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Abstract

In this paper, we present our first attempts in building a multilingual Neural Machine Translation
framework under a unified approach. We are then able to employ attention-based NMT for many-
to-many multilingual translation tasks. Our approach does not require any special treatment on
the network architecture and it allows us to learn minimal number of free parameters in a standard
way of training. Our approach has shown its effectiveness in an under-resourced translation
scenario with considerable improvements up to 2.6 BLEU points. In addition, the approach has
achieved interesting and promising results when applied in the translation task that there is no
direct parallel corpus between source and target languages.

1 Introduction

Neural Machine Translation (NMT) has shown its effectiveness in translation tasks when NMT systems
perform best in recent machine translation campaigns (Cettolo et al., 2015; Bojar et al., 2016). Com-
pared to phrase-based Statistical Machine Translation (SMT) which is basically an ensemble of different
features trained and tuned separately, NMT directly modeling the translation relationship between source
and target sentences. Unlike SMT, NMT does not require much linguistic information and large mono-
lingual data to achieve good performances.

An NMT consists of an encoder which recursively reads and represents the whole source sentence into
a context vector and a recurrent decoder which takes the context vector and its previous state to predict
the next target word. It is then trained in an end-to-end fashion to learn parameters which maximizes
the likelihood between the outputs and the references. Recently, attention-based NMT has been featured
in most state-of-the-art systems. First introduced by (Bahdanau et al., 2014), attention mechanism is
integrated in decoder side as feedforward layers. It allows the NMT to decide which source words
should take part in the predicting process of the next target words. It helps to improve NMTs significantly.
Nevertheless, since the attention mechanism is specific to a particular source sentence and the considering
target word, it is also specific to particular language pairs.

Some recent work has focused on extending the NMT framework to multilingual scenarios. By train-
ing such network using parallel corpora in number of different languages, NMT could benefit from
additional information embedded in a common semantic space across languages. Basically, the pro-
posed NMT are required to employ multiple encoders or multiple decoders to deal with multilinguality.
Furthermore, in order to avoid the tight dependency of the attention mechanism to specific language
pairs, they also need to modify their architecture to combine either the encoders or the attention layers.
These modifications are specific to the purpose of the tasks as well. Thus, those multilingual NMTs are
more complicated, much more free parameters to learn and more difficult to perform standard trainings
compared to the original NMT.

In this paper, we introduce a unified approach to seamlessly extend the original NMT to multilingual
settings. Our approach allows us to integrate any language in any side of the encoder-decoder architec-
ture with only one encoder and one decoder for all the languages involved. Moreover, it is not necessary
to do any network modification to enable attention mechanism in our NMT systems. We then apply
our proprosed framework in two demanding scenarios: under-resourced translation and zero-resourced
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translation. The results show that bringing multilinguality to NMT helps to improve individual trans-
lations. With some insightful analyses of the results, we set our goal toward a fully multilingual NMT
framework.

The paper starts with a detailed introduction to attention-based NMT. In Section 3.1, related work
about multi-task NMT is reviewed. Section 3.2 describes our proposed approach and thorough compar-
isons to the related work. It is followed by a section of evaluating our systems in two aforementioned
scenarios, in which different strategies have been employed under a unified approach (Section 4). Finally,
the paper ends with conclusion and future work.

2 Neural Machine Translation: Background

An NMT system consists of an encoder which automatically learns the characteristics of a source sen-
tence into fix-length context vectors and a decoder that recursively combines the produced context vectors
with the previous target word to generate the most probable word from a target vocabulary.

More specifically, a bidirectional recurrent encoder reads every words xi of a source sentence x =
{x1, ..., xn} and encodes a representation s of the sentence into a fixed-length vector hi concatinated
from those of the forward and backward directions:

hi = [
−→
h i,
←−
h i]

−→
h i = f(

−→
h i−1, s)

←−
h i = f(

←−
h i+1, s)

s = Es • xi

Here xi is the one-hot vector of the word xi and Es is the word embedding matrix which is shared
across the source words. f is the recurrent unit computing the current hidden state of the encoder based on
the previous hidden state. hi is then called an annotation vector, which encodes the source sentence up to
the time i from both forward and backward directions. Recurrent units in NMT can be a simple recurrent
neural network unit (RNN), a Long Short-Term Memory unit (LSTM) (Hochreiter and Schmidhuber,
1997) or a Gated Recurrent Unit (GRU) (Cho et al., 2014)

Similar to the encoder, the recurrent decoder generates one target word yj to form a translated target
sentence y = {y1, ..., ym} in the end. At the time j, it takes the previous hidden state of the decoder
zj−1, the previous embedded word representation tj−1 and a time-specific context vector cj as inputs to
calculate the current hidden state zj :

zj = g(zj−1, tj−1, cj)

tj−1 = Et • yj−1

Again, g is the recurrent activation function of the decoder and Et is the shared word embedding
matrix of the target sentences. The context vector cj is calculated based on the annotation vectors from
the encoder. Before feeding the annotation vectors into the decoder, an attention mechanism is set up in
between, in order to choose which annotation vectors should contribute to the predicting decision of the
next target word. Intuitively, a relevance between the previous target word and the annotation vectors can
be used to form some attention scenario. There exists several ways to calculate the relevance as shown
in (Luong et al., 2015a), but what we describe here follows the proposed method of (Bahdanau et al.,
2014)

rel sc(zj−1,hi)) = va • tanh(Wa • zj−1 + Ua • hi)

αij =
exp(rel sc(zj−1,hi))∑
i′ exp(rel sc(zj−1,hi′))

, cj =
∑
i

αijhi
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In (Bahdanau et al., 2014), this attention mechanism, originally called alignment model, has been
employed as a simple feedforward network with the first layer is a learnable layer via va,Wa and Ua.
The relevance scores rel sc are then normalized into attention weights αij and the context vector cj is
calculated as the weighted sum of all annotation vectors hi. Depending on how much attention the target
word at time j put on the source states hi, a soft alignment is learned. By being employed this way, word
alignment is not a latent variable but a parametrized function, making the alignment model differentiable.
Thus, it could be trained together with the whole architecture using backpropagation.

One of the most severe problems of NMT is handling of the rare words, which are not in the short
lists of the vocabularies, i.e. out-of-vocabulary (OOV) words, or do not appear in the training set at
all. In (Luong et al., 2015b), the rare target words are copied from their aligned source words after
the translation. This heuristic works well with OOV words and named entities but unable to translate
unseen words. In (Sennrich et al., 2016b), their proposed NMT models have been shown to not only
be effective on reducing vocabulary sizes but also have the ability to generate unseen words. This is
achieved by segmenting the rare words into subword units and translating them. The state-of-the-art
translation systems essentially employ subword NMT (Sennrich et al., 2016b).

3 Universal Encoder and Decoder for Multilingual Neural Machine Translation

While the majority of previous research has focused on improving the performance of NMT on individ-
ual language pairs with individual NMT systems, recent work has started investigating potential ways to
conduct the translation involved in multiple languages using a single NMT system. The possible reason
explaining these efforts lies on the unique architecture of NMT. Unlike SMT, NMT consists of separated
neural networks for the source and target sides, or the encoder and decoder, respectively. This allows
these components to map a sentence in any language to a representation in an embedding space which is
believed to share common semantics among the source languages involved1. From that shared space, the
decoder, with some implicit or explicit relevant constraints, could transform the representation into a con-
crete sentence in any desired language. In this section, we review some related work on this matter. We
then describe a unified approach toward an universal attention-based NMT scheme. Our approach does
not require any architecture modification and it can be trained to learn a minimal number of parameters
compared to the other work.

3.1 Related Work

By extending the solution of sequence-to-sequence modeling using encoder-decoder architectures to
multi-task learning, Luong et al. (2016) managed to achieve better performance on some many − to −
many tasks such as translation, parsing and image captioning compared to individual tasks. Specifically
in translation, the work utilizes multiple encoders to translate from multiple languages, and multiple
decoders to translate to multiple languages. In this view of multilingual translation, each language in
source or target side is modeled by one encoder or decoder, depending on the side of the translation.
Due to the natural diversity between two tasks in that multi-task learning scenario, e.g. translation and
parsing, it could not feature the attention mechanism although it has proven its effectiveness in NMT.

There exists two directions which proposed for multilingual translation scenarios where they leverage
the attention mechanism. The first one is indicated in the work from (Dong et al., 2015), where it
introduce an one-to-many multilingual NMT system to translates from one source language into multiple
target languages. Having one source language, the attention mechanism is then handed over to the
corresponding decoder. The objective function is changed to adapt to multilingual settings. In testing
time, the parameters specific to a desired language pair are used to perform the translation.

Firat et al. (2016) proposed another approach which genuinely delivers attention-based NMT to mul-
tilingual translation. As in (Luong et al., 2016), their approach utilizes one encoder per source language
and one decoder per target language for many-to-many translation tasks. Instead of a quadratic number
of independent attention layers, however, one single attention mechanism is integrated into their NMT,

1But not necessarily syntactics since the embeddings are learned from parallel sentences which essentially share the same
meaning although they might be very different in word order



performing an affine transformation between the hidden layer of m source languages and that one of n
target languages. It is required to change their architecture to accomodate such a complicated shared
attention mechanism.

In a separate effort to achieve multilingual NMT, the work of Zoph and Knight (2016) leverages
available parallel data from other language pairs to help reducing possible ambiguities in the translation
process into a single target language2. They employed the multi-source attention-based NMT in a way
that only one attention mechanism is required despite having multiple encoders. To achieve this, the
outputs of the encoders were combined before feeding to the attention layer. They implemented two
types of encoder combination; One is adding a non-linear layer on the concatenation of the encoders’
hidden states. The other is using a variant of LSTM taking the respective gate values from the individual
LSTM units of the encoders. As a result, the combined hidden states contain information from both
encoders , thus encode the common semantic of the two source languages.

3.2 Universal Encoder and Decoder

Inspired by the multi-source NMT as additional parallel data in several languages are expected to
benefit single translations, we aim to develop a NMT-based approach toward an universal framework to
perform multilingual translation. Our solution features two treatments: 1) Coding the words in different
languages as different words in the language-mixed vocabularies and 2) Forcing the NMT to translating
a representation of source sentences into the sentences in a desired target language.

Language-specific Coding. When the encoder of a NMT system considers words across languages as
different words, with a well-chosen architecture, it is expected to be able to learn a good representation of
the source words in an embedding space in which words carrying similar meaning would have a closer
distance to each others than those are semantically different. This should hold true when the words
have the same or similar surface form, such as (@de@Obama; @en@Obama) or (@de@Projektion;
@en@projection)3. This should also hold true when the words have the same or similar meaning across
languages, such as (@en@car; @en@automobile) or (@de@Flussufer; @en@bank). Our encoder then
acts similarly to the one of multi-source approach(Zoph and Knight, 2016), collecting additional infor-
mation from other sources for better translations, but with a much simpler embedding function. Unlike
them, we need only one encoder, so we could reduce the number of parameters to learn. Furthermore,
we neither need to change the network architecture nor depend on which recurrent unit (GRU, LSTM or
simple RNN) is currently using in the encoder.

We could apply the same trick to the target sentences and thus enable many-to-many translation capa-
bility of our NMT system. Similar to the multi-target translation(Dong et al., 2015), we exploit further
the correlation in semantics of those target sentences across different languages. The main difference
between our approach and the work of (Dong et al., 2015) is that we need only one decoder for all target
languages. Given one encoder for multiple source languages and one decoder for multiple target lan-
guages, it is trivial to incorporate the attention mechanism as in the case of a regular NMT for single
language translation. In training, the attention layers were directed to learn relevant alignments between
words in specific language pair and forward the produced context vector to the decoder. Now we rely
totally on the network to learn good alignments between source and target sides. In fact, giving more
information, our system are able to form nice alignments.

In comparison to other research that could perform complete multi-task learning, e.g. the work from
(Luong et al., 2016) or the approach proposed by (Firat et al., 2016), our method is able to accommodate
the attention layers seemlessly and easily. It also draws a clear distinction from those works in term of
the complexity of the whole network: considerably less parameters to learn, thus reduces overfitting,
with a conventional attention mechanism and a standard training procedure.

2An example taken from the paper is when we want to translate the English word bank into French, it might be easier if we
have an additional German sentence containing the word Flussufer (river bank).

3@lang code@a word is a simple way that transforms the word a word into a different surface form associated with its
language lang code. For example, @de@Projektion is referred to the word Projektion appearing in a German (de) sentence.



Target Forcing. While language-specific coding allows us to implement a multilingual attention-
based NMT, there are two issues we have to consider before training the network. The first is that the
number of rare words would increase in proportion with the number of languages involved. This might
be solved by applying a rare word treatment method with appropriate awareness of the vocabularies’
size. The second one is more problematic: Ambiguity level in the translation process definitely increases
due to the additional introduction of words having the same or similar meaning across languages at both
source and target sides. We deal with the problem by explicitly forcing the attention and translation to
the direction that we prefer, expecting the information would limit the ambiguity to the scope of one
language instead of all target languages. We realize this idea by adding at the beginning and at the end
of every source sentences a special symbol indicating the language they would be translated into. For
example, in a multilingual NMT, when a source sentence is German and the target language is English,
the original sentence (already language-specific coded) is:
@de@darum @de@geht @de@es @de@in @de@meinem @de@Vortrag
Now when we force it to be translated into English, the target-forced sentence becomes:
<E> @de@darum @de@geht @de@es @de@in @de@meinem @de@Vortrag <E>

Due to the nature of recurrent units used in the encoder and decoder, in training, those starting sym-
bols4 encourage the network learning the translation of following target words in a particular language
pair. In testing time, information of the target language we provided help to limit the translated candi-
dates, hence forming the translation in the desired language.

Figure 1 illustrates the essence of our approach. With two steps in the preprocessing phase, namely
language-specific coding and target forcing, we are able to employ multilingual attention-based NMT
without any special treatment in training such a standard architecture. Our encoder and attention-enable
decoder can be seen as a shared encoder and decoder across languages, or an universal encoder and
decoder. The flexibitily of our approach allow us to integrate any language into source or target side.
As we will see in Section 4, it has proven to be extremely helpful not only in low-resourced scenarios
but also in translation of well-resourced language pairs as it provides a novel way to make use of large
monolingual corpora in NMT.

Figure 1: Preprocessing steps to employ a multilingual attention-based NMT system

4 Evaluation

In this section, we describe the evaluation of our proposed approach in comparisons with the strong base-
lines using NMT in two scenarios: the translation of an under-resource language pair and the translation
of a language pair that does not exist any paralled data at all.

4.1 Experimental Settings
Training Data. We choose WIT3’s TED corpus (Cettolo et al., 2012) as the basis of our experiments

since it might be the only high-quality parallel data of many low-resourced language pairs. TED is
also multilingual in a sense that it includes numbers of talks which are commonly translated into many
languages. In addition, we use a much larger corpus provided freely by WMT organizers5 when we
evaluate the impact of our approach in a real machine translation campaign. It includes the paralled
corpus extracted from the digital corpus of European Parliament (EPPS), the News Commentary (NC)

4For a bidirectional encoder, they are actually the starting symbols of a source sentence from two directions.
5http://www.statmt.org/wmt15/

http://www.statmt.org/wmt15/


(a) mix-source system (b) mix-multi-source system

Figure 2: Different strategies of multi-source NMT in under-resourced translation

and the web-crawled parallel data (CommonCrawl). While the number of sentences in popular TED
corpora varies from 13 thousands to 17 thousands, the total number of sentences in those larger corpus
is approximately 3 million sentences.

Neural Machine Translation Setup. All experiments have been conducted using NMT framework
Nematus6, Following the work of Sennrich et al. (2016b), subword segmentation is handled in the
prepocessing phase using Byte-Pair Encoding (BPE). Excepts stated clearly in some experiments, we set
the number of BPE merging operations at 39500 on the joint of source and target data. When training
all NMT systems, we take out the sentence pairs exceeding 50-word length and shuffle them inside
every minibatch. Our short-list vocabularies contain 40,000 most frequent words while the others are
considered as rare words and applied the subword translation. We use an 1024-cell GRU layer and
1000-dimensional embeddings with dropout at every layer with the probability of 0.2 in the embedding
and hidden layers and 0.1 in the input and ourput layers. We trained our systems using gradient descent
optimization with Adadelta (Zeiler, 2012) on minibatches of size 80 and the gradient is rescaled whenever
its norm exceed 1.0. All the trainings last approximately seven days if the early-stopping condition could
not be reached. At a certain time, an external evaluation script on BLEU (Papineni et al., 2002) is
conducted on a development set to decide the early-stopping condition. This evaluation script has also
being used to choose the model archiving the best BLEU on the development set instead of the maximal
loglikelihood between the translations and target sentences while training. In translation, the framework
produces n-best candidates and we then use a beam search with the beam size of 12 to get the best
translation.

4.2 Under-resourced Translation

First, we consider the translation for an under-resourced pair of languages. Here a small portion of the
large parallel corpus for English-German is used as a simulation for the scenario where we do not have
much parallel data: Translating texts in English to German. We perform language-specific coding in
both source and target sides. By accommodating the German monolingual data as an additional input
(German→German), which we called the mix-source approach, we could enrich the training data in a
simple, natural way. Given this under-resourced situation, it could help our NMT obtain a better repre-
sentation of the source side, hence, able to learn the translation relationship better. Including monolingual
data in this way might also improve the translation of some rare word types such as named entities. Fur-
thermore, as the ultimate goal of our work, we would like to investigate the advantages of multilinguality
in NMT. We incorporate a similar portion of French-German parallel corpus into the English-German
one. As discussed in Section 3.2, it is expected to help reducing the ambiguity in translation between
one language pair since it utilizes the semantic context provided by the other source language. We name
this mix-multi-source.

Table 1 summarizes the performance of our systems measured in BLEU7 on two test sets, tst2013
and tst2014. Compared to the baseline NMT system which is solely trained on TED English-German
data, our mix-source system achieves a considerable improvement of 2.6 BLEU points on tst2013 and

6https://github.com/rsennrich/nematus
7We used the script mteval-v13a.pl of the Moses framework (http://statmt.org/moses/) as the official way

to calculate BLEU scores in main machine translation campaigns.

https://github.com/rsennrich/nematus
http://statmt.org/moses/


System tst2013 tst2014
BLEU ∆BLEU BLEU ∆BLEU

Baseline (En→De) 24.35 – 20.62 –
Mix-source (En,De→De,De) 26.99 +2.64 22.71 +2.09
Mix-multi-source (En,Fr→De,De) 26.64 +2.21 22.21 +1.59

Table 1: Results of the English→German systems in an under-resourced scenario.

2.1 BLEU points on and tst2014 . Adding French data to the source side and their corresponding Ger-
man data to the target side in our mix-multi-source system also help to gain 2.2 and 1.6 BLEU points
more on tst2013 tst2014, respectively. We observe a better improvement from our mix-source system
compared to our mix-multi-source system. We speculate the reason that the mix-source encoder utilize
the same information shared in two languages while the mix-multi-source receives and processes similar
information in the other language but not necessarily the same. We might validate this hypothesis by
comparing two systems trained on a common English-German-French corpus of TED. We put it in our
future work’s plan.

As we expected Figure 3 shows how different words in different languages can be close in the shared
space after being learned to translate into a common language. We extract the word embeddings from
the encoder of the mix-multi-source (En,Fr→De,De) after training, remove the language-specific codes
(@en@ and @fr@)and project the word vectors to the 2D space using t-SNE8(Maaten and Hinton, 2008).
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Figure 3: The multilingual word embeddings from the shared representation space of the source.

4.3 Using large monolingual data in NMT.

A standard NMT system employs parallel data only. While good parallel corpora are limited in num-
ber, getting monolingual data of an arbitrary language is trivial. To make use of German monolingual
corpus in an English→German NMT system, Sennrich et al. (2016a) built a separate German→English

8To illustrate more clearly, only the word vectors of the words related to “research” are projected and visualized. The blue
words are the English words and the red ones are the French words.



NMT using the same parallel corpus, then they used that system to translate the German monolingual
corpus back to English, forming a synthesis parallel data. Gülçehre et al. (2015) trained another RNN-
based language model to score the monolingual corpus and integrate it to the NMT system through
shallow or deep fusion. Both methods requires to train separate systems with possibly different hyper-
parameters for each. Conversely, by applying mix-source method to the big monolingual data, we need
to train only one network. We mix the TED parallel corpus and the substantial monolingual corpus
(EPPS+NC+CommonCrawl) and train a mix-source NMT system from those data.

The first result is not encouraging when its performance is even worse than the baseline NMT which
is trained on the small parallel data only. Not using the same information in the source side, as we
discussed in case of mix-multi-source strategy, could explain the degrading in performance of such a
system. But we believe that the magnitude and unbalancing of the corpus are the main reasons. The
data contains nearly four millions sentences but only around twenty thousands of them (0.5%) are the
genuine parallel data. As a quick attempt, after we get the model with that big data, we continue training
on the real parallel corpus for some more epochs. When this adaptation is applied, our system brings an
improvement of +1.52 BLEU on tst2013 and +1.06 BLEU on tst2014 (Table 2).

System tst2013 tst2014
BLEU ∆BLEU BLEU ∆BLEU

Baseline (En→De) 24.35 – 20.62 –
Mix-source big (En,De→De,De) 25.87 +1.52 21.68 +1.06

Table 2: Results of the English→German system using large monolingual data.

4.4 Zero-resourced Translation

Among low-resourced scenarios, zero-resourced translation task stands in an extreme level. A zero-
resourced translation task is one of the most difficult situation when there is no parallel data between the
translating language pair. To the best of our knowledge, there have been yet existed a published work
about using NMT for zero-resourced translation tasks up to now. In this section, we extend our strategies
using the proposed multilingual NMT approach as first attempts to this extreme situation.

We employ language-specific coding and target forcing in a strategy called bridge. Unlike the strate-
gies used in under-resourced translation task, bridge is an entire many-to-many multilingual NMT.
Simulating a zero-resourced German→French translation task given the available German-English and
English-French parallel corpora, after applying language-specific coding and target forcing for each cor-
pus, we mix those data with an English-English data as a “bridge” creating some connection between
German and French. We also propose a variant of this strategy that we incorporate French-French data.
And we call it universal.

We evaluate bridge and universal systems on two German→French test sets. They are compared
to a direct system, which is an NMT trained on German→French data, and to a pivot system, which
essentially consists of two separate NMTs trained to translate from German to English and English
to French. The direct system should not exist in a real zero-resourced situation. We refer it as the
perfect system for comparison purpose only. In case of the pivot system, to generate a translated text
in French from a German sentence, we first translate it to English, then the output sentence is fed to
the English→German NMT system to obtain the French translation. Since there are more than two
languages involved in those systems, we increase the number of BPE merging operations proportionally
in order to reduce the number of rare words in such systems. We do not expect our proposed systems to
perform well with this primitive way of building direct translating connections since this is essentially a
difficult task. We report the performance of those systems in Table 3.

Unsupprisingly, both bridge and universal systems perform worse than the pivot one. We consider
two possible reasons:

Our target forcing mechanism is moderately primitive. Since the process is applied after language-
specific coding, the target forcing symbol is the same for all source sentences in every languages. Thus,



System BLEU ∆BLEU
Direct (De→Fr) 16.65 +3.24
Pivot (De→En→Fr) 13.41 –
Bridge (De,En,En→En,Fr,En) 9.70 -3.71
Universal (De,En,En,Fr→En,Fr,En,Fr) 10.77 -2.64

Table 3: Results of the German→French systems in a zero-resourced scenario.

the forcing strength might not be enough to guide the decision of the next words. Once the very first word
is translated into a word in wrong language, the following words tend to be translated into that wrong
language again. Table 4 shows some statistics of the translated words and sentences in wrong language.

System % Translated words in wrong language % Sentences in wrong language
Bridge 21.27% 9.70%
Universal 17.57 9.47%

Table 4: Percentages of language identificcation mistakes when applying our translation strategies.

Balancing of the training corpus. Although it is not severe as in the case of mix-source system for
large monolingual data, the limited number of sentences in target language can affect the training. The
difference of 1.07 BLEU points between bridge and universal might explain this assumption as we added
more target data (French) in universal strategy, thus reducing the unbalance in training.

Those issues would be addressed in our following future work toward the multilingual attention-based
NMT.

5 Conclusion and Future Work

In this paper, we present our first attempts in building a multilingual Neural Machine Translation frame-
work. By treating words in different languages as different words and force the attention and transla-
tion to the direction of desired target language, we are able to employ attention-enable NMT toward a
multilingual translation system. Our proposed approach alleviates the need of complicated architecture
re-designing when accommodating attention mechanism. In addition, the number of free parameters to
learn in our network does not go beyond that magnitute of a single NMT system. With its universality,
our approach has shown its effectiveness in an under-resourced translation task with considerable im-
provements. In addition, the approach has achieved interesting and promising results when applied in
the translation task that there is no direct parallel corpus between source and target languages.

Nevertheless, there are issues that we can continue working on to address in future work. A more
balancing data would be helpful for this framework. The mechanism of forcing the NMT system to
the right target language could be improved. We could conduct more detailed analyses of the various
strategies under the framework to show its universarity.
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