an action from the allowable
set of controls that can be applied to the robot. A plan is
feasible if there exists a mapping p : [0, 1] ! A, such
that for all t 2 [0, 1,], ṫ(t) = f (t(t), p(t)), i.e. there
exist robot actions that can actually perform the plan.

2509

A feasible plan can be quite complicated, making and
breaking multiple contacts with movable objects and
reconfiguring them to achieve the goal.
Goal region. In manipulation problems, the goal is of-
ten underspecified. We define a goal region XG ✓ X f ree
as the set of states that achieve a goal criteria.

For example, in [32] only the robot’s goal is specified.
The final poses of the objects do not matter. To repre-
sent this goal region, we can denote the robot’s goal as
qG 2 CR. Then we define XG as the set of all states with
the robot in configuration qG. In other problems [13] the
task is to move a specific object to a specific place (or a
set of places). In these problems, we denote this object
as the goal object G with its configuration space g 2 CG

and its goal as the set G ✓ CG. We define XG ✓ X f ree
as the set of all states with the goal object in G.

Much of the planning complexity arises because the
system is underactuated, with one robot having to
move several objects, and nonlinear, due to the physics
of manipulation. In Sec.III, we describe how we can
combine physics models with ideas from randomized
kinodynamic planning to produce fast, feasible plans.

III. Quasistatic Rearrangement Planning for a

Manipulator

Algorithm 1 Kinodynamic RRT
1: T {nodes = {x0},edges = ∆}
2: while not ContainsGoal(T) do

3: xrand SampleConfiguration()

4: xnear Nearest(T,xrand)
5: for i = 1 . . . k do

6: (ai, di) SampleAction()

7: (xi, di) ConstrainedProp(xnear, ai, di)

8: i⇤ = argmini Dist(xi, xrand)
9: T.nodes[{xi⇤}
10: T.edges[{((xnear, xi⇤), ai⇤ , di⇤)}
11: path ExtractPath(T)

We utilize a RRT to solve the rearrangement problem.
Traditional implementations of the algorithm solve the
two-point boundary value problem during tree exten-
sion. Because we must plan in the joint configuration
space of the robot and objects, solving the two-point
boundary value problem is as difficult as solving the
full problem. For example, consider a scene with a
single movable object, M1. To transition from a state
x1 = (q1, o1

1) to state x2 = (q2, o1
2), we must first

find a collision free path for the manipulator from
configuration q1 to a location near o1

1, the start location
of M1. Then we must determine an action sequence
that pushes M1 from configuration o1

1 to configuration
o1

2. Finally, we must generate a collision free sequence
of actions to move the manipulator to q2.

As suggested by Lavalle [22] a useful alternative is
to forward propagate all actions under a transition

function T : X ⇥ A ! X , and select the best using
a distance metric defined on the state space. We wish
to work with a continuous action space A, render-
ing full enumeration of the set infeasible. Instead, we
approximate it by sampling k actions and associated
durations to apply the actions, forward propagating
under T and selecting the best from this discrete set.
During forward propagation, we apply a physics model
to properly capture motion of the manipulator and
objects. Alg.1 shows the basic implementation. In the
following section, we detail the algorithm.

A. Quasistatic Pushing
We use a quasistatic pushing model with Coulomb

friction [23]. In this model, we assume pushing motions
are slow enough that inertial forces are negligible. In
other words, objects only move when pushed by the
manipulator. Objects stop immediately when forces
cease to be imparted on the object.

We assume friction between the object and the under-
lying surface is finite, the pressure distribution between
the object and the surface is known and finite, and fric-
tion between the object and the manipulator is known.
Under these assumptions, we can analytically derive
the nonlinear motion of an object when pushed by the
manipulator [15, 18]. We allow only manipulator-object
contact. We model all interactions with the manipula-
tor. We do not model object-object contact.

Using a quasistatic model of interaction allows us
to greatly reduce the size of our search space. As
mentioned in Sec.I, we can plan in configuration space
rather than state space. Additionally, restricting to
pushing in the plane allows Ci = SE(2) for all i, i.e.
we can represent the configuration of movable objects
by (x, y, q).

B. Configuration Sampling
We wish to sample a state x 2 X f ree. We can sample

from any distribution, as long as we can guarantee
that we will densely sample from the space X f ree. In
practice, we sample the robot and all objects from
the uniform distribution. We use rejection sampling to
ensure the sampled configuration is valid, discarding
any sampled states that have object-object collision or
manipulator-object penetration.

C. Action Space
We follow the ideas of Simeon et al. [30] and describe

feasible plans as an alternate sequence of two types of
actions: transit and transfer. We define transit actions
as those where the robot moves without pushing any
movable objects. Transfer actions are those where one or
more movable objects are contacted during execution of
the action.

Transfer actions are important in rearrangement plan-
ning. By definition, the minimal solution to any rear-
rangement problem contains at least one transfer. Our
choice of model allows us to focus our action selection

2510

(a) (b) (c) (d)

Fig. 3: The shortcutting algorithm. For simplicity, we depict only the motion of the end-effector. However, the whole arm is considered during
planning. (a) The initial path. (b) The two manipulator states selected for connection. (c) The new states generated for the shortcut. (d) The
new states added after the shortcut. The motion of the manipulator and green object remain unchanged. However, states are updated to
reflect the new location of the blue box and purple circle.
Algorithm 2 The constrained physics propagation func-
tion.
Require: A step size Dt

1: function ConstrainedProp(x,a,d)
2: t 0
3: q ExtractManipConfiguration(x)
4: while t < d do

5: qnew Project(q + Dta)
6: anew qnew � q
7: xnew PhysicsPropagate(x, anew)
8: if not Valid(xnew) then

9: break

10: (t, x, q) (t + Dt, xnew, qnew)

11: return (x, t)

such that we remain in areas of the robot configuration
space where we are likely to generate transfer actions.
In particular, we project all actions to a constraint
manifold parallel to the pushing support surface.

We use the ConstrainedProp function shown in
Alg.2. This constrained extension behaves similar to
that described in Berenson, et al. [7]. During extension,
we apply the input action, a, for a small time step,
then project the resulting configuration back to our con-
straint (Alg.2-Line 5). If successful, we generate a new
action, anew, that moves directly along the constraint to
this projected point (Alg.2-Line 6). This new action is
pushed through our physics model (Alg.2-Line 7). The
process is repeated for the entire sample duration d or
until an invalid state is encountered.

D. Distance Metric
Defining the distance between two states x, x0 2 X f ree

is difficult. Prior work [5] denotes the correct distance
metric as the length of the shortest path traveled by
the robot that moves each movable object from its
configuration in x to its configuration in x0. Computing
this distance is intractable. Even approximating this
distance is as difficult as solving the rearrangement
problem.

Instead, we use a weighted Euclidean metric.

Dist(x, x0) = wqkq� q0k+
M

Â
i=1

wikoi � o0ik

where x =
�
q, o1, . . . oM�

, x0 =
�
q0, o01, . . . o0M

�
and

wq, w1, . . . wM 2 R.
The distance metric serves two purposes in the algo-

rithm. First, it is used to define the nearest neighbor in

the tree prior to tree extension (Alg.1-Line 4). Second,
it is used to select the best control during propaga-
tion (Alg.1-Line 8). As stated in Sec.II-B, our goal is
underspecified, defining only the location of the goal
object. As a result, we assign a higher weight to the goal
object in our distance metric. This guides our planner
to prefer moving the goal object.

IV. Path Shortcutting

The use of a randomized planner leads to paths that
often contain unnecessary movements of the manipula-
tor. Several post-processing techniques to smooth these
paths have been introduced in the literature.

One commonly used technique [14, 17, 28, 29] is to
randomly select two points from the path and attempt
to connect them. If successful, intermediate points be-
tween the two selected points are discarded from the
path, and the new connection is added.

Use of this technique typically requires solving the
two-point boundary value problem to generate the new
edge. As stated in Sec.III, this is non-trivial for our
problem. Instead we employ a slightly altered tech-
nique illustrated in Fig.3.

Given a trajectory produced by our planner, we first
randomly select two points in the trajectory (Fig.3b).
We then attempt to generate a new action to connect
only the robot configuration in these two states. If such
an action is generated, we forward propagate it using
our physics model, and record the new intermediate
states (Fig.3c).

We note that the ending state of the shortcut action
could differ from the sampled state in the configuration
of one or more movable objects. For example, in Fig.3c
the final state differs in the configuration of both the
blue box and the purple circle. Because of this, we
must forward propagate all remaining actions in the
trajectory and ensure the goal is still achieved (Fig.3d).
If successful, the updated path is accepted and the
algorithm iterates.

V. Experiments and Results

We implement the algorithm by extending the Online
Motion Planning Library (OMPL) framework [34].

We test our hypotheses using a dataset consisting
of 35 randomly generated scenes. Each scene contains
the table as a static obstacle, and between 1 and 7
movable objects in the robot’s reachable workspace.
Fig.2, Fig.5, andFig.6 show example scenes. We task our

2511

PC RRT Static RRT
0

20

40

60

80

100

A
ve

ra
ge

S
u
cc

es
s

R
at

e
(%

)

75.6

58.6

(a)
PC RRT Static RRT

0

10

20

30

40

50

60

70

80

A
ve

ra
ge

P
la

n
T

im
e

(s
)

67.3

74.1

(b)

Fig. 4: Comparison of (a) success rate and (b) plan time between our
planner (PC RRT - green) and a planner that can only move the target
object (Static RRT - purple).

robot HERB [31] with pushing a specified object to a
goal region of radius 0.1m using the 7-DOF left arm. In
each scene, we use the same goal object. The starting
pose of the goal object is randomly selected. The goal
region is placed in the same location across all scenes.

We run each experiment 20 times, giving us a total of
700 trials. A trial is considered successful if a solution is
found within 300 seconds. We set the number of control
samples k = 3 for all experiments.

We constrain the end-effector to move in the xy-
plane parallel to the table. This allows us to define
our action space as the space of feasible velocities for
the end-effector. Actions are uniformly sampled from a
bounded range. The Project function takes the sam-
pled end-effector velocity and generates an updated
pose using the Jacobian psuedoinverse:

qnew = q + Dt(J†(q)a + h(q))

where q is the current arm configuration, a is the
sampled end-effector velocity, and h : R7 ! R7 is a
function that samples the nullspace.

A. Comparison with Baseline Planners
We first compare our planner against two baseline

planners. We explore two hypotheses:
H.1 Allowing the planner to move objects via pushing

increases success rate and decreases plan time.
H.2 Our algorithm increases success rate and de-

creases planning time when compared to existing
primitive based solutions.

Our first hypothesis H.1 is motivated by two pur-
poses. First, previous work has demonstrated that al-
lowing the manipulator to move clutter increases the
number of problems that can be solved [13, 16]. We
verify our planner is consistent with these results.
Second, we ensure that the extra time required to
propagate with the physics model is not so large that
the planner can no longer generate feasible solutions in
a reasonable amount of time.

Our second hypothesis H.2 is motivated by the need
to compare our planner against existing state-of-the-
art planners that solve the rearrangement planning
problem.

1) Planners: We compare our planner against a plan-
ner that allows the robot to only push the target object
(denoted Static RRT in all results). All movable objects
are treated as static obstacles.

Additionally, we compare our algorithm to an imple-
mentation of DARRT [5]. Following DARRT, we define
three primitives:

1) Transit - Move the manipulator from one pose to
another via a straight line in configuration space.
The motion must be free of collision with any
static or movable object in the scene.

2) RRTTransit - Move the manipulator from one
configuration to another by planning using the
RRT-Connect [19] algorithm. The motion must be
free of collision with any static or movable object
in the scene. The planner is run for 15 seconds
before the primitive is considered failed.

3) Push - Push (or pull) an object along a straight
line from the start pose to the goal pose of the
object. The object is caged in the hand during
motion, allowing the object motion to be modeled
as a rigid connection with the hand. Again the
motion must be free of collision with any static
objects and all movable objects other than the one
being moved.

At each iteration, DARRT chooses to either sample a
new pose for the manipulator, a new pose for the target
object, or a new pose for a single movable object. In our
implementation, we sample these options with equal
probability.

If the manipulator is sampled, then the planner at-
tempts to apply the Transit or RRTTransit primitive.
If any of the objects are sampled, the RRTTransit
primitive is first applied to move the manipulator to the
object. Then, the Push primitive is applied to relocate
the object to its desired position.

2) Statistical Analysis: In all results, we denote our
planner Physics Constrained RRT (PC RRT). We run
a repeated measures ANOVA using planner (PC RRT,
Static RRT, DARRT) as an independent variable. The
results show a significant main effect for both success
rate (F(2, 2063) = 204.27, p < 0.0001) and plan time
(F(2, 2063) = 207.92), p < 0.0001). Tukey HSD post-
hoc analysis reveals all three planners are significantly
different from each other using either metric, with p <
0.0001.

Fig.4a compares the average success rate for our
planner (PC RRT) with the Static RRT planner across
all 700 runs. Fig.4b compares average plan time across
all successful runs. Our planner improves success rate
by 17% and reduces plan time by 9%.

These results support our first hypothesis: Allowing
the planner to move objects via pushing increases
success rate and decreases plan time.

In Fig.7 we show the expected percent of successful
trials for DARRT and our planner given a time budget.
Our planner significantly outperforms DARRT for any

2512

    











   

Fig. 5: In this scene, the robot uses the whole arm to manipulate objects in order to achieve the goal. In (b) the robot slides the bottle near
the edge of the table in order to make contact with the target object. Then, while pushing the target object into the goal, contact is made
between the upper arm and the bottle ((c)). Modeling these contacts allows the robot to ensure the plan will not cause the bottle to fall off
the edge of the table.




    

    

Fig. 6: A low clutter scene. Here the robot uses the forearm and wrist to push the target object into the goal region.

time budget greater than five seconds. For our given
time budget of 300 seconds, our planner solves 75% of
the test scenes while the DARRT planner is only able
to solve 39%.

The results support our second hypothesis: Our al-
gorithm increases success rate and decreases planning
time when compared to existing solutions.

3) Qualitative Analysis: A deeper look at the solutions
our planner achieves provides some insight on the
DARRT comparison. Fig.2 shows an example solution
for a high clutter scene. The solution found by our
planner relies highly on interaction with the full arm.
Even in lower clutter scenes such as the one depicted in

Fig.5, the planner relies on pushing with multiple links
on the manipulator. Additionally, each of the solutions
moves multiple objects simultaneously.

Typical primitives-based planners, including our
DARRT implementation, allow only interaction with a
single object at a time, and restrict that interaction to
contact using the end-effector only. This restricts the
solutions the planner can consider, causing high rates
of failure and longer plan times in scenes with more
than just a few items.

However, if we consider scenes with low clutter, as
in Fig.6, primitive-based planners such as DARRT work
well. In Fig.6, the goal object can be moved directly to

2513

0 50 100 150 200 250 300
Planning Time Budget (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S
u
cc

es
s

R
at

e

PC RRT
DARRT

Fig. 7: The success rate of our algorithm compared with the DARRT
algorithm. The graph depicts the expected success we can expect each
algorithm to achieve given any time budget up to 300 seconds.

Before Shortcut After Shortcut
0

1

2

3

4

5

6

7

A
vg

M
an

ip
u
la

to
r

D
is

p
la

ce
m

en
t

(r
ad

)

6.058

5.179

(a)
Before Shortcut After Shortcut

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
vg

T
ot

al
O

b
je

ct
D

is
p
la

ce
m

en
t

(m
)

1.016 1.040

(b)

Fig. 8: (a) Manipulator path length before and after path shortcutting.
(b) Total object displacement before and after path shortcutting.

the goal region, without the need to clear clutter. The
Push primitive can solve this trivially, allowing for very
low planning times.

This highlights a fundamental tradeoff between our
approach and planners similar to DARRT. The ef-
fectiveness of primitive based planners is heavily in-
fluenced by the richness of the underlying primitive
set. For example, were we to augment our DARRT
implementation with additional primitives to move the
base or perform pick-and-place it is likely the planner
performance would improve. Conversely, our planner
is able to achieve good performance sampling from a
very basic action set, but trades efficiency on scenes
that could be solved with a single primitive.

B. Path Shortcutting
In our next results, we examine the performance

of the shortcutting algorithm described in Sec.IV. We
explore the following hypothesis:
H.3 Applying path shortcutting decreases the length

of the manipulator path.
This hypothesis is motivated by the need to check

that our shortcut method is able to successfully find

Scene 1 Scene 2 Scene 3 Scene 4

10/10 4/10 7/10 10/10

TABLE I: Successes for trajectories executed on real robot

segments to remove. We run the shortcut algorithm for
a maximum of 15 seconds on each successfully gener-
ated path. Fig.8a shows a 14% reduction in manipulator
path length after shortcutting.

We run a repeated measures ANOVA for before and
after shortcutting and show a significant main effect
for manipulator path length (F(1, 1023) = 11.21, p <
0.001).

These results support our third hypothesis: Applying
path shortcutting decreases the length of the manip-
ulator path.

We next analyze the change in total object displace-
ment before and after shortcutting (Fig.8b). This metric
measures the combined distance objects are moved in
the plan. Interestingly, we see no significant change
(F(1, 1023) = 1.14, p = 0.285) . This indicates that
the segments of the manipulator trajectory being re-
moved during shortcutting are predominantly transit
segments, i.e. segments where the robot is not in-
teracting with movable objects. This is expected for
two reasons. First, the goal of our shortcutting is to
decrease manipulator path length while still achieving
the goal. The shortcut algorithm is not guided to reduce
object displacement. Second, removing transit segments
has little effect on goal achievement, because we do
not remove any interactions with the objects. On the
other hand, removing a transfer segment could cause
overall goal failure if that segment was critical to goal
achievement, i.e. we eliminated a push of the goal
object. Thus, it is more likely that attempts to shortcut
transfer segments will be rejected because the goal is no
longer achieved.

C. Real world execution
Finally, we test that the trajectories we generate are

able to be executed with some success on real hard-
ware. To do this, we select successful solutions for four
different scenes, and run them open loop on the robot.
We run 10 trials for each scene and record success or
failure based on whether the goal object ended in the
goal region. Tab.I shows the result.

We note that with these tests, we are only verifying
that our physics model is good enough to achieve some
success. We leave full investigation of the accuracy of
our model to future work.

VI. Discussion

In this work, we formulate the rearrangement plan-
ning problem as a randomized kinodynamic motion
planning problem. We show that embedding a physics
model into the planner allows us to generate trajec-
tories with full arm manipulation and simultaneous
object interaction. Careful selection of this model allows
us to reduce our state and action space, making the

2514

search feasible. Our experiments show our solution
allows us to solve more problems than primitive based
approaches.

Our selection of a planar quasistatic physics model
limits us in two ways. First, we can only solve scenes
where the quasistatic assumption holds. This prevents
us from interactions that require dynamics, such as
pushing a ball. Second, we only consider pushing
interactions. In future work, we wish to explore the
incorporation of full dynamical physics models into our
planner. This would allow us to expand the behaviors
we generate beyond pushing to actions such as toppling
or rolling.

In Sec.V-C we provide some initial results when
executing planned trajectories in the real world. While
we are able to achieve some success, it is clear that our
model is not a perfect description of the physical world.
Such a model does not exist. The planner we have
presented is just an initial step in incorporating physics
models into motion planning. To be truly useful, we
must augment the planner to represent and reason
about uncertainty. In addition, we must consider ways
to incorporate feedback obtained online during plan
execution.

We note that while our planner does not require
definition of any motion primitives, it is inclusive of
them. In particular, if a set of primitives exists, it can be
included in the action space. Additionally, our planner
can itself be used as a primitive in a hierarchical plan-
ner such as [6, 9]. We hope that this can help achieve
more expressive solutions to complex manipulation
problems.

VII. Acknowledgements

This work is partially supported by the Toyota Motor
Corporation, NASA NSTRF Grant NNX13AL61H, the
IGEL Program from the College for Gifted Students of
the Department of Informatics at Karlsruhe Institute
of Technology, the European Union Seventh Frame-
work Programme under grant agreement no. 270273
(Xperience) and the International Center for Advanced
Communication Technologies (InterACT).

References

[1] Y. Aiyama, M. Inaba, and H. Inoue. Pivoting: A new method of
graspless manipulation of object by robot fingers. In IEEE/RSJ
IROS, 1993.

[2] S. Akella, W. H. Huang, K. M. Lynch, and M. T. Mason.
Sensorless parts orienting with a one-joint manipulator. In IEEE
ICRA, 1997.

[3] S. Akella and M. T. Mason. Posing polygonal objects in the
plane by pushing. In IEEE ICRA, 1992.

[4] R. Alami, J. P. Laumond, and T. Siméon. Two manipulation
planning algorithms. In WAFR, 1994.

[5] J. Barry, K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez. Manip-
ulation with multiple action types. In ISER, 2012.

[6] J. Barry, L. P. Kaelbling, and T. Lozano-Pérez. A hierarchical
approach to manipulation with diverse actions. In IEEE ICRA,
2013.

[7] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner. Manip-
ulation planning on constraint manifolds. In IEEE ICRA, 2009.

[8] R. C. Brost. Automatic grasp planning in the presence of
uncertainty. IJRR, 7(1), 1988.

[9] P. C. Chen and Y. K. Hwang. Practical path planning among
movable obstacles. In IEEE ICRA, 1991.

[10] M. Dogar and S. Srinivasa. Push-grasping with dexterous hands:
Mechanics and a method. In IEEE/RSJ IROS, 2010.

[11] M. Dogar and S. Srinivasa. A framework for push-grasping in
clutter. In RSS, 2011.

[12] M. Dogar and S. Srinivasa. A planning framework for non-
prehensile manipulation under clutter and uncertainty. Au-
tonomous Robots, 33(3), 2012.

[13] M. R. Dogar, K. Hsiao, M. Ciocarlie, and S. S. Srinivasa. Physics-
based grasp planning through clutter. In RSS, 2012.

[14] C. V. Geem, T. Siméon, and J.-P. Laumond. Mobility analysis for
feasibility studies in cad models of industrial environments. In
IEEE ICRA, 1999.

[15] S. Goyal, A. Ruina, and J. Papadopoulos. Planar sliding with
dry friction. part 1. limit surface and moment function. Wear,
1991.

[16] M. Gupta and G. S. Sukhatme. Using manipulation primitives
for brick sorting in clutter. In IEEE ICRA, 2012.

[17] K. Hauser and V. Ng-Thow-Hing. Fast smoothing of manipu-
lator trajectories using optimal bounded-acceleration shortcuts.
In IEEE ICRA, 2010.

[18] R. D. Howe and M. R. Cutkosky. Practical force-motion models
for sliding manipulation. IJRR, 15, 1996.

[19] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient
approach to single-query path planning. In IEEE ICRA, 2000.

[20] S. M. LaValle. Rapidly-exploring random trees: A new tool for
path planning. 1998.

[21] S. M. LaValle. Planning Algorithms. 2006.
[22] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic

planning. IJRR, 20(5), 2001.
[23] K. Lynch and M. T. Mason. Stable pushing: Mechanics, control-

lability, and planning. In WAFR, 1995.
[24] Y. Maeda, H. Kijimoto, Y. Aiyama, and T. Arai. Planning of

graspless manipulation by multiple robot fingers. In IEEE ICRA,
2001.

[25] T. Mericli, M. Veloso, and H. L. Akin. Achievable push-
manipulation for complex passive mobile objects using past
experience. In AAMAS, 2013.

[26] D. Nieuwenhuisen, A. Stappen., and M. Overmars. An effective
framework for path planning amidst movable obstacles. In
WAFR, 2008.

[27] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars.
Path planning for pushing a disk using compliance. In IEEE/RSJ
IROS, 2005.

[28] G. Sánchez and J.-C. Latombe. On delaying collision checking
in prm planning - application to multi-robot coordination. IJRR,
21(1), 2002.

[29] S. Sekhavat, P. Švestka, J.-P. Laumond, and M. H. Overmars.
Multi-level path planning for nonholonomic robots using semi-
holonomic subsystems. IJRR, 17, 1998.

[30] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani. Manipula-
tion planning with probabilistic roadmaps. IJRR, 23(7-8), 2004.

[31] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Col-
let, R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and
M. Weghe. HERB: A Home Exploring Robotic Butler. Au-
tonomous Robots, 28(1), 2010.

[32] M. Stilman and J. Kuffner. Navigation among movable obstacles:
Real-time reasoning in complex environments. In IEEE-RAS
Humanoids, 2004.

[33] M. Stilman, J. Schamburek, J. Kuffner, and T. Asfour. Manipu-
lation planning among movable obstacles. In IEEE ICRA, 2007.

[34] I. Sucan, M. Moll, and L. Kavraki. The Open Motion Planning
Library. IEEE Robotics and Automation Magazine, 2012.

[35] J. van den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha.
Path planning among movable obstacles: a probabilistically
complete approach. In WAFR, 2008.

[36] N. Zumel and M. Erdmann. Nonprehensile manipulation for
orienting parts in the plane. In IEEE ICRA, 1997.

2515

