
Application of Neural Networks
for Heading Direction Estimation

Bachelor’s Thesis of

Xuan Tung Nguyen

at the Department of Informatics

Institute for Anthropomatics and Robotics (IAR)

Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany

School of Computer Science

The Robotics Institute (RI)

Canergie Mellon University (CMU)

Pittsburgh, United States

Reviewer: Prof. Alexander Waibel

Second reviewer: Prof. Tamim Asfour

Advisor: Dr. Thanh-Le Ha

01. February 2019 – 21. May 2019

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text, and have followed the

rules of the KIT for upholding good scienti�c practice.

Karlsruhe, 21.05.2019

. .

(Xuan Tung Nguyen)

Acknowledgements

First and foremost I would like to express my gratitude to Prof. Alexander Waibel and the

CLICS exchange program for the opportunity to write this bachelor’s thesis at the CMU. I

would also like to thank Prof. Tamim Asfour for his constructive reviews and feedback,

which helped to complete this work.

I wish to thank Dr. Sebastian Scherer and Rogerio Bonatti for the warm welcome into

the Air Lab, where I spent my time at the CMU. I also sincerely appreciate the help of Dr.

Wenshan Wang, whose research inspired my thesis.

Many thanks to my advisor Dr. Thanh-Le Ha for his devoted support and guidance,

without which this work would not have been possible.

My appreciation for my colleagues in Prof. Waibel’s interactive drone research team.

Our work together laid the foundation for my own research.

To my friends and family who have always encouraged and supported me ever since

I started living on my own, far from home, I am deeply grateful.

i

Abstract

Recent rapid advancements of drone technology and control has made consumer drones

more commonplace. Pedestrian following is an desirable feature for both outdoor and

indoor drones. To help with this task, it is important for drones to predict the heading

direction of a target person from pure visual input. While learning-based, data-driven

approaches like neural networks achieve good results for similar problems in the robotics,

they require large dataset and su�er from low generalization capability. Semi-supervised

learning can help reduce the dataset constraint. In this work, we investigate the per-

formance of di�erent neural network models in the task of estimating human heading

direction, given the a person’s bounding box. We show that by integrating semi-supervised

learning into a predictor, the overall prediction results and generalization capability can be

improved. We measure a predictor model by comparing the performance on three distinct

datasets and evaluate the prediction error.

iii

Contents

1 Introduction 1

2 Background 3
2.1 Heading Direction Estimation . 3

2.1.1 Metrics . 3

2.2 Interactive Indoor Drone Assistant Project 4

2.2.1 Motivation . 4

2.2.2 Platform . 4

2.2.3 Approach . 6

2.2.4 Future works . 7

2.3 Neural Network . 8

2.3.1 Activation function . 8

2.3.2 Backpropagation algorithm . 9

2.3.3 Batch normalization . 10

2.3.4 Time Delay Neural Network - Convolutional Neural Network . . 11

2.3.5 Recurrent Neural Network . 12

2.3.6 Semi-supervised Learning . 14

3 Approach 15
3.1 Supervised Loss . 15

3.2 Base Extractor . 16

3.3 Mobile Extractor . 17

3.3.1 Depthwise separable Convolution 17

3.3.2 Architecture . 17

3.4 Vanilla Estimator . 17

3.5 RNN Estimator . 19

3.6 Semi-supervised learning Predictor . 19

3.6.1 Unsupervised loss function for temporal continuity 20

3.6.2 Combined loss function . 21

3.7 Data Augmentation . 21

4 Experiments 23
4.1 Datasets . 23

4.1.1 DukeMTMC . 23

4.1.2 DroLAB . 24

4.1.3 COMBI . 25

4.2 Implementation . 26

v

Contents

5 Evaluation 29
5.1 Results on DukeMTMC . 29

5.1.1 Selection of λ . 29

5.1.2 Extractor in�uence . 31

5.1.3 Semi-supervised learning with data constraint 33

5.1.4 Test results . 33

5.2 Results on DroLAB . 34

5.3 Results on COMBI . 36

6 Conclusion 39
6.1 Summary . 39

6.2 Future works . 40

Bibliography 41

vi

List of Figures

2.1 Examples of HDE task . 3

2.2 CF2.0, Crazyradio PA, Flow deck . 5

2.3 FPV camera with receiver . 5

2.4 Customized CF2.0 . 5

2.5 Indoor drone assistant system overview 6

2.6 Diagram of laboratory corridor . 7

2.7 Output of the obstacle avoidance system 7

2.8 Feed-forward network . 8

2.9 Recti�er and hyperbolic tangent functions 9

2.10 Training and validation error graph . 10

2.11 Convolution and pooling operation . 11

2.12 RNN loop . 12

2.13 Backpropagation on unfolded RNN . 13

2.14 GRU cell . 14

3.1 Predictor model overview . 15

3.2 Standard convolution layer . 16

3.3 Base extractor architecture . 16

3.4 Depthwise separable convolution layer 18

3.5 Mobile extractor architecture . 18

3.6 Vanilla estimator . 19

3.7 RNN estimator . 20

3.8 Combined loss calculation . 21

3.9 Data augmentation . 22

4.1 Frames extracted from DukeMTMC videos 23

4.2 DukeMTMC sample sequence . 24

4.3 DroLAB raw images . 25

4.4 DroLab sample sequence . 25

4.5 COMBI samples . 27

5.1 Angle error for di�erent values of λ . 30

5.2 Supervised vs unsupervised loss . 31

5.3 Base vs mobile extractor . 32

5.4 Angle error with labeled data constraint 34

5.5 Test accuracy on DroLAB . 36

5.6 Test accuracy on COMBI . 37

vii

List of Tables

3.1 Base extractor body architecture . 16

3.2 Mobil extractor body architecture . 19

4.1 Ground truth for manual labelling . 26

4.2 COMBI dataset composition . 26

5.1 Datasets statistics . 29

5.2 Validation results on DukeMTMC regarding λ 30

5.3 Extractor-Estimator validation results on DukeMTMC 32

5.4 Vanilla vs SSL results under data constraint 33

5.5 Test results on DukeMTMC . 35

5.6 Evaluation on DroLAB . 35

5.7 Evaluation on COMBI . 37

ix

1 Introduction

Unmanned aerial vehicles (UAVs), or drones, are useful platforms for academic research

in a wide variety of �elds, including control theory, air navigation, robotics, etc. The

quadcopter model is by far the most popular drone variant among both researchers and

hobbyists due to its simple mechanical design and dynamics, which lead to easy mainte-

nance and maneuver. In recent years, many researchers have successfully "taught" drones

to perform complex aerial moves and �ight routines. While drones have a wide range of

applications from military surveillance to commercial transport, consumer quadcopters are

mainly used for aerial �lming and photography. For both indoor and outdoor uses, person

tracking is a highly desirable feature. An outdoor security drone needs to be able to follow a

suspicious target, while an indoor assistant drone should be able to keep up with its master.

To follow a moving human, a drone has to be able to predict future trajectory of the

target based on visual input. This makes heading direction estimation (HDE) an essential

component of the path planning system. Accurate heading prediction will help the planner

make better forecast of the target’s trajectory, thus allowing a better optimized control

signal with regards to possible changes in direction of the person being pursued.

HDE is itself a problem in other robotics sub�elds such as vehicle-pedestrian collision

avoidance and human-robot interaction. Machine learning approaches like deep learn-

ing have showed good results on speci�c tasks. However, such approaches are heavily

data-driven and rely on large amount of labeled data to achieve high prediction results.

State-of-the-art models trained on one dataset tends to yield low performance when tested

on another dataset due to mismatch between data distribution. This is true in particular

for the task of aerial �lming, where image quality can varies signi�cantly with regards to

human orientation, height and distance to camera.

Semi-supervised learning (SSL) is an active research area which focuses on using unlabeled

data to improve learning accuracy, as opposed to solely labeled data. SSL makes use of

some structure to the underlying data distribution to introduce certain constraints to a

learning model’s parameters. For visual input, temporal continuity is a valid assumption,

as consecutive images in a sequence should produce close to continuous outputs.

In this thesis, we investigate the e�ciency of di�erent neural network models for the task

of predicting human heading direction from images containing a single person’s bounding

box. The networks are trained and evaluated on open datasets. We then examine how well

they generalize when tested on other datasets with limited amount of labeled samples. We

show that by utilizing unlabeled data, the required amount of data can be reduced. We

1

1 Introduction

also illustrate that temporal continuity can be used as unsupervised signal to regularize a

model and achieve better generalization capability.

• Chapter 2 gives a short overview of the HDE problem, the interactive drone project

at our lab as well as some common neural network architectures.

• Chapter 3 proposes three neural networks models. We show how a temporal conti-

nuity assumption can regularize a learning model by introducing a unsupervised

loss to complement the usual supervised loss.

• Chapter 4 describes the experimental setup. It introduces two open datasets and

one dataset created at our institute using a micro drone equipped with nano �sheye

camera. This chapter also explains how the training data is generated and labeled.

• Chapter 5 shows and explains the results of the experiments.

• Chapter 6 discusses the results, suggests future works and improvements.

2

2 Background

2.1 Heading Direction Estimation

For many robotics applications such as pedestrian following, activity forecasting, etc., the

planner subsystem needs to predict possible future trajectory of an moving object given

visual cues and past knowledge. To do this, at each calculation step the planner needs

to predict the most probable direction of the velocity vector of the object being tracked.

This is referred to as the heading direction estimation (HDE) problem, which is a widely

studied with emphasis on humans and cars. In this work we focus on the human HDE

problem.

Let [px ,py,pα] be the pose of a target actor in the world frame. To estimate the orientation

pα , we need to calculate the heading direction α in the image coordinate system, projected

on the ground plane. To avoid angle ambiguity and increase numerical stability, our

HDE module predicts [cos(α), sin(α)] and estimate α through these values. The world

orientation pα can be inferred using α and camera parameters.

Figure 2.1: Examples of HDE task. Given the bounding boxes of pedestrians, the predictor

should output the direction of corresponding vectors.

2.1.1 Metrics

Let

• I be an input image

• [cos(α), sin(α)] be the expected output

• [cos(β), sin(β)] be the output of our predictor

3

2 Background

We de�ne:

• square error (SE) loss = (cos(α) − cos(β))2 + (sin(α) − sin(β))2

• AngleDi� = |α − β |

• Acc =

{
1, if AngleDi� ≤ π/8

0, otherwise

2.2 Interactive Indoor Drone Assistant Project

2.2.1 Motivation

Thanks to recent advancements of UAV technology and control, consumer drones have

become commonplace with simple �ying maneuvers. Human-drone interaction thus

becomes an increasingly promising research area. At our Interactive Systems Lab, we

work towards a speaking assistant drone that

• is small and quiet

• can navigate and avoid obstacle in indoor environments

• understands and responds to voice control

Out �rst prototype [14] can receive voice commands to navigate between �xed points,

given a schematic map of a corridor environment. It registers a 78% success rate after 27

�ight missions.

2.2.2 Platform

2.2.2.1 Crazyflie 2.0

We use the Crazy�ie 2.0 (CF2.0) by BitCraze, a open-source, customizable nano quadcopter

which is popular for academic researches and experiments [16]. The drone can be controlled

remotely from a computer using communication link provided by the Crazyradio PA [4], a

2.4GHz USB dongle. The funtionalities of the main board can be enhanced with extension

boards. For our experiment, we utilized the Flow Deck [5] to keep the altitude stable once

the drone reaches a desirable height.

2.2.2.2 Modifications

For our purposes, we made some customizations to the platform:

• Replacing the original 250mAh 1S LiPo battery with 2 300mAh 1S LiPo batteries

• Replacing manufacturer 12000Kv motors with 19000Kv motors from BetaFPV

• Attaching a �rst person view (FPV) nano camera with �sheye lens, which transmits

on 5.8GHz band. The signals can be picked up using a 5.8GHz mobile receiver (see

�gure 2.3)

4

2.2 Interactive Indoor Drone Assistant Project

(a) Mounted Crazy�ie 2.0 (b) Crazyradio PA (c) Flow deck

Figure 2.2: CF2.0 for autonomous hovering

(a) GOQOTOMO GD02 FPV

camera

(b) Happymodel VMR40 Receiver

Figure 2.3: FPV camera with receiver

Figure 2.4: Our customized CF2.0 drone

5

2 Background

2.2.3 Approach

Our system can recognize commands like “Fly to room 235” or “Fly to Stefan’s o�ce”. An

overview is given in �gure 2.5.

The automatic speech recognition (ASR) component deciphers the verbal request and

forwards the interpretation to the dialogue subsystem, where the target location is de-

coded. The navigation subsystem �nds the closest �xed point in the schematic mapping

corresponding to the real-world target. The �ight controller then plans a collision-free

path using the navigation subsystem and obstacle avoidance algorithm.

Figure 2.5: Indoor drone assistant system overview

2.2.3.1 Dialogue-based Mission Control

Our dialogue subsystem consists of three components:

• The ASR component transcribes the recorded audio into text. For this task we used

the Janus speech recognition toolkit [31]

• The dialogue component extracts the semantic meaning from the transcription. It is

based on the attention-based encoder-decoder model [2], using byte pair encoding

[45].

• The text-to-speech (TTS) synthesizes an audio respond from the output of the

dialogue component.

2.2.3.2 Localization and planning

With the Flow deck attached, the CF2.0 can send its position relative to a �xed starting

point back to the control station. Navigation is performed by evaluating a schematic

map of the laboratory (see �gure 2.6), which contains a few important �xed points. We

implemented Dijkstra’s algorithm [13] based on euclidean distance to compute the shortest

sequence of points between the current drone position and the target location.

6

2.2 Interactive Indoor Drone Assistant Project

Figure 2.6: Schematics of our laboratory corridor. The �xed points are shown in red.

2.2.3.3 Obstacle avoidance

We employed a convolutional neural network (CNN) to compute a depth map from the

RGB image obtained from the camera feed using the method proposed in [28]. A threshold

function is then applied to the depth image to compute a binary image representing the

free areas. Then a simple heuristic serves to determine in which direction the drone can

�y. Figure 2.7 shows a sample of the camera image and corresponding depth map.

(a) Camera image (b) Depth map (c) Bitmap of obstacle-free areas

Figure 2.7: Output of the obstacle avoidance system

2.2.4 Future works

We plan to extend the functionalities of the system to

• Person recognition

• Person tracking and following

• Simultaneous localization and mapping (SLAM)

7

2 Background

2.3 Neural Network

Arti�cial neural networks have been shown to be universal function approximators [10,

11, 22]. A neural network can be visualized as a directed graph and consists of:

• one input layer

• a number of hidden layers

• one output layer

Figure 2.8 shows a simple feed-forward network with 1 hidden layer, 3 input neurons, 4

hidden neurons and 2 output neurons
1
.

Figure 2.8: A simple feed-forward neural network

Let Xk ,Yk ,W k ,σk
be the input, output, weights and activation function and of layer k

respectively. The values of the units in the next layer k + 1 are computed as follows:

Xk+1 =W k .Yk

Yk+1 = σk+1(Xk+1) (2.1)

with Xk ,Yk
as vectors and . denotes a matrix multiplication.

2.3.1 Activation function

An activation function, or transfer function, is a nonlinear function that maps the input

of an arti�cial neuron to its output. As of present, the most widely used function is the

recti�er [39]:

f (x) =max(0,x) (2.2)

Another popular activation function is the hyperbolic tangent:

1
Quiza and Davim, "Computational Methods and Optimization"

8

2.3 Neural Network

tanh(x) =
sinh(x)

cosh(x)
=
ex − e−x

ex + e−x
(2.3)

Other popular activation functions include the logistic sigmoid, sinusoid, softmax, etc.

Figure 2.9 illustrates the recti�er
2

and hyperbolic tangent
3

functions.

(a) ReLu

(b) tanh

Figure 2.9: Recti�er and hyperbolic tangent functions

2.3.2 Backpropagation algorithm

For supervised learning problems, training data consist of labeled input-output pairs [18].

Given input, the model learns to approximate the desired output by optimizing a loss

function L. Hinton et al introduced an algorithm to tune the network weights based on

gradient descent and the chain rule by backpropagating the training error E [43].

Let x be the input, f the mapping function represented by the network, y∗ the desired

output and w the current weights. The learning rate η is a prede�ned hyperparameter.

Each training step works as follows:

• Forward pass:

Y = f (x)

E = L(y,y∗) (2.4)

2https://www.tinymind.com/learn/terms/relu
3http://mathworld.wolfram.com/HyperbolicTangent.html

9

https://www.tinymind.com/learn/terms/relu
http://mathworld.wolfram.com/HyperbolicTangent.html

2 Background

• Backward pass:

wnew = w −
δE

δw
(2.5)

To avoid over�tting, the model’s performance should be measured on a validation dataset

which is separated from the training dataset after a number of iterations or epoches.

Figure 2.10: Training loss and validation loss converge after 30000 iterations

2.3.3 Batch normalization

Batch normalization [24] is a data normalization technique that has been shown to improve

the performance and accelerate the training of neural networks [44, 26].

Let B = (x1,x2, ...,xm) a mini-batch of the training set. The mean and variance of B is:

µB =
1

m

m∑
i=1

xi

σ 2

B =
1

m

m∑
i=1

(xi − µB)
2

(2.6)

Now for an input x = (x1,x2, ...,xd), each dimension of x is normalized separately:

x̂ki =
xki − µ

k
B√

σk2
B + ϵ

(2.7)

where k ∈ [1,d] and i ∈ [1,m], ϵ an arbitrarily small constant added in for numerical

stability. The normalized x̂k has zero mean and unit variance.

10

2.3 Neural Network

2.3.4 Time Delay Neural Network - Convolutional Neural Network

Time delay neural networks (TDNNs) [49] and Convolutional neural networks (CNNs) are

neural network architectures which can learn translation invariance. Both are based on

the neocognitron model [15]: each convolutional layer is followed by a downsampling

(pooling) layer.

TDNN was the �rst architecture to achieve shift invariance by sharing weights along

temporal dimension. This makes TDNNs suitable for speech processing and they achieve

high performance when applied to far distance speech recognition tasks [25].

CNN on the other hand �nds widespread use in computer vision applications. In image

processing, to apply a �lter on an image means to do a convolution between a kernel and

the image. A pooling operation downsamples the image by replacing each subregion by

an value, usually the maximum or average. Figure 2.11 gives an example of convolution
4

and pooling operations
5
.

(a) Convolution

(b) Pooling

Figure 2.11: Convolution and pooling operation

Let F be an square input feature map of size DF ×DF ×M , where DF is the spatial width and

height, M the input depth (number of input channels). Applying a convolutional kernel K

4http://www.davidsbatista.net/blog/2018/03/31/SentenceClassificationConvNets
5https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb

11

http://www.davidsbatista.net/blog/2018/03/31/SentenceClassificationConvNets
https://medium.com/@Aj.Cheng/convolutional-neural-network-d9f69e473feb

2 Background

of size DK × DK ×M × N on F results in an output feature map G of size DG × DG × N as

follows:

Gk,l ,n =
∑
i,j,m

Ki,j,m,n .Fk+i−1,l+j−1,m (2.8)

with i, j ∈ [1,DF], k, l ∈ [1..DG],m ∈ [1..M], n ∈ [1..N]

LeCun et al. introduced a backpropagation method to learn the kernel coe�cients [29]

and the �rst CNN to classify hand-written digits [30]. Some prominent CNN architectures

that achieved state-of-the-art results in the ImageNet visual recognition challenge [12]

are: VGGNet [33], AlexNet[27], Google Inception[48], ResNet [17].

2.3.5 Recurrent Neural Network

Recurrent neural networks (RNNs) are neural networks with internal memory capability

which allows them to learn temporal dynamic behaviour from sequential input. This make

RNNs ideal for tasks like speech recognition and time-series forecasting.

For a simple RNN unit, the memory capability is realized by a feedback loop from the

hidden state to itself, as shown in �gure 2.12. At time step t , let xt be the input vector and

st−1 the previous hidden state. Then the new hidden state st and output yt are computed

as follows:

st = ϕ(W .xt +U .st−1)

yt = σ (V .st) (2.9)

where ϕ and σ are activation functions, U ,W ,V are weight matrices.

Figure 2.12: RNN loop

12

2.3 Neural Network

2.3.5.1 Backpropagation through time

Backpropagation through time (BPTT) is an extension of the backpropagation algorithm

described in section 2.3.2 used to train RNNs [52, 41, 36].

To perform a backward pass overn input-output pairs (x0,y0), (x1,y1), (x2,y2), .., (xn−1,yn−1),
the network is unfolded into n connected feed-forward components. The backpropagation

algorithm is applied on the unfolded network. The forward pass computes the errors term

E0,E1, ...,En−1. The error derivatives are backpropagated in reverse order, starting from

En−1 downto E0. A schema for n = 4 is shown in �gure 2.13
6
.

Figure 2.13

Since the weight matrices U ,V ,W are shared across all recurrent units, the weight deriva-

tives are summed up and averaged by n. For large n, the gradients at earlier step decay

due to long backward pass. This lead to in�uence of the front part of the input sequences

being diminished in the training process, which is known as the vanishing gradient prob-

lem [21]. This implies that more complex memory units are needed to model long-term

dependencies.

2.3.5.2 Gated Recurrent Unit

Gated recurrent unit (GRU) [8] is a gating mechanism in RNN that aims to mitigate the

vanishing gradient problem. GRU can be seen as a lighter version of the powerful but

more computational expensive Long-short term memory (LSTM) architecture [20].

A GRU cell contains an update gate z and reset gate r, each with its own weight matrix.

At time step t , the hidden state ht is computed through current cell state
˜ht , input xt and

the gate values as follows:

6http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-

through-time-and-vanishing-gradients

13

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients

2 Background

zt = σ (Wz .[ht−1,xt])

rt = σ (Wr .[ht−1,xt])

˜ht = tanh(W .[rt ∗ ht−1,xt])

ht = (1 − zt) ∗ ht−1 + zt ∗ ˜ht (2.10)

where σ denotes the recti�er function, ∗ the element-wise multiplication, [,] the vector

concatenation. Figure 2.14 shows a simple GRU cell
7
.

Figure 2.14: GRU cell

2.3.6 Semi-supervised Learning

SSL is a class of machine learning methods that utilizes unlabeled data, in conjunction

with a limited amount of labeled data, to improve learning accuracy. It creates a bridge

beetween supervised learning (all data labeled) [18] and unsupervised learning (no labeled

data) [19]. SSL algorithms make use of one of the following assumptions [7]:

• Continuity: Points which are close to each other are more likely to share a label

• Cluster: The data tend to form discrete clusters, and points in the same cluster are more
likely to share a label

• Manifold: The data lie approximately on a manifold of much lower dimension than
the input space

For image and video data, temporal continuity is a valid assumption. Mohabi et al.

[35] used temporal continuity as supervisory signal over unlabeled video data to boost

object recognition performance. Temporal continuity can also be exploited to learn feature

representations [47, 51].

7https://www.data-blogger.com/2017/08/27/gru-implementation-tensorflow

14

https://www.data-blogger.com/2017/08/27/gru-implementation-tensorflow

3 Approach

All our neural networks consist of 2 main components:

• the Feature Extractor takes as input an RGB image of size 192x192 and outputs a

�xed size 256-dimensional feature vector

• the Estimator network transforms the resulting feature vector into an angle predic-

tion [sin(α), cos(α)]

We experimented with 2 CNN architectures for the extractor component: the base ex-

tractor (section 3.2) and the Mobile extractor (section 3.3). For the estimator network, we

constructed 3 di�erent models: a vanilla model (section 3.4), a RNN-based model (section

3.5) and a SSL-based model (section 3.6).

Figure 3.1: Predictor model overview

3.1 Supervised Loss

For our HDE supervised learning regression task, we used the MSE loss (also known as L2
loss).

Suppose we have labeled dataset D = {(x1,y1), ..., (xm,ym)} where xi denotes an input

image and yi = [sin(αi), cos(αi)] the ground truth angle. Our predictor model is M and f is

the approximation function represented by M. The L2 loss is de�ned as

L = Ls =
1

2m

m∑
i=1

| | f (xi) − yi | |
2

(3.1)

The goal is to �nd the model parameter set Θ which minimizes this loss function. For this

task we used the backpropagation algorithm (see section 2.3.2).

15

3 Approach

3.2 Base Extractor

Our base extractor is a deep CNN with 5 convolution layers, each followed by ReLu activa-

tion (see �gure 3.3. This is inspired by the work of Choi et al.[9].

Figure 3.2 visualizes a standard convolution layer
1
. The full details of all extractor layers

are given in table 3.1

Figure 3.2: Standard convolution layer

Figure 3.3: Base extractor architecture

Layer Input size Kernel shape Stride Padding

Conv1 192 x 192 x 3 3 x 3 x 3 x 32 2 1

Conv2 96 x 96 x 32 5 x 5 x 32 x 32 3 1

Conv3 32 x 32 x 32 5 x 5 x 32 x 64 3 0

Conv4 10 x 10 x 64 3 x 3 x 64 x 64 3 1

Conv5 4 x 4 x 64 4 x 4 x 64 x 256 1 0

Output 1 x 1 x 256

Table 3.1: Base extractor body architecture

1https://www.geeksforgeeks.org/depth-wise-separable-convolutional-neural-networks

16

https://www.geeksforgeeks.org/depth-wise-separable-convolutional-neural-networks

3.3 Mobile Extractor

3.3 Mobile Extractor

3.3.1 Depthwise separable Convolution

The depthwise separable convolution was introduced along with the MobileNet archi-

tecture[23]. Let F be an input feature map of size DF × DF × M and K a kernel of size

DK × DK ×M × N . A depthwise separable convolution factorizes a standard convolution

with kernel K into a depthwise convolution with kernel K̂ of size DK × DK ×M , followed

by a pointwise convolution with kernel K̃ of size 1 × 1 ×M × N .

Depthwise convolution applies a single �lter per input channel. Thus, the output feature

map has the same depth as the input feature map and can be written as:

Ĝk,l ,m =
∑
i,j

K̂i,j,m .Fk+i−1,l+j−1,m (3.2)

A pointwise convolution is a standard convolution with �lters of size 1 × 1, so in essence

each layer of the output feature map is a linear combination of the input feature map

layers. The output of the pointwise convolution following the depthwise convolution is:

G̃k,l ,m =
∑
n

K̃1,1,m .Ĝk,l ,m (3.3)

The total computational cost of a depthwise separable convolution is calculated from

equations 3.2 and 3.3:

DK .DK .M .DF .DF +M .N .DF .DF (3.4)

this is considerably less the cost of a standard convolution based on equation 2.8:

DK .DK .M .N .DF .DF (3.5)

Figure 3.4 visualizes the depthwise and pointwise convolution layers
1
.

3.3.2 Architecture

Our mobile extractor design is based on the MobileNet architecture [23]. The �rst layer is

a standard convolution, which is followed by 11 depthwise separable convolutions. For

the �rst 12 layers, convolution is followed by batch normalization (ϵ = 0.001) and ReLU

activation. Standard and depthwise convolutions use 3 × 3 �lter with padding size 1.The

depthwise stride interchanges between 1 and 2. All other convolutions have stride 1. A

�nal 3 × 3 convolution layer outputs 1 × 1 × 256 feature map without normalization and

activation.

Figure 3.5 shows a sketch of the architecture. Full details of all layers are given in table 3.2.

3.4 Vanilla Estimator

We designed a simple feedforward neural network with 1 a single fully connected (FC)

hidden layer and ReLU activation, inspired by orientation classi�cation network proposed

by Choi et al.[9].

17

3 Approach

(a) Depthwise convolution

(b) Pointwise convolution

Figure 3.4: Depthwise separable convolution layer

(a) Data �ow

(b) Left: standard convolution (Conv) with BatchNorm and ReLU (layer 1).

Middle: depthwise separable convolution (ConvDps) withBatchNorm

and ReLU (layers 2-12). Right: 3x3 convolution (layer 13)

Figure 3.5: Mobile extractor architecture

18

3.5 RNN Estimator

Layer Input size Kernel depth Stride

Conv1 192 x 192 x 3 3 x 16 2

ConvDps1 96 x 96 x 16 16 x 32 1

ConvDps2 96 x 96 x 32 32 x 64 2

ConvDps3 48 x 48 x 64 64 x 64 1

ConvDps4 48 x 48 x 64 64 x 128 2

ConvDps5 24 x 24 x 128 128 x 128 1

ConvDps6 24 x 24 x 128 128 x 256 2

ConvDps7 12 x 12 x 256 256 x 256 1

ConvDps8 12 x 12 x 256 256 x 256 2

ConvDps9 6 x 6 x 256 256 x 256 1

ConvDps10 6 x 6 x 256 256 x 256 2

ConvDps11 3 x 3 x 256 256 x 256 1

Conv2 3 x 3 x 256 256 x 256 1

Output 1 x 1 x 256

Table 3.2: Mobil extractor body architecture

Figure 3.6: Vanilla estimator

3.5 RNN Estimator

For our RNN estimator model, we exploited the possible sequential dependecy of features.

The 256d input feature vector F is splitted into four 64d subfeature vectors f1, f2, f3, f4.
We used a single GRU cell S with 256 hidden units as memory storage. Let ht denotes

the memory content (values of hidden unit) and St the GRU cell at time t . We set h0 = 0

by default. The last fully connected layer maps the 256d memory vector h4 to 2d output.

Figure 3.7 explains the data �ow.

3.6 Semi-supervised learning Predictor

For this section we implemented the approach proposed by Wenshan et al [50].

19

3 Approach

Figure 3.7: RNN estimator

3.6.1 Unsupervised loss function for temporal continuity

In order to exploit temporal continuity to improve prediction accuracy, we need to de�ne

a unsupervised loss Lu for unlabeled data. Let (x1,x2, ...,xn) be an image sequence of an

unique actor in chronological order. Then Q = {x1,x2, ...,xn} is an unlabeled image set.

We make use of the temporal continuity assumption (section 2.3.6): if two frames are close

regarding temporal aspect, the actor’s heading direction predictions should also be close.

The unsupervised loss can be generalized as:

Lu =
∑

x1,x2∈Q

τ (x1,x2)Ω(x1,x2, f) (3.6)

where f is the mapping function of model M, τ (x1,x2) is the similarity of two samples and

Ω(x1,x2, f) is the di�erence between their outputs regarding f and can be de�ned as half

the square di�erence:

Ω(x1,x2, f) =
1

2

(f (x1) − f (x2))
2

(3.7)

We assume that τ (x1,x2) is inverse proportional to the temporal displacement between x1
and x2. This implies that if x1 < x2 < x3 then τ (x1,x2) > τ (x1,x3). Equation 3.6 suggests

that Ω(x1,x2, f) < Ω(x1,x3, f) to keep Lu low. If this is not the case, the model should be

punished by an error amount equal to E = Ω(x1,x2, f) − Ω(x1,x3, f)
We can now formulate Lu as:

Lu =
∑

x1,x2,x3∈Q
x1<x2<x3

max(0,Ω(x1,x2, f) − Ω(x1,x3, f) − ϵ) (3.8)

where ϵ is an arbitrarily small threshold. For our experiment, we chose ϵ = 0.005.

20

3.7 Data Augmentation

Since Q contains n samples, the computational complexity of equation 3.8 is O(n3) which

would slow down training considerably. To solve this, we can generate randomly a set of

triplets U = {(i1, j1,k1), ..., (ip, jp,kp)} where ir < jr < kr and ir , jr ,kr ∈ [1..n]. The mean

value of Lu can be computed stochastically on U :

Lu =
1

r

∑
(i,j,k)∈U

max(0,Ω(xi ,xj , f) − Ω(xi ,xk , f) − ϵ) (3.9)

3.6.2 Combined loss function

For the SSL estimator network, we used the same architecture as the vanilla model in

section 3.4.

Each training batch B consists of a labeled images batch Bl and a sequence of unlabeled

images from one unique actor Bu . Thus we have B = (Bl ,Bu). The combined loss L is made

up from the supervised loss (3.1) and unsupervised loss (3.8):

L(B) = L(Bl ,Bu) = Ls(Bl) + λ.Lu(Bu) (3.10)

where λ is a hyperparameter which serves to balance the supervised and unsupervised

losses. The selection of λ plays an important role in model performance, which we discuss

in section 5.1.1

Figure 3.8: Combined loss calculation

3.7 Data Augmentation

For data-driven machine learning approaches like neural networks, models tend to produce

better results with larger amount of training data available. Data augmentation means

to arti�cially generate more training data from existing data. This is done by applying

domain-speci�c techniques to training samples in order to create di�erent but plausible

21

3 Approach

new samples.

In image processing, one common augmentation technique is to add a small amount of

noise and distortion to images which result in slightly modi�ed versions of themselves.

This is particularly helpful when the size of training set is limited. For our approach,

we applied the following popular augmentation methods in the neural network training

process:

• RandomCrop: the image’s top and bottom are randomly cut o� up to 20% of its

height. Its left and right sides are also randomly cut o� up to 20% the width.

• Random Hue, Saturation, Value: to each of the H,S,V channel, a value is randomly

chosen from a �xed interval and added to the current value. The interval is �xed to

[−10, 10] for the H channel and [−60, 60] for the S and V channels.

• RandomMirror: an image is �ipped left-right with 50% probability. If a labeled image

is �ipped, the correspondind ground truth angle is also corrected accordingly.

Figure 3.9 compares a sequence in the DukeMTMC dataset before and after augmentation

is applied.

(a) no augmentation

(b) with augmentation

Figure 3.9: A DukeMTMC sample sequence before and after data augmentation. Corre-

sponding images are aligned vertically.

22

4 Experiments

In this section we discuss 3 datasets and how we generated network input from them.

4.1 Datasets

4.1.1 DukeMTMC

The DukeMTMC [40] is a large multi-target tracking dataset, consisting of 1080p videos

recorded at 60FPS from 8 static cameras on the Duke University campus during daytime.

It recorded more than 2 million frames and 2700 identities. All trajectories were manually

annotated. Figure 4.1 shows 2 example frames.

We used videos from cameras 1, 3, 4, 7, 8 to generate training data, camera 5 for validation

and camera 2 for testing.

(a) Camera 1 (b) Camera 5

Figure 4.1: Frames extracted from DukeMTMC videos

4.1.1.1 Data generation

The algorithm to generate ground truth of heading direction was provided by the courtesy

of Dr. Wenshan Wang
1
. We downsample all videos from 60FPS to 5FPS. Each tracked

person P is assigned an unique identi�er IP . Suppose person P appears in a video V. We

de�ne the position of P to be the center of two feet. The dataset annotations for P are

given as a sequence of tuple in the form (Fi ,Bi ,wxi ,wyi , fxi , fyi)where F denotes the frame

number, B the bounding box, wx ,wy the position in camera coordinate system and fx , fy
the pixel coordinate.

1
Wenshan Wang, AIR Lab, The Robotics Institute, Canergie Mellon University

23

4 Experiments

We discard frame Fi if the square position displacement to the previous frame Fi−1 is

smaller than a threshold δ , i.e

(wxi −wxi−1)
2 + (wyi −wyi−1)

2 < δ

If Fi is not discarded, we extract the subimage de�ned by Bi and assign the angle α closed

by the vector spans from (fxi−1, fyi−1) to (fxi , fyi) and the x-axis as the heading direction:

α = arctan(
fyi − fyi−1
fxi − fxi−1

)

Figure 4.2: Sample sequence of DukeMTMC dataset

4.1.2 DroLAB

We created an indoor dataset by using our customized CF2.0 to follow and �lm moving

actors at various locations inside building 50.20 of the Karlsruhe Institute of Technology.

The drone is �own manually using Bitcraze Python client
2
. This guarantees a high level

of diversity within the dataset with regards to background settings, actor’s scale to image

size, the camera’s height and orientation. To further increase dataset variance we also had

actors put on di�erent out�ts. Figure 4.3 shows some examples of the raw image data.

In total we �lmed 86 videos, divided into 10 subsets, each �lmed with one unique actor.

We use 4 subsets as training data, 3 subsets for validation and 3 subsets for testing purpose.

4.1.2.1 Data generation

To extract the actor’s bounding box from raw images, we used Single shot multibox detector

(SSD) method [34] with MobileNet as feature extractor [23]. We used the implementation

by Adrian Rosenbrock [42]. We sampled all videos with 5FPS frequency and set the

con�dence threshold to 0.8 for the task of person recognition. See Figure 4.3 for example

of actor bounding box extraction.

Labeled data were created by classifying the heading direction of the actor in bounding

box as a cardinal direction (north, south, east, west) or intercardinal direction (northeast,

northwest, southeast, southwest). The angle and sin, cos values were assigned to the

selected samples according to Table 4.1. We manually labeled 2000 samples for training,

500 for validation and 500 for testing.

2
https://github.com/bitcraze/crazy�ie-lib-python

24

4.1 Datasets

Figure 4.3: Images extracted from videos recorded for DroLAB dataset. Each actor is

enclosed in a light green rectangular bounding box.

Figure 4.4: Sample sequence of an actor walking in an o�ce. The images were resized for

better visualization due to large di�erence of bounding box size according to

the actor’s proximity to the camera.

4.1.3 COMBI

We created a new dataset from multiple subdatasets to measure the generalizability of

models trained on the DukeMTMC and DroLAB datasets, respectively. We named this

dataset COMBI. Since this dataset serves only testing purposes, it is not splitted into

training/validation/test subsets.

25

4 Experiments

Direction Angle(α) cos(α) sin(α)

E 0 1 0

NE π/4 0.7071 0.7071

N π/2 0 1

NW 3π/4 -0.7071 0.7071

W π -1 0

SW −3π/4 -0.7071 -0.7071

S π/2 0 -1

SE −π/4 0.7071 -0.7071

Table 4.1: Ground truth for manual labelling

The subdatasets are as follows:

• 3DPeS [3]: dataset for people re-identi�cation, created by using 6 di�erent surveil-

lance cameras to monitor a section of the campus of the University of Modena and

Reggio Emilia.

• Microsoft-COCO [32]: a large-scale object detection, segmentation, and captioning

dataset. This is a popular benchmark for machine learning models.

• UCF101 [46]: contains 13000 videos of human actions in the wild.

• CMU-Drone: created as part of the drone autonomous cinematography project at the

CMU [6, 50]. Human actors were �lmed by �ying a DJI M210 quadcopter outdoor.

This dataset was provided by Dr. Wenshan Wang.

For the MS-COCO and UCF101 datasets, bounding boxes of actors were obtained using the

method described in section 4.1.2. The authors of the 3DPeS dataset provided a number of

person bounding boxes. From each subdataset, a small number of samples are randomly

selected and manually labeled. For the exact composition of COMBI, see table 4.2.

Subdataset Number of samples

3DPeS 1618

MS-COCO 524

UCF101 1324

CMU-Drone 593

Table 4.2: COMBI dataset composition

4.2 Implementation

Our neural networks are implemented in Python3.6 using the Pytorch machine learning

library [38]. We used Anaconda to manage Python packages and distribution [1]. To

26

4.2 Implementation

Figure 4.5: Samples of COMBI subdatasets. The images were resized for better visualization

due to having di�erent scales.

speedup training, we trained all NNs on our institute’s Nvidia Tesla K20 GPU cluster using

Nvidia CUDA Toolkit 8.0 [37].

27

5 Evaluation

The following experiments show how the models proposed in chapter 3 perform on the

datasets described in chapter 4, as well as the impact of their feature extractor and angle

estimator components. Model performance is evaluated using the 3 metrics introduced in

section 2.1.1.

For training phase, data are augmented as described in section 3.7. Model parameters are

saved in checkpoint after a �x number of iterations. We selected the �nal parameters and

hyperparameters which result in the lowest supervised loss measured on the validation

set. Final results are reported on the test set.

For all models, labeled batch size is �xed at 128. For SSL models, we used unlabeled

batch size (unlabeled image sequence length) 48 on the DukeMTMC dataset and 32 on the

DroLAB dataset.

Table 5.1 gives an overview of each dataset’s size and training/validation/test split.

Dataset Training Validation Test Total

DukeMTMC 305943 42557 90294 438794

DukeMTMC (unlabeled) 546668 56914 115247 718829

DroLAB 2000 500 500 3000

DroLAB (unlabeled) 12138 3166 5426 20550

COMBI 4059 4059

Table 5.1: Datasets statistics

5.1 Results on DukeMTMC

Due to the fact that DukeMTMC is our largest and most intensively labeled dataset, we

use AngleDi� as the main evaluation metric.

5.1.1 Selection of λ

For SSl models, the hyperparameter λ balances the supervised and unsupervised losses, as

stated in equation 3.10:

L(B) = L(Bl ,Bu) = Ls(Bl) + λ.Lu(Bu)

29

5 Evaluation

If λ is set too high, the model will prioritize minimizing Lu by generating trivial unchanged

outputs for the unlabeled batch Bu . If λ is too low, the potential gain by using unlabeled

samples is diminished.

We selected an optimal value by trying out di�erent values of λ in range [0.001, 1.5]. We

trained SSL predictor using Mobile feature extractor through at least 20000 iterations.

Results on the DukeMTMC validation set are reported in table 5.2.

λ MSE AngleDi� (rad) Accuracy (%)

0.001 0.042 0.208 88.94

0.005 0.039 0.196 89.81
0.01 0.038 0.199 89.62
0.05 0.049 0.208 89.01

0.1 0.119 0.238 84.60

0.5 0.055 0.204 89.37

0.9 0.038 0.197 89.71
1.2 0.054 0.242 84.28

1.5 0.061 0.237 85.39

Table 5.2: Validation results for λ. Top 3 models have λ ∈ {0.005, 0.01, 0.9}
, λ = 0.005 yields best score in angle di�erence and accuracy and second best MSE loss

Based on results showed in table 5.2, we use λ = 0.005 in all SSL models in later sections.

Figure 5.1: Angle error for di�erent values of λ

Figure 5.2 shows the supervised vs unsupervised error graph with λ = 1.5.

30

5.1 Results on DukeMTMC

Figure 5.2: λ = 1.5. The convergence of training and validation supervised loss

(train_labeled, val_labeled) and generally falling trend of unsupervised loss

(train_unlabeled, val_unlabeled) suggests that the model learned to predict accu-

rate heading direction as well as learned about temporal continuity restriction

at the same time.

5.1.2 Extractor influence

We compared the e�ectiveness two extractor architectures on the overall predictor model

performance in order to decide on a suitable design for the HDE task. We trained and

evaluated all three estimator models in combination with two feature extractor models.

Full results are obtained on validation set and shown in table 5.3.

For all models, the mobile extractor outperformed the base extractor by a noticeable margin

on every metric. We hypothesize that this comes from 2 factors: higher network depth

and use of batch normalization.

The vanilla model achieved best results compared to the other two using the base extrac-

tor with 0.218 angle error score and 87.11% accuracy. Upgrading to the more powerful

mobile extractor, the RNN model received highest performance boost and became the best

performing model: angle error dropped from 0.250 downto 0.191 while accuracy increased

from 83.98% to 90.43%. We believe that higher grained features extracted by the mobile

component allows the RNN model to make use of the more complex estimator subnetwork,

in particular the recurrent connections and memory content of the GRU cell.

While the SSL estimator ranks behind the vanilla design when combined with base extractor,

it outperforms the latter slightly when mobile extractor is put to use.

A side by side comparison of the impact of feature extractor designs on angle prediction

accuracy is presented in �gure 5.3.

31

5 Evaluation

Extractor Model MSE AngleDi� (rad) Accuracy (%)

Base

Vanilla 0.047 0.218 87.11
RNN 0.057 0.250 83.98

SSL 0.051 0.237 84.74

Mobile

Vanilla 0.038 0.200 89.57

RNN 0.036 0.191 90.43
SSL 0.039 0.196 89.81

Table 5.3: Extractor-Estimator validation results on DukeMTMC

.

Figure 5.3: Angle error comparison between base and mobile extractors. RNN and SSL

models experience higher gains from mobile extractor component compared to

Vanilla model.

Based on the results in this section, we set mobile extractor as the default design for the

following sections.

32

5.1 Results on DukeMTMC

5.1.3 Semi-supervised learning with data constraint

We investigated the advantage of semi-supervised over supervised approach under various

conditions of labeled data.

We trained Vanilla and SSL predictor using 1%, 5%, 20% and 100% labeled samples in the

training dataset, respectively. All models were evaluated on test set. Evaluation results are

shown in table 5.3. Figure 5.4 compare the test angle error score between 2 approaches.

Extractor Data (%) MSE AngleDi� (rad) Accuracy (%)

Vanilla

1 0.152 0.417 69.89

5 0.100 0.323 76.90

20 0.078 0.281 78.49

100 0.069 0.266 81.25

SSL

1 0.128 0.387 70.15

5 0.099 0.325 75.09

20 0.076 0.277 79.34

100 0.069 0.263 79.60

Table 5.4: Results on test set of Vanilla and SSL predictors trained on di�erent scales of

labeled training data

.

For both type of models, testing scores increase with amount of labeled data available.

This con�rms the general belief that more training data result in better learning models.

At 1% labeled data (approximately 3060 samples), the SSL model outperforms the Vanilla

model in all three metrics: MSE by 0.024, AngleDi� by 0.03 and Accuracy by 0.25%. We

argue that this is a result of the SSL approach making use of the abundance on unlabeled

data in the absence of labeled data. This gain diminishes and �attens out as the amount

of labeled data increases. At 5% or more, both models yield comparable testing results.

This can be explained by equation 3.10 and our choice of λ = 0.005: the combined loss is

dominated by the term supervised term. We conclude that though unsupervised learning

brings new domain knowledge to our model, the main determinator is the supervised

part.

5.1.4 Test results

We evaluated 3 models on the test set (see table 5.5). The RNN predictor lags behind

the other two in terms of performance. While the SSL model scores slightly better than

the Vanilla model in angle error (0.263 to 0.266), it is surpassed by 1.65% in accuracy.

This implies that simple supervised approach is suitable for the HDE problem on the

DukeMTMC datasets. We believe therefore that selection of a suitable network model is a

dataset speci�c task.

33

5 Evaluation

Figure 5.4: In general, SSL achieve lower angle error than Vanilla model. The di�erence is

most evident at 1% labeled training data.

The possible characteristics of DukeMTMC dataset that encourages a supervised approach

are:

• large amount of labeled samples

• �xed camera angle

• static background

• low variance in human size scale relative to background

5.2 Results on DroLAB

This section focus on evaluation of di�erent predictor models on our indoor dataset. The

models are grouped by their training datas as follows:

34

5.2 Results on DroLAB

Model MSE AngleDi� (rad) Accuracy (%)

Vanilla 0.069 0.266 81.25
RNN 0.086 0.300 78.15

SSL 0.069 0.263 79.60

Table 5.5: Test results on DukeMTMC

.

• trained on DukeMTMC (transfer learning)

• trained on DroLAB

• trained on DukeMTMC and �netuned on DroLAB

As described in section 4.1.2, we annotated our indoor dataset by manual labelling using

a discrete set of angle values, which leads to high degree of ground truth ambiguity due

to human interpretation. For this reason, relative accuracy is a more ideal metric than

absolute angle di�erence. An angle prediction α̂ is considered correct with regard to

ground truth α if |α − α̂ | < π/8 (section 2.1.1)

Full results are shown in table 5.6. Figure 5.5 compare the models by test accuracy.

Trained on Model MSE AngleDi� (rad) Accuracy (%)

DukeMTMC

Vanilla 0.236 0.604 48.05

RNN 0.217 0.576 47.27

SSL 0.238 0.593 49.02

DroLAB

Vanilla 0.102 0.290 70.11
RNN 0.130 0.353 65.04

SSL 0.134 0.337 67.38

DukeMTMC,

DroLAB

Vanilla 0.081 0.252 73.44

RNN 0.070 0.244 76.367
SSL 0.081 0.234 76.367

Table 5.6: Test results on DroLAB. Vanilla model achieves best scores if trained solely

on DroLab. SSL model gives best results if it is pretrained on the DukeMTMC

dataset

.

All models trained on the DukeMTMC dataset achieved accuracy over 47% at angle di�er-

ence at most 0.604. Figure 5.5 shows that for all architecture, highest accuracy score is

gained by training on DukeMTMC and �netuning on DroLAB, with DroLAB contributing a

major part to that score. This indicates that domain knowledge gained on the DukeMTMC

dataset is transferable to the DroLAB dataset. Since accuracy score is higher for models

trained on DroLAB compared to those trained on DukeMTMC, this suggests that the

DroLAB labeled samples have a more prominent role in test results.

35

5 Evaluation

Figure 5.5: Test accuracy on DroLAB

SSL model outscores others in accuracy when trained on DukeMTMC and DukeMTMC +

DroLAB. This suggests SSL approach can generalize better to out-of-domain and unseen

data.

5.3 Results on COMBI

Similar to section 5.2, we perform a similar experiment and use Accurracy as the main

evaluation metric. Results are shown in table 5.7. Figure 5.6 compare the models by test

accuracy.

All models score at least 35% Accuracy which indicates a certain level of transfer learning.

SSL predictors trained on DukeMTMC or DroLAB have best test scores in 3 metrics, which

exhibits a good generalization capability.

Results obtained by training models on DukeMTMC are generally higher than on DroLAB.

Among possible reasons, we suspect the followings:

• DukeMTMC training set contains far more samples than DroLAB (305943 vs 2000)

36

5.3 Results on COMBI

Trained on Model MSE AngleDi� (rad) Accuracy (%)

DukeMTMC

Vanilla 0.325 0.792 35.72

RNN 0.324 0.767 38.79

SSL 0.307 0.752 39.20

DroLAB

Vanilla 0.506 1.006 35.91

RNN 0.501 1.00 35.64

SSL 0.481 0.962 36.13

DukeMTMC,

DroLAB

Vanilla 0.288 0.664 49.44
RNN 0.308 0.715 48.19

SSL 0.312 0.694 47.97

Table 5.7: Evaluation on COMBI

.

Figure 5.6: Test accuracy on COMBI

• DukeMTMC images are captured by cameras from above, which leads to samples

being more similar to those from subdatasets 3DPeS and CMU-Drone. Training on

DukeMTMC thus brings in more domain knowledge. On the other hand, DroLAB is

37

5 Evaluation

the only dataset using �sheye camera with distortion for close distance and �lmed

by a drone �ying close to ground and human height.

Results by models trained on DroLAB vary by small margin. This is likely caused by

samples from 2 datasets of vastly di�erent distribution and characteristics.

All models give best testing score after being trained on DukeMTMC and �netuned on

DroLAB. The accuracy compared to training only on one dataset is signi�cant: 13.53% for

Vanilla model, 9.4% for RNN model and 8.77% for SSL model.

To our surprise, the Vanilla predictor produced highest results after training and �netuning,

followed by RNN model and SSL model in third place. This �nding requires further

investigation to explain.

38

6 Conclusion

6.1 Summary

Future unmanned aerial vehicles should be able to interact with human in booth indoor

and outdoor environments. This necessitates a drone’s capability to predict future move-

ment and trajectory of humans, which makes heading direction estimation a fundamental

task. This bachelor’s thesis presented a solution to this problem by utilizing deep neural

networks.

We proposed a simple predictor model that consists of a feature extractor and direction es-

timator. We investigated two machine learning architectures for the extractor component

and three for the estimator subnetwork. To train and evaluate our models, we introduced

a large scale outdoor dataset, an indoor dataset and a combination of various open sub-

datasets. We came up with three evaluation metrics to measure model performance.

Experimental results show that the MobileNet convolutional architecture is suitable to ex-

tract feature from person bounding boxes. A simple feed forward estimator achieves good

results on the DukeMTMC dataset, given that the amount of labeled data is su�ciently

high. All our models show generalization capability when tested on out-of-domain data to

a certain extent.

Due to high cost of obtaining labeled samples, we are motivated to make use of unlabeled

samples to increase model performance. We experimented with a semi-supervised loss

based on a imperfect assumption about temporal continuity constraint. Our results clarify

that the semi-supervised loss increase testing accuracy over supervised, especially in

absence of data or domain knowledge. By leveraging training data on DukeMTMC, we

could improve models accuracy on the DroLAB dataset by a noticeable margin. Our SSL

model scores the lowest angle error and highest direction accuracy when evaluated on

unknown datasets in general. Test results on COMBI dataset indicate that having more

out-of-domain knowledge actually helps boost model accuracy, as the best performing

predictor networks were trained on DukeMTMC and �netuned on DroLAB. This suggests

there might be a general optimal model to solve the HDE problem.

We have not been able to explain all results, for example why a Vanilla model outperformed

a RNN model and a SSL model on the COMBI dataset when all three were trained on

DukeMTMC and DroLAB. This leaves room for investigation into dataset and model

relations.

39

6 Conclusion

6.2 Future works

A long-term goal of our indoor drone project is to have a drone proactively detects and

avoids moving person on its way to a destination. To do this we need to integrate the HDE

module into the obstacle avoidance subsystem. For future research we plan to extend our

indoor dataset by adding more actors and at the same time increase the maximal height

above the ground. The drone should adjust to the altitude to �nd best tracking manuevers.

We would like to integrate more large scale datasets that o�er automatic or semi-automatic

labelling. A feasible approach is to simulate the drone and actor in a photo-realistic simu-

lator like Microsoft AirSim.

We also want to further explore the potential of semi-supervised learning by trying out

di�erent temporal assumptions, for example using half an image sequence to predict

feature vector or heading direction.

40

Bibliography

[1] Inc. Anaconda. Anaconda Software Distribution. Version Vers. 2-2.4.0. Nov. 1, 2017.

url: https://www.anaconda.com.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine Trans-

lation by Jointly Learning to Align and Translate”. In: Proceedings of the Third
International Conference on Learning Representations (ICLR). 2015.

[3] Davide Baltieri, Roberto Vezzani, and Rita Cucchiara. “3DPes: 3D People Dataset for

Surveillance and Forensics”. In: Proceedings of the 1st International ACM Workshop
on Multimedia access to 3D Human Objects. Scottsdale, Arizona, USA, Nov. 2011,

pp. 59–64.

[4] Bitcraze. Crazyradio PA. https://www.bitcraze.io/crazyradio-pa. 2012.

[5] Bitcraze. “Flow deck | Bitcraze”. In: (2018). url: https://www.bitcraze.io/flow-

deck/.

[6] Rogerio Bonatti et al. “Autonomous Cinematography using Unmanned Aerial Vehi-

cles”. In: IROS, 2018.

[7] Olivier Chapelle, Bernhard Schlkopf, and Alexander Zien. Semi-Supervised Learning.

1st. The MIT Press, 2010.

[8] Kyunghyun Cho et al. “Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation”. In: CoRR abs/1406.1078 (2014). arXiv:

1406.1078. url: http://arxiv.org/abs/1406.1078.

[9] Jinyoung Choi, Beom-Jin Lee, and Byoung-Tak Zhang. “Human Body Orientation

Estimation using Convolutional Neural Network”. In: CoRR abs/1609.01984 (2016).

arXiv: 1609.01984. url: http://arxiv.org/abs/1609.01984.

[10] Balázs Csanád Csáji. “Approximation with Arti�cial Neural Networks”. MA thesis.

Eötvös Loránd University, 2001.

[11] George Cybenko. “Approximation by superpositions of a sigmoidal function”. In:

MCSS 2 (1989), pp. 303–314.

[12] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: In CVPR.

2009.

[13] Edsger W Dijkstra. “A note on two problems in connexion with graphs”. In: Nu-
merische mathematik 1.1 (1959), pp. 269–271.

[14] Tino Fuhrman et al. “An interactive indoor drone assistant”. Unpublished. 2019.

[15] Kunihiko Fukushima. “Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition una�ected by shift in position”. In: Biological
cybernetics 36 (Feb. 1980), pp. 193–202. doi: 10.1007/BF00344251.

41

https://www.anaconda.com
https://www.bitcraze.io/crazyradio-pa
https://www.bitcraze.io/flow-deck/
https://www.bitcraze.io/flow-deck/
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1609.01984
http://arxiv.org/abs/1609.01984
https://doi.org/10.1007/BF00344251

Bibliography

[16] Wojciech Giernacki et al. “Crazy�ie 2.0 quadrotor as a platform for research and

education in robotics and control engineering”. In: 2017 22nd International Conference
on Methods and Models in Automation and Robotics (MMAR). IEEE. 2017, pp. 37–42.

[17] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CoRR
abs/1512.03385 (2015). arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385.

[18] Hinton et al. Arti�cial Intelligence: A Modern Approach, Third Edition. Prentice Hall,

2010. isbn: 978-0136042594.

[19] Hinton et al. Unsupervised Learning: Foundations of Neural Computation. MIT Press,

1999. isbn: 978-0262581684.

[20] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735. eprint:

https://doi.org/10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/

neco.1997.9.8.1735.

[21] Sepp Hochreiter et al. Gradient Flow in Recurrent Nets: the Di�culty of Learning
Long-Term Dependencies. 2001.

[22] Kurt Hornik. “Approximation Capabilities of Multilayer Feedforward Networks”.

In: Neural Netw. 4.2 (Mar. 1991), pp. 251–257. issn: 0893-6080. doi: 10.1016/0893-

6080(91)90009-T. url: http://dx.doi.org/10.1016/0893-6080(91)90009-T.

[23] Andrew G. Howard et al. “MobileNets: E�cient Convolutional Neural Networks

for Mobile Vision Applications”. In: CoRR abs/1704.04861 (2017). arXiv: 1704.04861.

url: http://arxiv.org/abs/1704.04861.

[24] Sergey Io�e and Christian Szegedy. “Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift”. In: CoRR abs/1502.03167 (2015).

arXiv: 1502.03167. url: http://arxiv.org/abs/1502.03167.

[25] Tom Ko et al. “A study on data augmentation of reverberant speech for robust

speech recognition”. In: 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2017), pp. 5220–5224.

[26] Jonas Moritz Kohler et al. “Exponential convergence rates for Batch Normalization:

The power of length-direction decoupling in non-convex optimization”. In: 2019.

[27] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. “ImageNet Classi�cation

with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–

1105. url: http://papers.nips.cc/paper/4824-imagenet-classification-with-

deep-convolutional-neural-networks.pdf.

[28] Iro Laina et al. “Deeper depth prediction with fully convolutional residual networks”.

In: 3D Vision (3DV), 2016 Fourth International Conference on. IEEE. 2016, pp. 239–248.

[29] Yann LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recognition”.

In: Neural Computation 1 (1989), pp. 541–551.

[30] Yann LeCun et al. “Gradient-Based Learning Applied to Document Recognition”. In:

Proceedings of the IEEE. 1998, pp. 2278–2324.

42

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Bibliography

[31] Lori Levin et al. “The Janus-III Translation System: Speech-to-Speech Translation

in Multiple Domains”. In: Machine Translation 15.1 (June 2000), pp. 3–25. issn:

1573-0573. doi: 10.1023/A:1011186420821. url: https://doi.org/10.1023/A:

1011186420821.

[32] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”. In: CoRR
abs/1405.0312 (2014). arXiv: 1405.0312. url: http://arxiv.org/abs/1405.0312.

[33] S. Liu and W. Deng. “Very deep convolutional neural network based image classi�ca-

tion using small training sample size”. In: 2015 3rd IAPR Asian Conference on Pattern
Recognition (ACPR). Nov. 2015, pp. 730–734. doi: 10.1109/ACPR.2015.7486599.

[34] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: CoRR abs/1512.02325 (2015).

arXiv: 1512.02325. url: http://arxiv.org/abs/1512.02325.

[35] Hossein Mobahi, Ronan Collobert, and Jason Weston. “Deep Learning from Temporal

Coherence in Video”. In: Proceedings of the 26th Annual International Conference on
Machine Learning. ICML ’09. Montreal, Quebec, Canada: ACM, 2009, pp. 737–744.

isbn: 978-1-60558-516-1. doi: 10.1145/1553374.1553469. url: http://doi.acm.

org/10.1145/1553374.1553469.

[36] Mozer and Michael. “A Focused Backpropagation Algorithm for Temporal Pattern

Recognition”. In: Complex Systems 3 (Jan. 1995).

[37] John Nickolls et al. “Scalable Parallel Programming with CUDA”. In: Queue 6.2

(Mar. 2008), pp. 40–53. issn: 1542-7730. doi: 10.1145/1365490.1365500. url: http:

//doi.acm.org/10.1145/1365490.1365500.

[38] Adam Paszke et al. “Automatic di�erentiation in PyTorch”. In: (2017).

[39] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. “Searching for Activation Func-

tions”. In: CoRR abs/1710.05941 (2017). arXiv: 1710.05941. url: http://arxiv.org/

abs/1710.05941.

[40] Ergys Ristani et al. “Performance Measures and a Data Set for Multi-Target, Multi-

Camera Tracking”. In: CoRR abs/1609.01775 (2016). arXiv: 1609.01775. url: http:

//arxiv.org/abs/1609.01775.

[41] A. J. Robinson and Frank Fallside. The Utility Driven Dynamic Error Propagation Net-
work. Tech. rep. CUED/F-INFENG/TR.1. Cambridge, UK: Engineering Department,

Cambridge University, 1987.

[42] Adrian Rosenbrock. Object detection with deep learning and OpenCV. 2017. url:

https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-

learning-and-opencv (visited on 05/07/2019).

[43] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. “Learning repre-

sentations by back-propagating errors”. In: Nature 323 (1986), pp. 533–536.

[44] Shibani Santurkar et al. “How Does Batch Normalization Help Optimization?” In:

arXiv e-prints, arXiv:1805.11604 (May 2018), arXiv:1805.11604. arXiv: 1805.11604

[stat.ML].

43

https://doi.org/10.1023/A:1011186420821
https://doi.org/10.1023/A:1011186420821
https://doi.org/10.1023/A:1011186420821
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/ACPR.2015.7486599
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://doi.org/10.1145/1553374.1553469
http://doi.acm.org/10.1145/1553374.1553469
http://doi.acm.org/10.1145/1553374.1553469
https://doi.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1609.01775
http://arxiv.org/abs/1609.01775
http://arxiv.org/abs/1609.01775
https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv
https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv
http://arxiv.org/abs/1805.11604
http://arxiv.org/abs/1805.11604

Bibliography

[45] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Translation

of Rare Words with Subword Units”. In: Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (ACL). 2016.

[46] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A Dataset

of 101 Human Actions Classes From Videos in The Wild”. In: CoRR abs/1212.0402

(2012). arXiv: 1212.0402. url: http://arxiv.org/abs/1212.0402.

[47] David Stavens and Sebastian Thrun. “Unsupervised learning of invariant features

using video”. In: 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (2010), pp. 1649–1656.

[48] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CoRR abs/1409.4842

(2014). arXiv: 1409.4842. url: http://arxiv.org/abs/1409.4842.

[49] Alexander H. Waibel et al. “Phoneme recognition using time-delay neural networks”.

In: IEEE Trans. Acoustics, Speech, and Signal Processing 37 (1989), pp. 328–339.

[50] Wenshan Wang et al. “Improved Generalization of Heading Direction Estimation for

Aerial Filming Using Semi-supervised Regression”. In: CoRR abs/1903.11174 (2019).

arXiv: 1903.11174. url: http://arxiv.org/abs/1903.11174.

[51] Xiaolong Wang and Abhinav Gupta. “Unsupervised Learning of Visual Represen-

tations Using Videos”. In: 2015 IEEE International Conference on Computer Vision
(ICCV) (2015), pp. 2794–2802.

[52] Werbos and Paul. “Generalization of Backpropagation with Application to a Re-

current Gas Market Model”. In: Neural Networks 1 (Dec. 1988), pp. 339–356. doi:

10.1016/0893-6080(88)90007-X.

44

http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1903.11174
http://arxiv.org/abs/1903.11174
https://doi.org/10.1016/0893-6080(88)90007-X

Acronyms

ASR automatic speech recognition. 6

BPTT backpropagation through time. 13

CF2.0 Crazy�ie 2.0. 4–6, 24

CMU Canergie Mellon University. 26

CNN convolutional neural network. 7, 11, 12, 15, 16

CUDA Compute Uni�ed Device Architecture. 27

FC fully connected. 17, 19

FPS frame per second. 23, 24

FPV �rst person view. 4

GPU graphics processing unit. 27

GRU gated recurrent unit. 13

HDE heading direction estimation. 1–3, 15, 31

KIT Karlsruhe Institute of Technology. 24

LSTM long-short term memory. 13

MSE mean square error. 15, 30

NN neural network. 1, 2, 8, 10–12, 17, 21, 26, 27

ReLU linear recti�er unit. 17, 18

RGB red, green, blue. 15

RNN recurrent neural network. 12, 13, 15

SE square error. 4

SLAM simultaneous localization and mapping. 7

45

Acronyms

SSD single shot multibox detector. 24

SSL semi-supervised learning. 1, 14, 15, 33, 36

TDNN time delay neural network. 11

TTS text-to-speech. 6

UAV unmanned aerial vehicle. 1, 4

46

Glossary

Acc Accuracy. 4

AngleDi� absolute angle di�erence. 4

BatchNorm batch normalization. 18

drone unmanned aerial vehicle. 1

epoch number of times the algorithm sees the entire data set. 10

gradient descent a �rst-order iterative optimization algorithm for �nding the minimum

of a function. 9

iteration number of times a batch of data passed through the algorithm. 10, 30

manifold a topological space that locally resembles Euclidean space near each point. 14

normalization adjusting values measured on di�erent scales to a notionally common scale.

10

overfitting a statistical model over�ts when it contains more parameters than can be

justi�ed by the data. 10

quadcopter a multirotor helicopter which is lifted and propelled by four rotors. 1, 4

ResNet residual neural network. 12

47

	Introduction
	Background
	Heading Direction Estimation
	Metrics

	Interactive Indoor Drone Assistant Project
	Motivation
	Platform
	Approach
	Future works

	Neural Network
	Activation function
	Backpropagation algorithm
	Batch normalization
	Time Delay Neural Network - Convolutional Neural Network
	Recurrent Neural Network
	Semi-supervised Learning

	Approach
	Supervised Loss
	Base Extractor
	Mobile Extractor
	Depthwise separable Convolution
	Architecture

	Vanilla Estimator
	RNN Estimator
	Semi-supervised learning Predictor
	Unsupervised loss function for temporal continuity
	Combined loss function

	Data Augmentation

	Experiments
	Datasets
	DukeMTMC
	DroLAB
	COMBI

	Implementation

	Evaluation
	Results on DukeMTMC
	Selection of
	Extractor influence
	Semi-supervised learning with data constraint
	Test results

	Results on DroLAB
	Results on COMBI

	Conclusion
	Summary
	Future works

	Bibliography

