
www.kit.eduKIT – The Research University in the Helmholtz Association

Creating Audio Level Dependency
Parse Trees from Speech

Bachelor’s Thesis

Theo Beffart

at the Interactive Systems Lab
Department of Informatics

Reviewer: Prof. Dr. Alexander Waibel
Secondary Reviewer: Prof. Dr. Tamim Asfour
Advisor at KIT: Dr. Sebastian Stüker
Advisor at CMU: Prof. Dr. Florian Metze

Bearbeitungszeit: 22. Februar 2018 – 22. Juni 2018

i

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder
inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung des
KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung
beachtet habe.

Karlsruhe, den 22. Juni 2018

ii

Abstract

In this work we explore the feasibility of creating dependency
parse trees over audio in an end-to-end fashion. These trees
assert relations over segments of audio without transforming it
into a textual representation. Because this occurs before any
speech recognition would these trees could for example be used
within a speech recognition system alongside the language model
or in applications that do not need the actual transcript of the
words that are said but rather their relations with each other.
The model is constructed by adapting an existing parser that
loosely resembles an encoder-decoder architecture. The presented
models replace its encoder and show reasonable performance when
word boundaries are given as an additional input. Some future
possibilities are also discussed and preliminary experiments for
combining it with an attention based sequence to sequence model
that suffices without word boundaries are also presented and
discussed. The ideas and concepts that are developed in this work
are a proof of concept for this kind of speech representation and
offer a foundation upon which to build more sophisticated solutions.

iii

Zusammenfassung

In dieser Arbeit beschäftigen wir uns mit der Möglichkeit Depen-
dency Parsebäume Ende-zu-Ende direkt über Audio zu extrahieren.
Diese Bäume repräsentieren Relation zwischen Segmenten von Au-
dio ohne dieses in eine textuelle Repräsentation zu überführen. Das
Modell wird konstruiert indem eine existierende Parser-Architektur,
die grob einem Encoder-Decoder Ansatz ähnelt, adaptiert wird. Die
vorgestellten Modelle ersetzen dessen Encoder und zeigen akzept-
able Ergebnisse solange die Wortgrenzen dem Modell als zusät-
zliche Eingabe vorliegen. Einige zukünftige Möglichkeiten wer-
den ebenfalls angesprochen. Vorläufige Experimente zum vereinen
der vorgestellten Modelle mit einem attention-based Sequence-to-
Sequence Modell, welches ohne explizite Wortgrenzen auskommt,
werden auch gezeigt. Die Ideen und Konzepte, die hier entwick-
elt werden sind ein Nachweis über die grundsätzliche Machbarkeit
dieser Art der Sprachrepräsentation und bieten eine Grundlage auf
deren Basis komplexere Lösungen erarbeitet werden können.

iv

Acknowledgements

This work would not have been possible without the the interACT program and the
support of the people at the interACT lab at Carnegie Mellon.
For creating the program, I would like to thank Alexander Waibel who in doing so
made my experiences of the last months possible.
At CMU I want to thank my advisor Florian Metze for countless discussions with
me about my work no matter how busy he was and for always providing new and
helpful ideas.
I want to thank Ramon Sanabria who provided me with everything surrounding
feature extraction and who, even though being always stressed and busy with his
own work, always found the time to discuss the latest developments of my research.
A big “Thank you!” to Shruti Palaskar for her help with all things sequence to
sequence and for always providing insightful discussions.
I also want to thank Sebastian Stüker, my advisor at KIT .
Lastly I want to thank Emanuel Jöbstl whose judging glare has kept me focused and
productive throughout the months.

Contents

1 Introduction 1
1.1 Outline . 2

2 Background 3
2.1 Neural Networks . 3

2.1.1 Multilayer Perceptron . 3
2.1.2 Training with Stochastic Gradient Descent and Backpropagation 4
2.1.3 Activation Functions . 5

2.1.3.1 Softmax . 7
2.1.4 Recurrent Neural Networks 7
2.1.5 Long Short Term Memory . 8
2.1.6 Stack LSTM . 10

2.2 Sequence to Sequence Models . 11

3 Related Work 12
3.1 Dependency Parsing . 12

3.1.1 Non-projective Dependency Parsing using Spanning Tree Al-
gorithms . 12

3.1.2 Transition Based Dependency Parsing using Stack LSTM . . . 12
3.2 Joint Modeling of Text and Acoustic-Prosodic Cues for Neural Parsing 13
3.3 Towards End-to-End Spoken Language Understanding 13

4 Dependency Parsing 14
4.1 Formalism . 14
4.2 Stanford Dependencies . 14
4.3 Transition Based Dependency Parsing 15
4.4 Implementation using Stack LSTMs 17

4.4.1 Parser . 17
4.4.2 Embedding . 18
4.4.3 Training . 19
4.4.4 Interpretation as a Sequence to Sequence Model 20

5 Design 21
5.1 Parse Input Encoder . 21

5.1.1 Independent Embeddings . 22
5.1.2 Continuous Embeddings . 22

5.2 End to End Training . 23
5.3 Transfer from Text Model . 23
5.4 Using Encoder from a Sequence to Sequence Model 24

Contents vi

6 Experiments 26
6.1 Data . 26

6.1.1 Penn Tree Bank . 26
6.1.2 Accuracy Metric . 27
6.1.3 Data Preparation . 27

6.2 Results on Text . 28
6.2.1 Dataset Comparison . 29

6.3 Parser on ASR Output . 30
6.4 Model Implementation . 30
6.5 End to End . 30
6.6 Transfer From Text . 31
6.7 Feature vectors from seq2seq . 32

7 Conclusion and Future Work 36
7.1 Improvements to the Presented Models 36
7.2 Next Steps . 37

Bibliography 38

List of Figures

2.1 Multilayer Perceptron with L hidden layers of size ml, input dimen-
sion D and output size O. 4

2.2 logistic activation and derivative . 6

2.3 tanh activation and derivative . 7

2.4 rectified linear activation . 7

2.5 Simple RNN: hidden layers H get previous hidden output ht−1 as
additional input alongside x to produce output y. 8

2.6 LSTM computation graph as defined above. Input- and Output-Gate
control the information flow within the memory block. The Forget-
Gate is coupled to the input gate. 10

2.7 Shows how pop and push change the information flow in a stack LSTM
to be nonsequential. Notice how y2 is not influenced by y1 because it
was popped from the stack. Figure from [DBLM+15a] 11

4.1 Dependency parse for “I prefer the morning flight through Denver.” . 14

4.2 Some examples of dependency relations described in [DMMa08] . . . 15

4.3 Preposition “in” is removed from the parse tree and instead becomes
part of the relation label. 15

4.4 During each Arc transition the words on the stack are combined to
form a tree that is a subtree of the total parse tree. 18

5.1 Embeddings with individual LSTM passes for each word producing
an independent embedding for each word 22

5.2 Embeddings with word segments concatenated into continuous se-
quence of audio and one LSTM pass per sentence producing context
dependent audio encodings. 23

5.3 Training procedure for transferring text embeddings. First a text
model is trained, then embeddings are transferred to an audio encoder
and then that encoder is fine tuned in an end to end setting. 24

6.1 Results for the parser from [BDGS17] when trained on WSJ, SWBD,
both or a subset of WSJ. Training scores taken from a subset of the
training data of the same size as the development set. 28

List of Figures viii

6.2 Relative frequency of 10 most frequent words in the SWBD and WSJ
data used in this work . 29

6.3 Relative frequency of 10 most frequent relations in the SWBD and
WSJ data used in this work. The total number of relations are 82
and 79 respectively. 29

6.4 Results of parsing the output of the ASR system through the trained
text parser. Due to restrictions in which sentences could be used this
was only calculated with around 100 sentences. 30

6.5 Results for the configurations with BiLSTMs with 5 and 4 layers and
size 300. Development set UAS is shown, training set UAS is also
plotted as dotted line for reference. 31

6.6 Examples of attention vectors from the dumped features. The first is
an example for a very noisy attention where the peaks give very little
indication about the location of the word in the input encoding. The
second example shows a good example of the peakiness of attention. . 35

1. Introduction

With recent, ongoing rise in popularity of speech driven systems like home assistants
or voice controls in cars and phones, the importance of methods to extract meaning
from speech is greater than ever.
Parse trees are an established way to represent the syntactic structure of a sentence
in a way that is accessible for usage by other applications. These applications can
use the wealth of information those trees provide to extract higher level meaning
from the sentence.
Dependency Parses are a category of such representations where the entire syntactic
structure is expressed as relations between the words of the sentence . These are
labeled to describe the nature of the relationship they stand for.
Parsing traditionally happens with text as input, not audio. To parse speech it
is first transcribed using an speech recognizer and that transcript is then parsed.
However, recently end-to-end approaches have become increasingly popular in other
language processing problems. This motivates the question if such an approach is
also applicable to the generation of parse trees from speech.

The goal of this thesis is to examine the feasibility of producing dependency parse
trees directly from audio without creating an explicit representation of the words in
the sentence such as text. These trees are created on the audio level, that is, they
assert relations between segments of audio that correspond to word, not between
the words as text. This is different from the “pipeline” approach which uses a tran-
scription of speech because there the result contains the words as text.
Creating these trees before any speech recognition takes place changes the use cases
for such a system. It could, for example, be used as a part of a speech recognition
system that provides additional information alongside the language model about the
expected syntactic structure of the sentence that is being recognized. Some applica-
tion might not even need the actual content of a sentence and instead only require
knowledge of how the different parts of it depend on each other. Such a system
could work directly with the audio parse trees.
Independent of possible uses, this representation is a novel way to process speech in
the context of parsing.

1.1. Outline 2

1.1 Outline

In chapter 2 relevant concepts that are used throughout this work are introduced.
Chapter 3 discusses related work in relation to the presented approaches.
Chapter 4 gives an introduction to dependency parsing and the approach to it that
is used throughout this work. The implementation on which the approaches in this
work are based upon is also presented in this chapter.
Chapter 5 presents the models developed in this work and the decision made in the
process.
Chapter 6 describes implementation details, data and experiment results.
Chapter 7 offers a conclusion of the presented results and an outlook of the next
steps that can be made from what was presented here.

2. Background

2.1 Neural Networks

During recent years neural networks have seen a surge in popularity in different ma-
chine learning tasks. For example, neural networks are able to produce state of the
art results in Image Processing ([KrSH12]) and in multiple natural language process-
ing tasks such as Machine Translation ([BaCB14]), speech recognition ([MiGM15])
and parsing ([BDGS17]).
In any Machine Learning task in the most general sense we seek a model to ap-
proximate some unknown function f ∗(x). A neural network can be understood as
parametrized function f(x, θ)[GoBC16]. The goal is to find parameters θ such that
f(x, θ) ≈ f ∗(x) for all inputs x.
As f ∗ is unknown, we rely on optimizing the network with respect its behavior on
some training data for which the desired output is known. This data contains sam-
ples (xi, yi = f ∗(x)) of an input and its corresponding known output. This section
will introduce the neural network architectures relevant to this work - the functions
f(x, θ) - and how to optimize their parameters θ.

2.1.1 Multilayer Perceptron

Multilayer Perceptrons are powerful models that have been proven to be able to
(under certain general assumptions) approximate any function (Universal approx-
imation theorem[Horn91]). As the name suggests, multilayer perceptrons consist
of layers of neurons that are stacked on top of each other. Each layer contains a
fixed number of neurons. Originally inspired by their biological counterpart, such
computing units were first described in [Rose58]. Each neuron processes the input
vector by first calculating a weighted sum over it and then applying some activation
function to this sum. Typically the units in one layer all share the same activation
function. Therefore, instead of considering the neurons as independent units, in a
fully connected Multilayer Perceptron each layer can be represented by a matrix-
vector multiplication and subsequent application of the activation function. In a
Multilayer Perceptron the input is passed through all layers and the final layer out-
puts the network output.

2.1. Neural Networks 4

x0

x1

...

xD

y
(1)
1

...

y
(m1)
1

. . .

. . .

. . . y
(1)
L

...

y
(ml)
L

y(1)

y(2)

...

y(O)

input hidden layers output

Figure 2.1: Multilayer Perceptron with L hidden layers of size ml, input dimension
D and output size O.

In other words the output of the network is the function concatenation of each layer’s
individual function fk.

y(x, θ) = fn ◦ fn−1 · · · ◦ f1(x)

yk = fk(yk−1) = ϕ(Wkyk−1 + bk)

y0 = x

The weight matrices Wk and biases bk of each layer fk are the parameters θ that
are learned to make the network function approximate the desired output function.
The activation function ϕ usually does not contain any learned parameters and is
chosen during the design of the network topology.

2.1.2 Training with Stochastic Gradient Descent and Back-
propagation

Gradient Descent

Gradient Descent is an optimization method to minimize a function F (x), that is
to find x∗ = arg minF (x). This is done by iteratively taking a step xi according to
the gradient ∇F (xi) and a learning rate γ, so that

xi+1 = xi − γ∇F (xi)

In the context of machine learning and neural networks this function F is a loss or
cost function associated with the network output. This function is chosen with the
intuition that minimizing this loss also leads to f(x, θ) being a good approximation of
f ∗(x). For each sample from the training data, the loss depends on the corresponding
label and the network output. The output depends on the input and the parameters

2.1. Neural Networks 5

θ. We use the gradient with respect to θ because we want to modify θ to minimize
L given the training data.

L(θ) =
n∑
i=1

L(y(xi, θ), yi)

∇L(θ) =
n∑
i=1

∇L(y(xi, θ), yi)

After all samples have been seen the parameters are updated according to accumu-
lated gradient of all samples. An alternative to this approach is Stochastic Gradient
descent, the most widely used optimization procedure for neural networks. Tradi-
tional gradient descent calculates ∇L over the entire training data and then updates
θ. Stochastic gradient descent approximates the gradient over the entire data using
the gradient over a single sample or a very small subset of the training data. The
update rule becomes

θt = θt−1 − γ∇L(y(xi, θt1), yi)

This approximation adds noise to the gradient because the loss functions for each
sample or minibatch differ slightly from each other. This noise necessitates that
we reduce the learning rate over time, because as the θ approaches a minimum the
gradient becomes smaller but the noise does not vanish. Reducing the rate over
time ensures that the algorithm can converge[GoBC16]. [WiMa03] argues that this
approach introduces some significant benefits. Stochastic Gradient descent tends
to converge faster especially as the size of training set grows. By design Gradient
Descent is unable to escape saddle points. There the gradient of L is zero and
therefore the parameters θ will not update in future iterations. Because of the noise
in the loss function SGD can eventually escape from such a point.

Backpropagation

Backpropagation is an algorithm to efficiently calculate the gradient ∇L(θ) of the
loss function with respect to the individual weights in θ of a neural network. For
each weight vector wki in layer i the partial derivative of the loss function with
respect to that weight needs to be computed. We recall that a multilayer neural
network can be expressed as the concatenation of the layer functions fi. Therefore
the chain rule can be invoked to get each of those derivatives.

δL

δwki
=
δL

δy

δy

δwik
δy

δwki
=

δfn
δyn−1

δfn−1
δyn−2

. . .
δfi+1

δyi

δfi
δwki

This can be thought of as the error signal flowing backwards through the network
starting from the output layer. The partial derivatives δfi

δyi−1
need only be calculated

once and can then be stored for reuse thus making this an efficient way of calculating
the derivative with respect to each weight.

2.1.3 Activation Functions

There is a wide variety of choices for the activation function ϕ at the output of each
neuron or layer. This section introduces some commonly used functions that are

2.1. Neural Networks 6

present in the models used in this work. Activation functions that are used in the
hidden layers share the property of being non-linear because a multilayer perceptron
with linear activations can be expressed as a single linear transformation and would
therefore lose its universal approximation capabilities. For gradient descent to work
they also have to be differentiable as the gradient cannot be computed otherwise.

Sigmoidal Activations

Sigmoidal activations are differentiable approximations of the sign function

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

It is necessary to use an approximation here because the derivative of sgn(x) is zero
wherever it is differentiable. This makes it inappropriate to be used with gradient
descent. However, the binary nature of the output is useful and intuitive[KaKw92].
Sigmoidal activation functions are smooth and differentiable during the transition
from negative to positive arguments.

Logistic Function

σ(x) =
1

1 + e−x

σ′(x) = σ(x)(1− σ(x))

Modeling the behavior of a step function, the
logistic sigmoid function was one of the earliest
activation functions used in neural networks
with backpropagation. A notable feature is
the easy to calculate derivative that can be
obtained with minimum extra effort.
However, it has fallen out of favor due to its
performance in neural networks with a large
number of layers. The cause for this is the
saturation for values outside of the transition
zone around zero, which makes training ineffi-
cient and hard[GlBe10]. It still has use if the
desired output range is (0, 1)

−4 −2 2 4

0.2

0.4

0.6

0.8

x

Figure 2.2: logistic activation and
derivative

2.1. Neural Networks 7

Tangens Hyberbolicus

tanh(x) =
ex − e−x

ex + e−x

tanh′(x) = 1− tanh2(x)

The tanh function is essentially the sign func-
tion with a differentiable transition from −1 to
1. [KaKw92] argues that the tanh function is
the best sigmoidal activation function for use
in multilayer neural networks with backprop-
agation.

−4 −2 2 4

−1

−0.5

0.5

1

x

Figure 2.3: tanh activation and
derivative

Rectified Linear Unit

ReLU(x) = max{0, x}

The Rectified Linear Unit is currently consid-
ered the best choice as an activation function
in the hidden layers of multilayer networks
[LeBH15].ReLUs improve results compared to
the above sigmoidal activations [MaHN13].
An additional benefit is that the ReLU and
its derivative are trivially easy to compute.

−2 −1 1 2

−1

1

2

x

Figure 2.4: rectified linear activation

2.1.3.1 Softmax

σ(z)j =
ezj∑K
k=1 e

zk

The softmax activation function is often used in the last layer of a network that
implements a classifier. In contrast to most other activation functions, each output
depends on all other outputs. The softmax scales the activations to be between
zero and one while preserving the relative order of each output. Another important
property is that all outputs sum up to be equal to one, that is the softmax activation
can be interpreted as a probability distribution.If softmax is used as an activation
in a layer that projects its input to a an output size that is equal to the number
of classes, then the softmax an be viewed as a probability distribution over those
classes[Brid90].

2.1.4 Recurrent Neural Networks

Recurrent Neural Networks deal with inputs that are sequential in nature. This
can be a sentence, a sequence of audio or data points taken at different times -

2.1. Neural Networks 8

x H y

ht−1

Figure 2.5: Simple RNN: hidden layers H get previous hidden output ht−1 as
additional input alongside x to produce output y.

any kind of sequential input where each timestep is dependent on its predecessors.
When processing a sequence, a multilayer perceptron would have to learn indepen-
dent representations for every step of the input sequence. It would not be able to
generalize across different positions in the input. Recurrent Networks share their
parameters across every step of a variable length sequence[[GoBC16] p.367]. That
is, at every time step the network uses the same learned weights to process the in-
put. This reduces the amount of parameters that need to be learned and allows the
network to recognize structures in the input, regardless of their position in the input
sequence. To process its input as a sequence where each time step depends on past
inputs there has to be a way for the current state to influence the future states. The
input at t has to be connected to the future inputs, starting at t+ 1. This relation
between current and future inputs is modeled as recurrent connections within the
network. These connections link the output of a hidden layer to future outputs by
feeding that output back to its input with a 1-time-step delay.

Consider a simple RNN with a single hidden layer, where the output of the network
is used as the input of the next step. Let the input to that RNN be a sequence
of single inputs x(t) = x(1), x(2), ..., x(T). The hidden state h(t) (in this case also the
output) at time step t is

h(t) = ϕ(Whh
(t−1) +Wix

(t) + b)

where Wh and Wi are weight matrices of the recurrent connection and hidden layer
respectively. This can be generalized to arbitrarily deep RNNs by stacking multiple
hidden layers on top of each other. In such a scenario the network works similar to
a deep multilayer perceptron with the addition that each layer also gets it previous
state as input.
By learning Wh during training, the network learns how to treat its past states and
how they should influence the current output. While in theory h(T) depends on
all x(t), t ≤ T it has been shown that the short term dependencies dominate the
long term and that learning these long term dependencies is computationally very
expensive. This is due to the problem of “vanishing gradient”, where due to the
t-fold composition of the network’s function the gradient becomes very small (or
arbitrarily big). If it explodes the training diverges and if it vanishes the updates
regarding the long term dependencies are very minor and overshadowed by the short
term signals[Hoch98].

2.1.5 Long Short Term Memory

Long Short Term Memories, first introduced in [HoSc97a], are a specialized form
of Recurrent Neural Network that are designed to deal with the vanishing gradi-
ent problem. In place of the simple recurrent connection, LSTMs introduce a more

2.1. Neural Networks 9

complex structure to persist information across time steps.
The core idea is to store and manage the recurrent state of the network within a
memory block. In this block the cell state vector ct stores the state of the LSTM
at time step t. The only true recurrent connection of the LSTM is a self loop on
that cell vector. The activation function along this connection is the identity func-
tion id(x) = x with δ

δx
id(x) = 1. This avoids the exploding and vanishing gradient

problems according to [HoSc97a].
At each time step the cell state is updated with the input to the memory block and
the previous cell state. The output ht of the LSTM is based on the application of an
activation function ϕ to ct. [HoSc97a] shows that while a simple identity self con-
nection may solve the vanishing gradient problem, it lacks representational power.
To mitigate this they introduce additional units to control the flow of information
within the memory block. These gating units output a value between 0 and 1 which
is then multiplied with a signal, allowing for selective suppression of information
flow. Each of those gates are implemented as a neural network with a logistic func-
tion as activation. Their activation depends on the current input of the block xt and
its last output ht−1. [GeSS02] also connects the last cell state ct−1 to these gates,
which improves performance.
There are three gating units in a LSTM memory block: The input gate it on the
connection from the input to the cell state controls how much of the current in-
put is considered, the forget gate ft determines how much the previous cell state
influences the next and the output gate ot on the output signal of the block. For
the LSTM models in this work the input and forget gates are coupled to always be
complementary to each other. Formally defined the gating units are:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi)

ot = σ(Woxxt +Wohht−1 +Wocct−1 + bo)

ft = 1− it

With these the output hidden state ht and cell state ct are defined as

ct = ft � ct−1 + it � ϕ(Wcxxt +Wchht−1 + bc)

ht = ot � ϕ(ct)

2.1. Neural Networks 10

ct

Cell

× ht×

×

ft 1− it

itInput Gate otOutput Gate

xt, ht−1

xt, ht−1 xt, ht−1

Figure 2.6: LSTM computation graph as defined above. Input- and Output-Gate
control the information flow within the memory block. The Forget-Gate is coupled
to the input gate.

Wlm are weight matrices that connect different parts of the LSTM.
An extension of the LSTM architecture are Bidirectional LSTMs. These consist of
two LSTM networks where, as the name suggests, one processes the input sequence
in order while the other network processes the input in reverse. The combined output
of these models allows the model to consider past and future context [ScPa97].

2.1.6 Stack LSTM

Stack LSTM are a variation on LSTMs that is designed to provide a representation
of a stack data structure. To do so, it has to break away from the strict sequentiality
of inputs assumed by traditional LSTM and allow an input order that resembles the
pushing and popping of elements to and from a stack. As the stack operation pop()

removes the most recently added element, the Stack LSTM has to reflect this by
removing that element’s influence on future inputs and the current state. The main
augmentation of the Stack LSTM compared to tradional LSTM that allows it to do
this is the addition of a stack pointer pTOP = (cTOP, hTOP)[BDGS17]. This pointer
stores a reference to the top of the stack LSTM: the hidden state and cell to be used
as ht−1 and ct−1 at the next input.
When an element is pushed onto the stack, one time step is made in the LSTM using
that element as input and the elements from the stack pointer as the previous state.
After this operation the stack pointer is updated to point to the now most recent
hidden state. To pop() an element from the stack the LSTM has to forget about its
current top element. This is done by resetting the stack pointer to its predecessor.
That way the popped element is not taken into consideration in the next push
operation. Additionally the stack pointer provides easy access to a representation

2.2. Sequence to Sequence Models 11

of the entire stack content.

Figure 2.7: Shows how pop and push change the information flow in a stack LSTM
to be nonsequential. Notice how y2 is not influenced by y1 because it was popped
from the stack. Figure from [DBLM+15a]

2.2 Sequence to Sequence Models

Sequence to Sequence (Seq2Seq) models map an input sequence to an output se-
quence: their training goal is to maximize the probability p(y1 . . . yT ′|x1 . . . xt)t) of
an output sequence given the input. While any Recurrent Neural Network does
this due to the nature of their design, their usability is limited in cases where the
sequences have different lengths or where there are complex dependencies between
input and output that are non-monotonic. Sequence2Sequence models work by split-
ting the task into encoding and decoding. First the input sequence is encoded and
a fixed size representation of the input is created. This encoding is used as the
intial state of the decoder. Starting from this state, the decoder emits the output
sequence. At each time step the previous emission is fed back into the decoder as the
input for that step. Encoder and Decoder are usually implemented as LSTMs that
either process the input sequence in the encoder or take the previous predictions as
input sequence in the decoder[SuVL14a].

Attention

While traditional sequence to sequence is in theory capable of producing the output
sequence just from the encoding vector alone, the model can be improved by allowing
the decoder to look at the input while decoding. When attention is added to the
model the next prediction depends on both the previous state and the attended input
encoding. The latter is obtained by calculating a weighted sum over all encoder
states, where the weights represent some measure of importance of the respective
state for the next prediction. These weights are usually calculated as a learned
function of encoder state, last decoder state and sometimes the previous attention
vector [CBSC+15].

3. Related Work

3.1 Dependency Parsing

Dependency Parsing of text is a well examined problem for which multiple ways
of approaching exist. The two shown here illustrate the wide ranges of angles of
approach that can be chosen to solve this problem.

3.1.1 Non-projective Dependency Parsing using Spanning
Tree Algorithms

[MPRH05] operates directly and explicitly on the structure we seek to find by inter-
preting dependency parsing as a graph problem. This is done by representing the
sentence as a directed graph. Each word has an edge to each other word and a spe-
cial root node is connected to all words. Each edge represents a possible dependency
relation between the word nodes it connects and is assigned a weight based on some
learned score of this relation. Finding the most likely parse tree is now equivalent
to finding a spanning tree of maximum weight within the graph.
In contrast to transition based dependency parsing, non-projective trees (parse trees
with crossing edges) can be handled without any further measures.

3.1.2 Transition Based Dependency Parsing using Stack LSTM

[DBLM+15a], which serves as the foundation for the models presented in this work,
is an implementation of a transition based parsing scheme. The sentence is pro-
cessed by manipulating its words on a stack and an input buffer. The dependency
relations are asserted one by one while the parser consumes the words from the
stack. At the end of the parsing process the parse tree is constructed by combining
the found relations. There is a set of valid transition from one parse state to another
that either combine elements from the stack or add move a word from the buffer to
the stack. Parsing comes down to making the optimal transition given the parser
state. Here a neural network makes that decision based on a state that is tracked
by representing stack and buffer as stack LSTMs. An advantage of the transition
based approach is the linear run time that results from every action consuming a

3.2. Joint Modeling of Text and Acoustic-Prosodic Cues for Neural Parsing 13

word from either buffer or stack and therefore limiting the amount of transitions
that can be made. Breaking dependency parsing down to a classification problem
or one of emitting a target label sequence makes this also nicely suited to be solved
with a fully neural network based approach. This implementation will be examined
in detail in the next chapter 4.4

3.2 Joint Modeling of Text and Acoustic-Prosodic

Cues for Neural Parsing

[TTBG+17] is an encoder-decoder based parser that incorporated audio features into
parsing. The encoder combines word embeddings generated from text with acoustic
features that are extracted directly from audio using neural networks. The key dif-
ference between this model and the models presented in this work, is that here audio
features are used alongside text to augment parsing performance on transcribed au-
dio, whereas our goal is to create a system that forgoes any explicit representation
of the input as text and only operates on the audio.
Introducing audio into the parser has been shown to improve performance, how-
ever using audio as the sole input to the parsing system is a novel and unexplored
approach.

3.3 Towards End-to-End Spoken Language Un-

derstanding

[SWFK+18] describes the attempt to create a system for domain and intent classi-
fication of speech, that does not explicitly use a text representation. Traditionally
in that kind of task the speech is first transcribed by an automatic speech recogni-
tion framework. That textual representation is then given to the next layer of that
system and the problem is solved based on the text. In [SWFK+18] an encoding is
directly produced from audio features. A bidirectional LSTM with multiple layers
compute an encoding of audio features that are passed frame by frame. That out-
put is then used by a hidden layer with softmax output to produce a classification
result for the task at hand. They show that this works but lacks behind traditional
systems in performance. This approach and problem bears similarity to this work.
Both try to solve a problem where traditionally an intermediate representation of
speech as text is required, without explicitly modeling such a representation.

4. Dependency Parsing

I prefer the morning flight through Denver

root

nsubj

dobj

det

nmod

nmod

case

Figure 4.1: Dependency parse for “I prefer the morning flight through Denver.”

In a dependency parse, the syntactic structure of a sentence is described only by
means of the binary relations between its words. They provide a simple structure
that is easier to learn and represent as other parse formalisms but still contains most
of the necessary information[MPRH05].

4.1 Formalism
A dependency parse T of a sentence W = 〈w1, . . . , wn〉 is a directed acyclic graph
P = (V,E) with the words of the sentence V = {w|w ∈ W} as vertex set and
its dependency relations DepRel(W) captured within the edge set. In a typed
dependency structure the arcs of this graph are additionally labeled with the type
of relation they represent. The labels are drawn from a fixed set of grammatical
relations L , where l(u→ v) ∈ L is the label of the relation from u to v.

P = {(u, v, l(u→ v)) ∈ V × V ×L | (u, v) ∈ DepRel(W)}

The resulting graph is a tree usually rooted in the verb of the sentence.
4.1 illustrates how the tree structure reflects the binary nature of the grammatical
relations. Following the notation from above, (“prefer”→ “I”,nsubj) ∈ DepRel(W)
would hold for this example.

4.2 Stanford Dependencies
The dependency relations used in this work are the Stanford Dependencies put
forth by [DMMa08]. One of the main design goals is to provide a intuitive and

4.3. Transition Based Dependency Parsing 15

easy to understand framework of dependency relations that still capture every-
thing as binary relations. In an effort to keep it easier to understand relation types
are modeled after traditional notions from grammar (such as subject, object etc.).

Relation Description Example: head → dependent
nsubj nominal subject I went home.
dobj direct object She gave me a raise.
amod adjectival modifier These are harsh words.
conj conjunct Bill is big and honest.
neg negation I might not attend.

Figure 4.2: Some examples of dependency relations described in [DMMa08]

4.2 shows some examples of relations from the Stanford Dependencies.
In addition to the basic dependencies where each word of the sentence is represented
by a node in the parse tree, there are collapsed dependencies where words that rep-
resent a relation (such as prepositions) are omitted from the node set and instead
used as a specifier on the binary relation itself.

based in LA

prep pobj

Basic Dependency

based in LA

prep in

Collapsed Dependency

Figure 4.3: Preposition “in” is removed from the parse tree and instead becomes
part of the relation label.

In this work the basic Stanford Dependencies are used because they are better suited
to a parsing architecture that only operates on two words at a time.

4.3 Transition Based Dependency Parsing

The parsing architectures used throughout this work all implement a transition
based parsing scheme which is loosely based on the shift-reduce parsing approach
used by [AhUl72]. Such a transition based parser consists of an input buffer and
a stack. During parsing, elements from the buffer are placed on the stack and
manipulated there. A parser configuration consists of the stack, the buffer and the
set of dependency relations discovered for that sentence.
Such a configuration is a triple (S,B,A) from the space of valid configurations C ,
where

• S = 〈s1, . . . , sk〉 is the stack where words are processed

• B = 〈b1, . . . , bn〉 is the input buffer where the unprocessed words reside

• A ∈ {(u→ v, l)|u, v ∈ W, l ∈ L } is the set of relations discovered so far

Parsing can therefore be understood as finding a sequence of valid configuration
transitions from a starting configuration to a terminal configuration. In the initial
configuration C0 the buffer contains the entire sentence and the stack only holds

4.3. Transition Based Dependency Parsing 16

the special ROOT symbol that marks the root of the dependency tree. The set of
discovered relations is empty.

C0 = (〈ROOT〉, 〈w1, . . . , wn〉, ∅)
A terminal configuration CT is any configuration where stack and buffer are empty.
The set of relations A now contains all dependency relations for the sentence.

CT = (〈〉, 〈〉, DepRel(W))

The following transition operators are used by the approaches in this work to tran-
sition form one valid state to another. This operator system is known as the arc-
standard transition system (with a swap operation)[Nivr09].

leftArcl asserts the relation s1 → s2 with label l

(〈σ|s2, s1〉, B,A) (〈σ|s1〉, B, {(s1 → s2, l)} ∪ A), if s2 6= ROOT

rightArcl asserts the relation s2 → s1 with label l

(〈σ|s2, s1〉, B,A) (〈σ|s2〉, B, {(s2 → s1, l)} ∪ A)

shift moves b1 to the top of the stack

(〈σ〉, 〈β|b1〉, A) (〈σ|b1〉, 〈β〉, A)

swap swaps the order of s1 and s2

(〈σ|s2, s1〉, 〈β〉, A) (〈σ|s1〉, 〈β|s2〉, A), if ord(s2) < ord(s1)

where ord(w) is the position of w in the original sentence and σ, β describe the rest
of the stack and buffer.

Based on the current configuration, an oracle makes the decision which transition
to apply next. In an actual implementation of such a parser the oracle has to be
approximated by some mechanism that makes the decision. For example, [BDGS17]
train a neural network with the help of a predefined static oracle to predict the next
action.
Such a reference oracle can be calculated using the following method if a reference
parse tree is available for a given sentence (ie. obtainable from a treebank like
[MaMS93])[Jura]:
Given configuration ct = (S,B,A) and reference parse tree Ar = DepRel(W), the
next action at is:

leftArcl if (s1 → s2, l) ∈ Ar
rightArcl if (s2 → s1, l) ∈ Ar

∧ ∀w ∈ W, l ∈ L : (s1 → w, l) ∈ Rp =⇒ (s1 → w, l) ∈ A
shift else

In other words, perform leftArcl whenever it asserts a correct relation. Only
perform rightArcl whenever it asserts a correct relation and all dependents of s1
have already been assigned to it. If none of these conditions hold, shift the next
word from the buffer unto the stack.

With this procedure training data in the form of example transition sequences can
be generated from a treebank of existing parse trees.

4.4. Implementation using Stack LSTMs 17

4.4 Implementation using Stack LSTMs

[BDGS17] ties together the above concepts to introduce a parsing architecture that
produces competitive results. The resulting parser is an implementation of a tran-
sition based dependency parser. It utilizes a neural network to approximate the
transition oracl that is trained to predict the next action given the current parser
state. That state is computed using Stack LSTMs that offer continuous embeddings
of the state of parser’s core components. The input sentence is embedded using
either learned word embeddings or a LSTM that processes each word character by
character. Because this architecture serves as the basis for the explorations of this
work we will discuss its components, the parser and the word embeddings, in detail.

4.4.1 Parser

The parser comprises of the Stack S, the Buffer B and a list of actions taken so far
A. B and S are the stack and buffer in the sense of a parser configuration as defined
above. The list of actions is very similar to the set of discovered relations as the latter
can be derived from looking at the leftArc and rightArc transitions in A. All
of these components are implemented as Stack LSTMs to provide a representation
of the parser state as well as actual stacks to manipulate the data. Fundamental to
the architecture is a classifier that predicts the next appropriate action based on the
current parser state. This parser state is obtained by combining the different state
representations from the three Stack LSTMs through their top-pointer. The three
state embeddings are then concatenated and fed through a Multilayer Perceptron
with a ReLU activation to form an embedding of the entire parser state. This
embedding contains information on all words currently on the stack and in the
buffer, as well as the sequence of all actions taken so far. This state representation
is

pt = max{0,W ∗ [st; bt; at]}
where st, at, bt are the top pointer of the stack LSTMs at time t.

Transition Prediction

A Multilayer Perceptron with a softmax activation is used to predict the most likely
action out of all currently valid action label combinations, given the current parser
state. This is possible because the set of actions is finite as the set of labels is finite.
The size of the softmax layer is then 2|L | + 2 to account for shift, swap and
each rightArc or leftArc combined with each label. Finding the next action is
interpreted as a k-class classification problem . The probability for parser action a
at time t is:

p(at|pt) =
eg

T
z +qqzi∑

A (S,B) e
gTz +qz

where A (S,B) is the set of valid transitions given the state of buffer and stack. pt
depends on all previous states and the actions taken so far, so the probability of a
sequence of actions ~a given an input sentence w is then dependent on the probability
of each action at each time step[BDGS17].

p(~a|w) =

|~a|∏
t=1

p(at|pt)

4.4. Implementation using Stack LSTMs 18

The chosen action is executed by manipulating stack and buffer as described in 4.3.
Additionally a learned embedding of the action is pushed onto the action history.
The Stack LSTMs are updated alongside their non-neural counterparts to reflect
the changes made to the parser state by action. This process is repeated until a
terminal configuration is reached. Then the parse tree can be extracted from the
action history.

Parse Tree Representation

During the parse process, the parse tree is built edge by edge. Every word on the
stack or in the buffer represents a subtree of the complete parse tree that is rooted
in that word. Words correspond to a tree with just a single node. A leftArc or
rightArc transition attaches the dependent d to the head h. d is removed from
the stack but h now represents a subtree where d is one of its children. When h
is attached in a future transition its head will represent a subtree that includes the
one h was heading. The complete parse tree is built by iteratively attaching words
to each other and thereby growing the subtrees they represent.

w2 w1 w1

w2
w1

w2

w4

w3

Figure 4.4: During each Arc transition the words on the stack are combined to form
a tree that is a subtree of the total parse tree.

This means that as the parsing process proceeds, each element on the stack starts
to represent more and more words and relations.[BDGS17] shows that it is bene-
ficial to reflect this fact in the way the words are managed on the Stack LSTM.
Instead of simply keeping the representation of the head, the parser calculates a
new combined embedding of head, dependent and asserted relation. The resulting
embedding contains information about the whole parse tree fragment it represents.
This embedding then replaces the original embedding of the head on the stack. The
composition embedding c of head h,dependent d and relation embedding r is

c = tanh(W ∗ [h; d; r] + b)

W is a weight matrix of appropriate dimension to project the embedding back into
the same space as the original embedding of h.

4.4.2 Embedding

The stack LSTMs in the parser rely on meaningful word embeddings as a foundation
for their ability to encode the parser state. These embeddings are computed before
the parsing process starts and then fed to the Buffer Stack LSTM during set up for
the initial configuration. Additionally they are kept as individual embeddings to
be pushed onto the stack and then combined into tree representations as the parse
process goes on. [BDGS17] discusses two different approaches to compute these
embeddings.

4.4. Implementation using Stack LSTMs 19

Word Based

In the original implementation from [DBLM+15a] the embeddings are created at the
word level. For each word from a fixed vocabulary an encoding is learned. Words
from outside that vocabulary are encoded using a special Out-Of-Vocabulary en-
coding. The embeddings are combined from three different parts. The first part
is a pretrained, preexisting embedding like the gloVe embeddings [PeSM14]. These
are not optimized as part of the model training but they are already a meaningful
representation of the word.
The second part is a learned embedding that is refined during training. For each
word it is initialized randomly and then trained as part of parameters of the model.
The pretrained word embeddings also provide a fall back embedding when the parser
encounters a word it has not come across during training as these embeddings usu-
ally contain more words than the parse trees from the training set. Additionally the
embedding is augmented with a POS Tag for the word if available.
The word embedding is a component wise rectifier, applied to an affine transforma-
tion of the concatenated word embeddings w̃ and w and the POS tag t.

x = max{0, V ∗ [w̃;w; t] + b}

Character Based

In [BaDS15] the words are each processed letter by letter by a bidirectional LSTM.
For each word, its embedding is the final hidden state of that LSTM after it has
processed the sequence of characters for that word. The results of the forward and
backward direction and optionally a POS tag are then combined. The embedding is
again a rectifier applied to an affine transformation of the LSTM hidden states −→w
and ←−w and POS tag t.

x = max{0, V ∗ [
→
w;
←
w; t] + b}

This approach has the upside that there are no words for which there is no embed-
ding.A word that has not been seen during training can still be processed by the
LSTM. The resulting embedding will be similar to that of a similar known word.
The results from [BDGS17] show that this approach is especially preferable if there
are no POS tags available. This is because a lot of the information that is in the
POS tags is also deductible from the word ending. In the experiments in this work
we assume that we do not have POS tags as input data.

4.4.3 Training

The final goal of the training is for the parser to be able to create accurate parse
trees. The metrics for this accuracy are defined in the Data 6.1 section. However,
these metrics are hard to express as a loss function to train the network on. Instead
the model is optimized to make the correct transition at every step in the parsing
process.
The core assumption behind this training objective is that optimizing the individual
transitions will also optimize the resulting parse tree[BDGS17].
Given a configuration of stack, buffer and action history the parser has to determine
which transition is the next in a sequence of transistions that lead to a good parse

4.4. Implementation using Stack LSTMs 20

tree. The parser is trained to maximize the probability of the correct parse action
given the current state. This is done by using a Cross Entropy loss over the output
of the softmax layer in the oracle. The training labels are a sequence of reference
actions. These are generated from an existing parse tree using the algorithm de-
scribed in 4.3.
To keep the model consistent with the reference sequence, the model always applies
the reference action irrespective of the most likely prediction.

4.4.4 Interpretation as a Sequence to Sequence Model

This parser can also be looked at as a variation of a sequence to sequence model. It
takes an input sequence of words, encodes them and then outputs a target sequence
of parse actions. The encoder is the word embedding that processes the input words
and puts them into the buffer. The initial state of the decoder is the state of
the buffer LSTM after it has received all inputs. This corresponds to the initial
configuration of the parser state. Starting from the initial configuration the parser
outputs a sequence of parse actions. After each emission, it updates its internal state
according to the action taken - similar to a decoder in a sequence to sequence model.
The decoder additionally gets a new word embedding as an input whenever a SHIFT
operation puts a new word onto the stack. This context dependent referencing of
a specific part of the input encoding is functionally similar to what attention does
in sequence to sequence models. One key difference however, is the requirement
for distinct encodings of each individual words. This is different from encoding the
entire input into the initial decoder state.

5. Design

Our goal is to create a parsing architecture that can extract parse trees directly
from audio. Thus asserting semantic and syntactic relations between segments in
the input audio in the form of a parse tree. The distinguishing characteristic is that
these relations are available before any transcription or word recognition occurs.
The trees are asserted on the audio and their nodes do not contain decoded words
but rather segments of audio. Therefore these trees can be used on a lower level
in the speech recognition process. Another example that shows promising results
on another language understanding task is [SWFK+18]. The following approaches
explore if something like that is also feasible here.

5.1 Parse Input Encoder

In 4.4.4 we observed that the model can be thought of as an encoder-decoder archi-
tecture. [DBLM+15a] and [BaDS15] show that this decoder can work with different
kind of encoders, given that they provide a meaningful representation of the encoded
word. Instead of reworking the entier architectuer, it seems reasonable to keep the
elaborate, proven to work design of the decoder and only modify the encoder in a
way that enables it to encode audio such that it suits the decoder.
Following this line of thought we replace the character based word embeddings from
[BDGS17] with an audio encoder. The parser architecture remains unmodified and
will be trained to decode the embeddings provided by the audio encoder.
Bidirectional LSTMs have proven to be good models for encoding audio in speech
recognition. Both [GrJM13] and [MiGM15] use bidirectional LSTM to encode the
incoming audio features. [SWFK+18] also uses a multi layer bidirectional LSTM to
do the audio encoding before extracting higher level understanding from it. This
motivates the use of a similar model for our parser architecture. We put a bidirec-
tional LSTM in place of the character encoder. Because we implement a transition
based parsing scheme, the encoder needs to produce a distinct embedding for each
word to be placed on the Stack and Buffer during at encode time, that is, without
any information about the parsing process. These embeddings are then combined
into the initial buffer and also added to the stack whenever a shift or swap oper-
ation is executed during decoding.

5.1. Parse Input Encoder 22

It is also crucial that during training the number of word embeddings produced
is equal to the actual number of words in the training sample. This consistency
is necessary as the target transition sequence we obtain from the treebank is only
guaranteed to produce valid configurations if the initial configuration contains the
right amount of words in the buffer.

For each word, the encoder LSTM processes the segment of audio that is associated
with it. In theory this segment contains enough information to extract a meaningful
embedding of the corresponding word. The segments for each word are provided
externally by giving the model information about the word boundaries in the audio
as an additional input.

5.1.1 Independent Embeddings

The first approach to the encoder is designed in analogy to the character LSTM
from [BaDS15] by treating the audio frames of a word like the characters that make
it up. The audio is segmented according to the provided word alignments and each
segment is processed individually to form the embedding of the corresponding word.
This is done by passing the audio frames in that segment through the bidirectional
LSTM and using its last hidden state as an encoding of that word (Figure 5.1.1).
Let ek be the embedding of the k-th word, x = 〈x1, . . . , xT 〉 the input sequence of
audio features and 〈hk〉 = g(〈xk〉) the application of the encoder LSTM to some
subsequence of the input. Let tstartk and tendk be the time steps where word wk starts
and ends according to the word alignments. sk = 〈xtstartk

, . . . , xtend
k
〉 is then the se-

quence of audio features associated with that word. Then the encoding process can
be illustrated as follows:

w1 w3w2

s1 s2 s3

x0 xT

LSTM LSTMLSTM

e1 = hs1 e2 = hs2 e3 = hs3

tstart1 tend1 tend2 = tstart3tstart2 tend1

x

ek = h|sk| = g(sk)|sk|

Figure 5.1: Embeddings with individual LSTM passes for each word producing an
independent embedding for each word

5.1.2 Continuous Embeddings

A potential downside to the previous approach in spontaneous speech is that the
model cannot take into account dependencies between the words at embedding level.
To improve upon this, this approach modifies the way in which the audio segments

5.2. End to End Training 23

are processed. Instead of treating each word segment as an independent input se-
quence, we concatenate all segments defined by the word alignments. The resulting
sequence of audio frames is passed through the encoder LSTM in a single pass. Each
word will be embedded by picking the hidden state of this LSTM at the last time
step of its corresponding word segment (Figure 5.2). This allows the model con-
sider dependencies between the words during encoding time by viewing each word
in its context. Following the notation from above this encoding approach can be
illustrated like this:

w1 w3w2

s1 s2 s3

x0 xT

LSTM

tstart1 tend1 tend2 = tstart3tstart2 tend1

x

ek = h
|sk|
sk

〈h1s1 , . . .h
|s1|
s1 = e1, h

1
s2
, . . . ,h

|s2|
s2 = e2, h

1
s3
, . . . ,h

|s3|
s3 = e3〉

〈h1s1 , . . . , h
|s1|
s1 , h

1
s2
, . . . , h

|sn|
sn 〉 = g(〈s1 . . . sn〉)

Figure 5.2: Embeddings with word segments concatenated into continuous sequence
of audio and one LSTM pass per sentence producing context dependent audio en-
codings.

5.2 End to End Training

Because of the similarity in design between the presented encoders and those from
[BDGS17] out model is compatible with the way that parser was trained. This
end-to-end training is the most straightforward approach. The model is constructed
by combining the discussed encoders with parse decoder from [BDGS17] and then
trained to optimize the classification of the next action. Ideally the model learns to
extract an encoding for each word from the audio while simultaneously also learning
to make the transition decisions based on its state.

5.3 Transfer from Text Model

While training the model end to end promises a good solution, it also combines two
hard problems: transforming the audio into an embedding and then parsing from
this embedding. Encoding the audio is a lot harder than getting the embedding for
a sequence of characters because of not only the much greater feature space but also
the differences in pronunciation between each instance of a word. Therefore this
joined optimization task might prove too complex.
Because of the large number of operations that take place in the decoder after the
encoding is computed, the error signal from the parse decision has to be propagated

5.4. Using Encoder from a Sequence to Sequence Model 24

far back which might also cause issues with training.
In this approach we first find an independent solution for each of those problems
and then combine them in a second step. This is motivated in particular by that
fact that we already have a solution for one half of the problem. On text encodings
the parser performs very well. If we split the problem into encoding and decoding
we can reuse this existing solution for decoding. Instead of training the entire model
end to end, we first train an audio encoder to produce encodings that match the
embedding of the same word produced by a trained text encoder. Because the text
model performs well, its encoder produces embeddings that are well suited to be
used with the parse decoder. Replicating these embeddings gives us a good starting
point for how the audio features should be represented. Once this stage of training
converges, the trained encoder is combined with the original text parser and then
trained end to end as described above.
This approach reduces the complexity of the problem and allows us to reuse the
representations that the text model learned.
It also opens the model up to a greater amount of training data because the embed-
ding target step can be done on data for which there are no parse trees available
(for example the parts of Switchboard that are not in the Penn Tree Bank)

Text
Encoder

Text
Parser

〈etextk 〉

〈at〉

〈etextk 〉

MSE(〈etextk 〉, 〈eaudiok 〉

Audio
Encoder

Text
Encoder

〈eaudiok 〉

〈w1 . . . wn〉 〈w1 . . . wn〉 〈s1 . . . sn〉

Audio
Encoder

Text
Parser

〈eaudiok 〉 ≈ 〈etextk 〉

〈at〉

〈w1 . . . wn〉

I II III

Figure 5.3: Training procedure for transferring text embeddings. First a text model
is trained, then embeddings are transferred to an audio encoder and then that en-
coder is fine tuned in an end to end setting.

5.4 Using Encoder from a Sequence to Sequence

Model

All of the approaches mentioned so far rely on explicitly defined, externally provided
word alignments. Even when these are obtained through an automated process like
generating forced alignments with an HMM audio model, such alignments are still
external to the model.
Ideally we would like to avoid this limitation entirely and have a model that can
suffice without external alignments or at least generate them within itself in an end
to end fashion. Once again we draw on the similarities to sequence to sequence
models. An attention based decoder in a seq2seq model produces its next output

5.4. Using Encoder from a Sequence to Sequence Model 25

based on its previous state but also on the attended input encoding. Qualitative
analysis of the attention suggests that the attention vector tends to be highly fo-
cused around only a few time steps of the encoder and close to zero everywhere else.
The focused frames align with where the corresponding word is in the audio. If this
assumption holds, then the attended encoder state might contain some information
about wt. Such a model could even be trained with a multi-task training to use the
same encoder, similar to the combination of CTC and Seq2Seq in [KiHW16]. As a
first step to investigate the viability of this we use the attended encoder states of a
trained seq2seq model as word embeddings and train the parse decoder to operate
on these. Further advances in that direction might yield more promising results but
are out of the scope of this work.

6. Experiments

6.1 Data

6.1.1 Penn Tree Bank

To train the aforementioned parsing model we need training data that is anno-
tated with parse trees. The trees used in this work come from the Penn Tree Bank
[MaMS93]. Because the Penn Tree Bank contains parse trees that follow a con-
stituency parsing scheme, the dependency relations have to be extracted from those
using [DMMMo06]. [DMMa08] notes that this process is not infallible the parse trees
used as the training set might contain errors that were introduced by the conversion
tool. [BDGS17] trained and evaluated their model on the WSJ part of this corpus
which consists of a collection of articles from the Wall Street Journal. These are well
written, grammatically sound sentences that contain complex syntactic structures.
However, as we are interested in operating on speech WSJ is not applicable to the
problem at hand because we need training data that contains both parse trees and
the corresponding audio.

Switchboard

The switchboard corpus [GoHM92] consists of about 2,400 telephone conversations
between two people each. The Penn Tree Bank includes a subset of the transcripts
which was annotated with parse trees. This subset is used throughout this work.
All samples from this corpus are conversational, spontaneous speech. Participants
are given a topic and are told to discuss it. Because of the unprepared nature of
these conversations they include many filler words like “well”, “uhm” or “like”. An-
other common feature are sentences where the speaker is interrupted or corrects
themselves. Some of the sentences are grammatically incorrect. The parse trees
have corresponding annotations for those instances and most of these annotations
can be mapped to dependency relations from the Stanford Dependencies which are
then treated as any other dependency relation. However, manual inspection shows
that not all of these annotation carry over well when run through the converter from
[DMMMo06].

6.1. Data 27

Because of the nature of conversational speech the Switchboard corpus contains
many very short sentences. Most of the sentences with less than three words

6.1.2 Accuracy Metric

The accuracy of the generated parse trees compared to the reference is measured as
attachment score. The Labeled Attachment Score (LAS) is the ratio of correctly pre-
dicted relations to the number of total relations in a parse tree. Whereas Unlabeled
Attachment Score cares only about the correct words being in a relation, irrespective
of the label.
Following the notation from above, let A,R ∈ {(u→ v, l) |u, v ∈ W, l ∈ L } be the
sets of dependency relations found by the parser and the reference relations obtained
from a tree bank respectively. The attachment scores are then defined as

LAS =
|A ∩R|
|R|

UAS =
|A ∩ {(u→ v, l) | ∃l ∈ L : (u→ v, l) ∈ R}|

|R|

6.1.3 Data Preparation

Word Alignments

As argued above, the parser requires an individual embedding for each word and
therefore their location in the audio. We use externally created word alignments
provided by [Pico]. Contractions like “it’s”, “that’s” or “don’t” cause issues because
in the word alignments and transcriptions these are treated as one unit. However, in
the dependency parse they are two distinct units, usually with a dependency relation
between them. In the case of text input it is easy to simply split those words at the
apostrophe. With the alignments on the other hand, it is hard to tell exactly which
part of an alignment belongs to the base word and which to the contracted second
word.
To work around this both are assigned the same frame window.

Resegmentation

Switchboard and the Penn Tree Bank are not immediately compatible for our task.
They based on different versions of transcriptions of the original telephone con-
versations and are segmented differently. The mismatch in transcription is largely
mitigated by the word alignments [Pico] which already clean up most of the differ-
ences.
Switchboard is segmented into utterances which comprise of an uninterrupted seg-
ment of speech, whereas data in the Penn Tree Bank is split at sentence boundaries
for the parse trees to work. Utterances may cover exactly one, less than one or
multiple sentences fully or partially, therefore there is no general assumption pos-
sible that would allow a naive mapping from one to another. For the experiments
we resegment switchboard into utterances that exactly correspond to one sentence
in the Penn Tree Bank each. This is done by matching the parse trees with the
SWBD transcript and then using the word alignments to find the interval of audio

6.2. Results on Text 28

that corresponds to the words in the parse tree and then resegmenting accordingly
at the word level.
Using this process 98.4% of the parse trees could be matched with the transcript. For
the remaining sentences there were either discrepancies between the transcriptions or
the alignments were ambiguous, where the latter only occurred twice. Additionally
sentences with a length of less than three are discarded from the data because they
usually only contain a one word answer or a filler word or both (e.g. “Well, okay.”,
“Yes.”). Their parse trees do not contain much information and their inclusion would
artificially increase the UAS because random guessing yields 50% on such a sentence.

6.2 Results on Text

To get an initial understanding of the parser and its performance on the data, we
reproduced the results from [BDGS17] and also experimented with the parser on
the Switchboard corpus. 6.1 shows the results of the model on Switchboard and
Wallstreet Journal. Because of the difference in the size between the two datasets
we also train a model on a subset of wall street journal that has roughly the same
size as Switchboard. Additionally we train a model on a combined dataset that
has all of Switchboard and all of the Wall Street Journal training data. We omit
punctuation in all experiments.
Switchboard always refers to the Switchboard subset found in the Penn Tree Bank.
We split it into training, development and validation set with parts 2,3 being the
training set and 4 split evenly between development and validation. For WSJ we
use the standard split used in [BDGS17]: Train 02-21, Dev 22 and Valid 23.

Data SWBD SWBD + WSJ WSJ WSJ subset
UAS LAS UAS LAS UAS LAS UAS LAS

Train 92.1 - 90.7 - 94.3 - 95.7 -
WSJ dev 69.5 61.9 85.4 82.3 90.3 87.8 88.60 -
WSJ valid 71.0 64.2 85.6 82.4 91.8 89.40 89.08 85.93
SWBD dev 87.1 83.5 85.2 83.1 73.2 64.7 70.1 61.8
SWBD valid 86.5 83.0 84.9 83.0 73.0 64.8 70.1 61.9

Figure 6.1: Results for the parser from [BDGS17] when trained on WSJ, SWBD,
both or a subset of WSJ. Training scores taken from a subset of the training data
of the same size as the development set.

These results illustrate the domain differences between the two datasets as neither
model performs well on the opposite dataset. It is also of note that even though we
expect Switchboard to be harder to parse, the difference in accuracy seems to be
due to the amount of training data. The results on the Wall Street Journal subset
are not significantly better than those on Switchboard. This might be because even
though Switchboard has grammatical errors and incomplete sentences the structure
of those sentences is not nearly as complex as those in WSJ.

6.2. Results on Text 29

6.2.1 Dataset Comparison

I
the
and
that
you

it
a

to
’s

uh

32,019
20,391

18,501
17,199
17,032
16,712

15,636
15,333
14,849

12,019

Word frequency in SWBD

the
of
to
a

and
in
’s

that
for

$

45,414
25,193
24,287

21,148
17,682
16,731

10,353
8,794
8,762
7,899

Word frequency in WSJ

Figure 6.2: Relative frequency of 10 most frequent words in the SWBD and
WSJ data used in this work

nsubj
advmod

dep
prep
det

pobj
aux

dobj
cc

discourse

98,605
52,107

48,034
42,939
42,150
39,698

35,411
32,432
29,931

26,146

Relation frequency in SWBD

prep
pobj

det
nn

nsubj
amod
dobj
aux

advmod
conj

1.01 · 105

98,692
85,562

81,368
72,950

66,356
44,008

37,263
32,214

26,735

Relation frequency in WSJ

Figure 6.3: Relative frequency of 10 most frequent relations in the SWBD
and WSJ data used in this work. The total number of relations are 82 and
79 respectively.

The difference in domain becomes evident in Figures 6.2 and 6.3. By far the most
common word in Switchboard is “I” and the the most common relation is nsubj.
This alludes to a simple overall sentence structure centered around sentences that
follow the scheme “I [verb] ...”. The many fill words cause discourse to be one of
the most common relations. We also notice that the third most common relation
is the fall back relation dep. [DMMMo06] outputs this relation when no matching
relation from the Stanford Dependencies can be found. This confirms that some of
Switchboard’s parse trees do not translate well into dependency parses.
The grammatical complexity of WSJ shows in the wide range of different relations
that have a similar frequency.

6.3. Parser on ASR Output 30

6.3 Parser on ASR Output

To get a first overview of parse performance the output of an ASR system of good
quality is fed into the parse and compared against the parse trees of the ground truth.
We used [ZSMN+17] with greedy search CTC and bytepair encodings. Because a
comparison only makes sense if output has the same length as the ground truth,
we chose to only look at sentences without deletions and insertions. The resulting
system is not an actual baseline but a reference for what kind of performance one
can expect. Not only is it in no way optimized for this, it also performs a different
task. The intriguing characteristic of the presented parsing approaches is that the
parse tree is asserted between segments of audio before the transcript is available
this is different from what is evaluated here.

Input UAS Las
Ground Truth 92.4 88.5
ASR output 68.0 58.1

Figure 6.4: Results of parsing the output of the ASR system through the trained
text parser. Due to restrictions in which sentences could be used this was only
calculated with around 100 sentences.

Even on the sentences that match the ground truth in length there is a significant
drop in performance when compared to feeding the ground truth.

6.4 Model Implementation

All models are implemented using dynet [NDGM+17]. The implementation of the
parsing logic is based on [BaDS15] with dimensions kept largely the same. The
stack, buffer and action history are each represented by a 2 layer Stack LSTM with
a hidden size of 80. The word embeddings on the stack have a dimensionality of 100.
The input to the action history are 20 dimensional embeddings of the parse actions
that are taken. The relation embedding used in the composition of the parse tree
embeddings (4.4.1) also has 20 dimensions. The activation functions are identical to
those described in 4.4.Tuning these parameters can increase the overall performance
of the model, however it is outside the scope of this work and thus these parameters
remain unchanged through all experiments.
Motivated by [MiGM15] in the choice of encoder size we present results for a 4 and 5
layered BiLSTM with a hidden size of 300 and 150 units per direction. The output
of each direction is combined the same way the character LSTM output is processed
in 4.4.
[SWFK+18] also experiments with variations of the bidirectional LSTM where in-
stead of taking the last hidden state of the encoder, they chose the time step by
doing max pooling over all encoder states. We also experiment with this modifica-
tion.

6.5 End to End

Training the End to End approach is done as described in 4.4 and [BDGS17]. The
model uses stochastic gradient descent to minimize the negative log likelihood of

6.6. Transfer From Text 31

the correct action at each step in the action sequence. The initial learning rate was
γ0 = 0.1 with decay of 0.1 per epoch, no momentum is used. Models that showed
significantly inferior performance were not trained the full 15 epochs to save com-
puting time.

Model Train UAS Dev UAS Dev LAS Valid UAS Valid LAS
5x150 independent 66.7 63.2 52.4 62.2 51.1
4x300 independent 39.7 38.3 22.9 37.4 22.3
5x150 continuous 77.7 65.2 54.6 65.1 54.2

0 2 4 6 8 10 12 14

0.2

0.4

0.6

0.8

epoch

U
A

S

5x150
4x300

5x150 cont

Figure 6.5: Results for the configurations with BiLSTMs with 5 and 4 layers and
size 300. Development set UAS is shown, training set UAS is also plotted as dotted
line for reference.

The two best scoring models show promising results. They reach a labeled attach-
ment score of well above 50% which means that on average more than half of all
relations in a sentence will be recognized entirely correct, including their label. Con-
sidering that the input to this is a sequence of audio frames instead of text, this result
demonstrates a reasonable performance of the model. The concatenated approach
improved overall performance thus showing that having the context information on
encoder level is helpful. This is especially valuable considering that the computa-
tional effort is identical for both encoding approaches.
However, training convergence was also highly dependent on the parameters and
some configurations that seemed reasonable didn’t converge at all. 0

6.6 Transfer From Text

We transfer the embeddings from the text parser trained on SWBD. It achieves an
LAS of 85.04 on Switchboard. For each sample we compute the word embeddings
using that parser’s encoder. During the stage II of this training we optimize the
Mean Squared Error between the text embedding and the output of the audio en-
coder. We use stochastic gradient descent without momentum and a initial learning
rate γ0 = 0.1. We decay the learning rate by 0.1 per epoch.
After five epochs of training we initialize a new parser with the encoder that was

6.7. Feature vectors from seq2seq 32

just trained, together with the parse decoder from which the target embeddings were
created originally. In the next state this parser is trained end-to-end as described
above with a starting learning rate γ0 = 0.075.

Model Embedding Train Dev Valid
MSE UAS UAS UAS LAS UAS LAS

4x300 independent 4.7 50.0 82.0 67.4 57.3 66.5 56.6
4x300 continuous 3.5 57.1 83.1 69.7 60.19 68.4 58.6
5x150 continuous 4.1 60.0 82.1 69.1 59.1 68.7 58.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

4

6

8

10

epoch

M
S
E

4x300 indep
4x300 cont
5x150 cont

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

epoch

U
A

S

Transferring the embeddings from text showed an overall increase in training stabil-
ity and performance. All examined configurations converged to a reasonable solution
with roughly the same results. The two stage training approach improves results
and provides a faster and more stable training routine.
All in all, these approaches yield an audio-to-parse model that shows the feasibility
of the task. Further tuning of the parameters is expected to improve those results.

6.7 Feature vectors from seq2seq

The above experiments show promising results for a system that has externally
provided word alignments. However, as stated before we want to overcome this lim-
itation. In this experiment we train on features that are extracted from a trained
sequence to sequence word model[WHKH+18]. The model is run in training mode
with weight updates disabled. We save the encoder state for each utterance along

6.7. Feature vectors from seq2seq 33

with the attention vector for each output the decoder makes in that utterance. From
this we get the embedding of each word by applying the corresponding attention vec-
tor to the encoder state for the sentence and using the result as word embedding.
Because the ground truth is fed as the previous decoder state after each prediction
during training of the seq2seq model, the model output matches the training sample
in word count and we get a consistent number of encodings.
We experiment with a number of ways to pass the encoding to the parse decoder after
it is extracted from the dumped state of the seq2seq model. We project it down to
the input size of the decoder LSTM and pass it on without applying a nonlinearity.
In a second approach we pass the extracted features through Multilayer Perceptron
with a tanh activation to allow the model to transform the feats to a representation
more suited to the parsing task. Lastly, because in the original decoder these states
were used in a sequential context, we put a small 2 layer BiLSTM between them and
the parse decoder and take the output at each time step as the corresponding embed-
ding. Because the attention peaks are noisier than anticipated we also experiment
with picking the encoder state for which the attention vector has the highest peak.

6.7. Feature vectors from seq2seq 34

Model Train UAS Valid UAS

pick
no transform 40.35 33.2
1x320 tanh 37.15 32.4

LSTM 38.37 24.5

attend
no transform 33 29.4
1x320 tanh 24.9 24.2

LSTM 42.45 26.4

0 2 4 6 8 10 12 14 16 18 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

epoch

U
A

S

pick none
pick tanh
pick lstm

0 2 4 6 8 10 12 14 16 18 20
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

epoch

U
A

S

attend none
attend tanh
attend lstm

6.7. Feature vectors from seq2seq 35

Figure 6.6: Examples of attention vectors from the dumped features. The first is an
example for a very noisy attention where the peaks give very little indication about
the location of the word in the input encoding. The second example shows a good
example of the peakiness of attention.

Unfortunately none of the aforementioned approaches show good performance.UAS
values of 30% are too low to show the feasibility of the task. The models show
a significantly higher amount of overfitting compared to the previous approaches.
However, other, more sophisticated methods for implementing this might yet yield
good results. Some possible follow-ups to this are discussed later.

7. Conclusion and Future Work

We have shown that it is feasible to obtain a parse tree as the representation of
semantic and syntactic relations between segments of audio. The presented models
are a foundation for a more practical audio-to-parse model. Further refining of the
approaches introduced in this work can hopefully remove some of the limitations the
current model has. The biggest of those is that the good model currently relies on
external word alignments. However, even with its limitations this model presents a
novel approach to the extraction of parse information from audio.

7.1 Improvements to the Presented Models

Because the goal of this work was to produce a proof of feasibility there is a lot
of room for improvements. The following points illustrate ways of improving the
performance of the presented architectures.

Hyper Parameter Tuning

Because tuning of hyper parameters was intentionally left out of the scope of this
work, the most obvious approach to improve the performance of the presented models
is to investigate further into well suited hyper parameters. Along with the model
sizes in both encoder and decoder, the transition between embedding and end to
end training needs more exploration. Changing the point in the training at which
to progress to the next stage and also the learning rate after the switch could bring
performance improvements.

Better Input Data

The Switchboard corpus that was used in this work was not optimal. Because of
its irregular structure the conversion to dependency parses did not go over as well
as hoped (dep being one of the most common relations). A corpus designed for
dependency parses is better suited to train the parser on. Even with the manual
alignments and the cleaned up transcriptions, there are utterances that do not map
to parse trees and vice versa.

7.2. Next Steps 37

7.2 Next Steps

Even with optimized parameters and more data the models presented here are only
a first step towards end to end audio parsing and improvement can be made by
adapting the architecture to be better suited to the task. The most important goal
is to rid the model of its reliance on external alignments.

Use Attention as Word Alignments

The naive use of a sequence to sequence encoder and attention to get an embedding
for the words could not be brought to fruition. However, the peaks in the attention
vectors have a strong relation with the position of words in the audio. These peaks
could be used to get the hidden states that represent a word from the continuous
encoding approach 5.2. We would still train an encoder specific to the parser but
would process all frames of the utterance and then pick hidden states according
to those peaks. This allows the parser to operate without external alignments. In
contrast to manual alignments an end-to-end approach to training the attention
within the model would then be possible.

Multi-Task Training with Sequence2Sequence

The next step to simply extracting the features from a given encoder is to train that
encoder jointly on its ASR task and the parse output. In its current formulation
the decoding would be a two step process: First the sequence-to-sequence decoder
outputs its decoding along with attention at each state. The attention vectors
are then used by the parser along with the encoder state to do the parsing. The
encoder is now being optimized with both the parser and the word recognition task.
Another interesting aspect is that during inference the parser always operates on a
word sequence that is consistent with the hypothesis of the ASR model therefore
this system would always provide a parse tree for its transcriptions.

Transforming to Sequence2Sequence

In 4.4.4 we argue for the similarity between the parser and a seq2seq model. The
most significant difference is the need for individual word embeddings at encoding
time. By restructuring the parser this requirement can be overcome. The reason
why we need to precompute all embeddings is because the model is built to exactly
implement an initial configuration of an transition based dependency parser, where
all words are in the buffer at the beginning of the parse process. However, words
are only really added to anywhere besides the buffer during decoding when a shift
operation is executed and the next word is put into the stack. Instead of relying on
a previously computed embedding the model could use its current state of buffer,
action history and stack to select parts of the input that are relevant to the parser
and and those to the stack. In short it could use its state to calculate an attention
to select the next word. If we allow the model to predict the ROOT word as part
of this process we can model the entire parsing process as a sequence to sequence
problem with words as input and parse actions as target output. This would rid
the model entirely of any restrictions regarding word alignment and is an interesting
approach that should be investigated.

Bibliography

[AhUl72] A. V. Aho und J. D. Ullman. The Theory of Parsing, Translation,
and Compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
1972.

[AyVT16] Y. Aytar, C. Vondrick und A. Torralba. SoundNet: Learning Sound
Representations from Unlabeled Video. CoRR Band abs/1610.09001,
2016.

[BaCB14] D. Bahdanau, K. Cho und Y. Bengio. Neural machine transla-
tion by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[BaDS15] M. Ballesteros, C. Dyer und N. A. Smith. Improved transition-based
parsing by modeling characters instead of words with lstms. arXiv
preprint arXiv:1508.00657, 2015.

[BDGS17] M. Ballesteros, C. Dyer, Y. Goldberg und N. A. Smith. Greedy
transition-based dependency parsing with stack lstms. Computational
Linguistics 43(2), 2017, S. 311–347.

[Brid90] J. S. Bridle. Probabilistic Interpretation of Feedforward Classification
Network Outputs, with Relationships to Statistical Pattern Recogni-
tion. In F. F. Soulie und J. Herault (Hrsg.), Neurocomputing, Berlin,
Heidelberg, 1990. Springer Berlin Heidelberg, S. 227–236.

[CBSC+15] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho und Y. Ben-
gio. Attention-Based Models for Speech Recognition. CoRR Band
abs/1506.07503, 2015.

[ChRu13] Y. Chauvin und D. E. Rumelhart. Backpropagation: theory, architec-
tures, and applications. Psychology Press. 2013.

[DBLM+15a] C. Dyer, M. Ballesteros, W. Ling, A. Matthews und N. A. Smith.
Transition-based dependency parsing with stack long short-term
memory. arXiv preprint arXiv:1505.08075, 2015.

[DBLM+15b] C. Dyer, M. Ballesteros, W. Ling, A. Matthews und N. A. Smith.
Transition-Based Dependency Parsing with Stack Long Short-Term
Memory. CoRR Band abs/1505.08075, 2015.

[DMMa08] M.-C. De Marneffe und C. D. Manning. The Stanford typed depen-
dencies representation. In Coling 2008: proceedings of the workshop

Bibliography 39

on cross-framework and cross-domain parser evaluation. Association
for Computational Linguistics, 2008, S. 1–8.

[DMMMo06] M.-C. De Marneffe, B. MacCartney, C. D. Manning und andere. Gen-
erating typed dependency parses from phrase structure parses. In
Proceedings of LREC, Band 6. Genoa Italy, 2006, S. 449–454.

[DuCa] R. Dunne und N. Campbelly. On The Pairing Of The Softmax Acti-
vation And Cross Entropy Penalty Functions And The Derivation Of
The Softmax Activation Function.

[GeSS02] F. A. Gers, N. N. Schraudolph und J. Schmidhuber. Learning precise
timing with LSTM recurrent networks. Journal of machine learning
research 3(Aug), 2002, S. 115–143.

[GlBe10] X. Glorot und Y. Bengio. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,
S. 249–256.

[GoBC16] I. Goodfellow, Y. Bengio und A. Courville. Deep Learning. MIT Press.
http://www.deeplearningbook.org, 2016.

[GoHM92] J. J. Godfrey, E. C. Holliman und J. McDaniel. SWITCHBOARD:
Telephone Speech Corpus for Research and Development. In Proceed-
ings of the 1992 IEEE International Conference on Acoustics, Speech
and Signal Processing - Volume 1, ICASSP’92, Washington, DC, USA,
1992. IEEE Computer Society, S. 517–520.

[GrFS05] A. Graves, S. Fernández und J. Schmidhuber. Bidirectional LSTM
Networks for Improved Phoneme Classification and Recognition. In
W. Duch, J. Kacprzyk, E. Oja und S. Zadrożny (Hrsg.), Artificial
Neural Networks: Formal Models and Their Applications – ICANN
2005, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg, S. 799–
804.

[GrJM13] A. Graves, N. Jaitly und A.-r. Mohamed. Hybrid speech recogni-
tion with deep bidirectional LSTM. In Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop on. IEEE, 2013,
S. 273–278.

[GrSc05] A. Graves und J. Schmidhuber. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neu-
ral Networks 18(5-6), 2005, S. 602–610.

[Hass95] M. H. Hassoun. Fundamentals of artificial neural networks. 1995.

[Hoch98] S. Hochreiter. The Vanishing Gradient Problem During Learning Re-
current Neural Nets and Problem Solutions. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 06(02), 1998,
S. 107–116.

http://www.deeplearningbook.org

Bibliography 40

[Horn91] K. Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Networks 4(2), 1991, S. 251 – 257.

[HoSc97a] S. Hochreiter und J. Schmidhuber. Long Short-term Memory. Band 9,
12 1997, S. 1735–80.

[HoSc97b] S. Hochreiter und J. Schmidhuber. Long Short-Term Memory. Neural
Comput. 9(8), November 1997, S. 1735–1780.

[Jura] D. Jurafsky. Speech and Language Processing.

[KaKw92] B. L. Kalman und S. C. Kwasny. Why tanh: choosing a sigmoidal
function. In [Proceedings 1992] IJCNN International Joint Conference
on Neural Networks, Band 4, Jun 1992, S. 578–581 vol.4.

[KiHW16] S. Kim, T. Hori und S. Watanabe. Joint CTC-Attention based End-
to-End Speech Recognition using Multi-task Learning. CoRR Band
abs/1609.06773, 2016.

[KrSH12] A. Krizhevsky, I. Sutskever und G. E. Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural
information processing systems, 2012, S. 1097–1105.

[LeBH15] Y. LeCun, Y. Bengio und G. Hinton. Deep learning. nature 521(7553),
2015, S. 436.

[MaHN13] A. L. Maas, A. Y. Hannun und A. Y. Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, Band 30,
2013, S. 3.

[MaMS93] M. P. Marcus, M. A. Marcinkiewicz und B. Santorini. Building a
Large Annotated Corpus of English: The Penn Treebank. Comput.
Linguist. 19(2), Juni 1993, S. 313–330.

[MiGM15] Y. Miao, M. Gowayyed und F. Metze. EESEN: End-to-end speech
recognition using deep RNN models and WFST-based decoding.
In Automatic Speech Recognition and Understanding (ASRU), 2015
IEEE Workshop on. IEEE, 2015, S. 167–174.

[MPRH05] R. McDonald, F. Pereira, K. Ribarov und J. Hajič. Non-projective De-
pendency Parsing Using Spanning Tree Algorithms. In Proceedings of
the Conference on Human Language Technology and Empirical Meth-
ods in Natural Language Processing, HLT ’05, Stroudsburg, PA, USA,
2005. Association for Computational Linguistics, S. 523–530.

[NDGM+17] G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Ammar, A. Anas-
tasopoulos, M. Ballesteros, D. Chiang, D. Clothiaux, T. Cohn,
K. Duh, M. Faruqui, C. Gan, D. Garrette, Y. Ji, L. Kong, A. Kun-
coro, G. Kumar, C. Malaviya, P. Michel, Y. Oda, M. Richardson,
N. Saphra, S. Swayamdipta und P. Yin. DyNet: The Dynamic Neural
Network Toolkit. arXiv preprint arXiv:1701.03980, 2017.

Bibliography 41

[Nivr09] J. Nivre. Non-projective dependency parsing in expected linear time.
In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1-Volume 1. Association
for Computational Linguistics, 2009, S. 351–359.

[PeSM14] J. Pennington, R. Socher und C. Manning. Glove: Global vectors for
word representation. 2014, S. 1532–1543.

[Pico] J. Picone. Switchboard word alignments. https://www.isip.
piconepress.com/projects/switchboard/. Accessed: 2018-05-20.

[RiLi91] M. D. Richard und R. P. Lippmann. Neural network classifiers es-
timate Bayesian a posteriori probabilities. Neural computation 3(4),
1991, S. 461–483.

[Rose58] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65(6),
1958, S. 386.

[RRKO+90] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley und B. W. Suter.
The multilayer perceptron as an approximation to a Bayes optimal
discriminant function. IEEE Transactions on Neural Networks 1(4),
Dec 1990, S. 296–298.

[ScPa97] M. Schuster und K. K. Paliwal. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45(11), Nov 1997,
S. 2673–2681.

[SiZi14] K. Simonyan und A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[SuSN12] M. Sundermeyer, R. Schlüter und H. Ney. LSTM neural networks for
language modeling. In Thirteenth Annual Conference of the Interna-
tional Speech Communication Association, 2012.

[SuVL14a] I. Sutskever, O. Vinyals und Q. V. Le. Sequence to sequence learning
with neural networks. In Advances in neural information processing
systems, 2014, S. 3104–3112.

[SuVL14b] I. Sutskever, O. Vinyals und Q. V. Le. Sequence to Sequence Learning
with Neural Networks. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence und K. Q. Weinberger (Hrsg.), Advances in Neural
Information Processing Systems 27, S. 3104–3112. Curran Associates,
Inc., 2014.

[SWFK+18] D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B. Liu und Y. Bengio.
Towards end-to-end spoken language understanding. arXiv preprint
arXiv:1802.08395, 2018.

[TTBG+17] T. Tran, S. Toshniwal, M. Bansal, K. Gimpel, K. Livescu und M. Os-
tendorf. Joint Modeling of Text and Acoustic-Prosodic Cues for Neu-
ral Parsing. CoRR Band abs/1704.07287, 2017.

https://www.isip.piconepress.com/projects/switchboard/
https://www.isip.piconepress.com/projects/switchboard/

Bibliography 42

[WHKH+18] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchin-
tala und T. Ochiai. ESPnet: End-to-End Speech Processing Toolkit.
CoRR Band abs/1804.00015, 2018.

[WiMa03] D. R. Wilson und T. R. Martinez. The general inefficiency of batch
training for gradient descent learning. Neural Networks 16(10), 2003,
S. 1429–1451.

[ZSMN+17] T. Zenkel, R. Sanabria, F. Metze, J. Niehues, M. Sperber, S. Stüker
und A. Waibel. Comparison of decoding strategies for ctc acoustic
models. arXiv preprint arXiv:1708.04469, 2017.

	Contents
	1 Introduction
	1.1 Outline

	2 Background
	2.1 Neural Networks
	2.1.1 Multilayer Perceptron
	2.1.2 Training with Stochastic Gradient Descent and Backpropagation
	2.1.3 Activation Functions
	2.1.3.1 Softmax

	2.1.4 Recurrent Neural Networks
	2.1.5 Long Short Term Memory
	2.1.6 Stack LSTM

	2.2 Sequence to Sequence Models

	3 Related Work
	3.1 Dependency Parsing
	3.1.1 Non-projective Dependency Parsing using Spanning Tree Algorithms
	3.1.2 Transition Based Dependency Parsing using Stack LSTM

	3.2 Joint Modeling of Text and Acoustic-Prosodic Cues for Neural Parsing
	3.3 Towards End-to-End Spoken Language Understanding

	4 Dependency Parsing
	4.1 Formalism
	4.2 Stanford Dependencies
	4.3 Transition Based Dependency Parsing
	4.4 Implementation using Stack LSTMs
	4.4.1 Parser
	4.4.2 Embedding
	4.4.3 Training
	4.4.4 Interpretation as a Sequence to Sequence Model

	5 Design
	5.1 Parse Input Encoder
	5.1.1 Independent Embeddings
	5.1.2 Continuous Embeddings

	5.2 End to End Training
	5.3 Transfer from Text Model
	5.4 Using Encoder from a Sequence to Sequence Model

	6 Experiments
	6.1 Data
	6.1.1 Penn Tree Bank
	6.1.2 Accuracy Metric
	6.1.3 Data Preparation

	6.2 Results on Text
	6.2.1 Dataset Comparison

	6.3 Parser on ASR Output
	6.4 Model Implementation
	6.5 End to End
	6.6 Transfer From Text
	6.7 Feature vectors from seq2seq

	7 Conclusion and Future Work
	7.1 Improvements to the Presented Models
	7.2 Next Steps

	Bibliography

