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Abstract

Machine translation remains one of the grand challenge problems of natural

language processing. Recent advances in the field have led to a number of

applications demonstrating the potential and impact of the technology.

Statistical machine translation (SMT) has emerged as the currently most

promising approach to tackle the translation problem. During the last

decade, it advanced to solidly outperform rule-based methods over many

tasks and evaluations. The main advantage of the statistical approach is

that expert knowledge is no longer manually encoded rule by rule, but

translation models can be learned automatically from parallel data consist-

ing of translated texts. This leads to faster and cheaper development of

new translation systems.

One limitation to date, however, is that the quality of SMT systems strongly

depends on the similarity between the training data and its deployment.

When a machine translation system is applied to a new task, performance

typically drops significantly. And since huge amounts of data are needed

for training, it is not possible to collect only matching data for every new

application. This thesis is devoted to adapting MT systems in the scenario

of mismatching training data. We develop different approaches to increase

translation performance even though all or some of the data we used for

training does not match the system’s ultimate application.

In order to improve translation quality when applying a translation sys-

tem to a new task, we explore four different approaches: integration of

mismatching data, combining matching and mismatching data, adapting

the system to very specific topics, and exploiting data matching in genre

only. We present techniques and experimental systems that improve the

translation quality for a particular type of given data.



We show that the context available during the translation process is shorter

when using mismatching data. In order to address this problem, we develop

a bilingual language model to increase the context that is available during

decoding. Using this model we improve the ability of the system to exploit

mismatching data and we show that this results in improved translation

quality.

Our training data is typically derived from varied sources encompassing

different topics and genres. Consequently, some parts of the data might

match the task better than others. In response, we weight the different

parts of the training data so that the influence of the matching data can

be increased. By avoiding a binary decision whether the data matches or

not, we can make better use of the corpora that match our target task to

a certain degree. We show significant improvements by combining models

trained on in-domain and out-of-domain data.

In order to enable the translation of topic-specific terms, data that matches

the topic is needed. For most applications, however, it is difficult to obtain

data that matches both in topic and in genre. Therefore, we present an

approach to include data in the translation system that only matches the

topic of the input data. We use the titles of Wikipedia articles to translate

topic-specific terms. Since this type of data does not contain all possible

word forms, we also develop techniques to find translations for morpholog-

ical variations of the same word.

Another problem addressed in this thesis is the adaptation of a translation

system to the genre of an application. In order to enable better exploitation

of data that matches in genre, but not in topic, we present a continuous

space language model. We show that this model generalizes better when

topic-specific words occur than an n-gram language model.

We perform a detailed analysis of the impact of all these approaches on the

task of translating different types of data and show their positive influence

in systems submitted to international evaluation campaigns.



Zusammenfassung

Maschinelle Übersetzung ist eine der größten Herausforderungen im Bereich

der Verarbeitung natürlicher Sprache. In den letzten Jahren haben Weit-

erentwicklungen in diesem Bereich neue Anwendungen der maschinellen

Übersetzung eröffnet und das Potenzial dieser Technologie gezeigt.

Es gibt verschiedene Ansätze zur maschinellen Übersetzung. Zu Beginn

wurden regelbasierte Ansätze und auf Interlingua basierende Systeme einge-

setzt. In den letzten 20 Jahren hat sich der Ansatz der statistischen maschi-

nellen Übersetzung zum vielversprechendsten entwickelt. Mittels dieser

Methode konnte in vielen Anwendungen und Evaluationen eine Verbesserung

der Übersetzungsqualität erreicht werden. Einer der Hauptvorteile der

statistischen maschinellen Übersetzung ist, dass kein Expertenwissen bei

der Entwicklung der Systeme benötigt wird, sondern Algorithmen benutzt

werden, die aus parallelen Daten die Übersetzungssysteme automatisch er-

lernen. Dies führt zu kürzeren Entwicklungszeiten und verringert die Kosten

für die Entwicklung von neuen Übersetzungssystemen.

Auch wenn die Verwendung von parallelen Daten zu einer signifikanten

Verbesserung der Übersetzungsqualität geführt hat, ergeben sich durch ihre

Verwendung neue Probleme. In heutigen Systemen hängt die Überset-

zungsqualität von der Ähnlichkeit zwischen den Trainingsdaten und dem

zu übersetzenden Text ab. Nur wenn diese sehr ähnlich sind, kann eine

zufriedenstellende Qualität erreicht werden. Wenn hingegen das System für

eine neue Aufgabe eingesetzt wird, kann es schnell zu einer deutlichen Ver-

schlechterung der Übersetzungsqualität kommen. Da für das Training der

Systeme sehr große Mengen an parallelen Daten benötigt werden, können

allerdings nicht für jede neue Anwendung neue Daten erstellt werden. Daher

beschäftigt sich diese Arbeit mit der Verbesserung der Übersetzungsqualität



in Anwendungsfällen, in denen keine oder nur teilweise passende Daten zur

Verfügung stehen.

Um diese Aufgabe zu erfüllen, wurden Techniken für vier verschiedene Prob-

leme entwickelt: die Integration von Daten, die sich in der Art sehr von den

Eingabedaten der Anwendung unterscheiden, die Kombination von ähn-

lichen und weniger ähnlichen Daten, die Adaption eines Systems an sehr

spezielle Themen und eine bessere Integration von Daten, die nur mit dem

Genre der Anwendung übereinstimmen. Für alle diese Probleme wurden

neue Ansätze entwickelt, die die Übersetzungsqualität in Anwendungsfällen

verbessern, in denen die entsprechenden Daten zur Verfügung stehen.

Zunächst hat sich herausgestellt, dass der Kontext, der während des Überset-

zungsprozesses zur Verfügung steht, kleiner ist, wenn die Daten nicht zur

Anwendung passen. In der Arbeit wurde das “Bilingual Language Model”

entwickelt, das den verfügbaren Kontext während des Übersetzungsprozesses

vergrößert. Mittels dieses Modells ist es möglich, mehr Nutzen aus Daten zu

ziehen, die den Eingabedaten der Anwendung weniger ähneln. Somit konnte

die Übersetzungsqualität unter diesen Bedingungen verbessert werden.

In vielen Szenarien ist ein Teil der Daten ähnlich zu den Eingabedaten der

Anwendung. Ein deutlich größerer Teil unterscheidet sich stärker von der

Anwendung. Deshalb wurden im Rahmen der Arbeit Methoden entwick-

elt, um verschiedene Teile des Trainingscorpus unterschiedlich zu gewichten.

Dadurch ist es möglich, den Einfluss der passenden Daten zu erhöhen. Ein

Vorteil des Ansatzes ist, dass keine binären Entscheidungen getroffen wer-

den, sondern den einzelnen Teilen des Corpus Gewichte zugeordnet wer-

den. Dadurch ist es auch möglich, Daten die nur teilweise passen, opti-

mal auszunutzen. In der Arbeit zeigen wir eine signifikante Verbesserung

der Übersetzungsqualität durch die Kombination von Modellen, die aus

passenden und nicht passenden Daten trainiert wurden.

Um das System auch zur Übersetzung von themenspezifischem Vokabular zu

benutzen, benötigt man Daten, die zu dem jeweiligem Thema passen. Für

die meisten Anwendungen ist es allerdings nicht möglich, Daten zu finden,



die sowohl im Thema als auch im Genre mit der Anwendung übereinstim-

men. Daher präsentieren wir in dieser Arbeit Techniken, die es ermöglichen,

auch Daten in das System einzubinden, die nur mit dem Thema der Anwen-

dung übereinstimmen. Als einen möglichen Ansatz benutzen wir die Titel

aus Wikipedia um themenspezifische Terminologie zu übersetzen. Da in

diesen Daten nicht alle morphologischen Varianten der Wörter vorkommen,

entwickeln wir einen Ansatz, um aus den Übersetzungen der Wikipedia-

Titel Übersetzungen für unbekannte morphologische Varianten zu lernen.

Ein weiteres Problem ist die Adaptatierung eines Systems an das Genre der

Anwendung. Um Daten, die nur in Bezug auf das Genre zu der Anwendung

passen, besser zu integrieren, haben wir ein “Continuous Space Language

Model” entwickelt. Mittels dieses Sprachmodells können Wordsequenzen,

die themenspezifische Wörter enthalten, besser generalisiert werden.

In der Arbeit geben wir einen detaillierten Überblick über den Einfluss der

entwickelten Modelle auf die Übersetzungsqualität bei der Übersetzung von

verschiedenen Arten von Vorträgen. Darüber hinaus zeigen wir den Ein-

fluss auf die Ergebnisse von Systemen, die bei internationalen Evaluationen

benutzt wurden.
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Introduction

Due to progress in statistical machine translation (SMT), in recent years machine trans-

lation has gained increasing attention and has been used in more and more real world

scenarios1, 2. While very good machine translation (MT) systems exist for a few do-

mains, it is still difficult to adapt a machine translation system to a new domain.

In this thesis we developed different methods to improve the adaptation of a statis-

tical machine translation system for a new application. The problems analyzed in this

thesis were driven by the application of machine translation in the scenario of trans-

lating lectures, but the resulting approaches where tested in several conditions and

helped to improve translation systems in several international evaluations (Callison-

Burch et al., 2012; Federico et al., 2012). Before investigating the problem of adapting

an MT system to a new task in the next chapters, we will first give a motivation of

the problem. Afterwards, we will give a short introduction to domain adaptation. In

Section 1.3, we introduce text characteristics that will be used to categorize the training

and test data. Afterwards, we will summarize the main contributions of this thesis and

give an outlook over the chapters of this thesis.

1.1 Motivation

We live in a more and more globalized world. A few decades ago most people had

only few opportunities to communicate with people speaking different languages. In

contrast, nowadays many people are able to travel to countries where they are not able

1http://translate.google.de/
2http://www.bing.com/translator
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1. INTRODUCTION

to speak the local languages. Furthermore, the internet provides access to information

written in many different languages.

Due to this development the language barrier becomes a much more important

problem for many people. Especially if we look at a university environment, we can

find many examples of problems due to different languages. Many German students

spend part of their studies abroad. Also many students from abroad come to Germany

to continue their studies there. Although most of them are able to speak English and

at least some words in the language of the country they are visiting, many problems

exist in university and everyday life.

At the Karlsruhe Institute of Technology (KIT) most of the courses are held in

German. As a result, in addition to the complex content of the lecture, foreign students

have also problems following the lecture due to problems understanding the German

language. To make the stay for foreign students more attractive it is therefore necessary

to give them support in understanding the lectures. Therefore, we do not only need to

translate the lectures themselves, but also the additional material available in class.

The internet provides even more resources that are only available in one or a few

languages. Nowadays, videos of many university courses offer an easy access to the

knowledge for many people around the world. But of course, only students who under-

stand the teaching language are able to follow those lectures.

The TED website1 sets an example of what is necessary to reach a broad audience.

TED talks are available online, together with transcripts and translations generated

by a large community. But with the enormous growth in resources available in the

internet, it is not possible to do this for all data. In the European Parliament the

speeches are even translated simultaneously. For university lectures we would also like

to provide simultaneous translations. But this is even more expensive and therefore,

universities cannot afford to pay interpreters for translating all lectures simultaneously.

This problem can only be addressed by using automatic translation.

Advances in statistical machine translation in the last 20 years make it possible to

build new translation systems quite fast while at the same time achieving a reasonable

translation quality. The SMT approach no longer needs expert knowledge to create

a new translation system, but the system is trained from huge amounts of existing

1http://www.ted.com/
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translations using machine learning approaches. Currently, systems translating between

more than 70 languages1 are available.

The use of parallel data, instead of expert knowledge, is a great advantage when

building a system. But the problem of getting appropriate parallel data still remains.

Since it is not only necessary to have large amounts of parallel data, but this data also

needs to match the application. In order to be able to build new systems for different

applications, we need strategies to adapt existing systems to the task at hand.

Only for very few tasks, matching training data for the given application is available.

This is, for example, the case for translating parliament proceedings or newspaper

articles. But for many other tasks this is not the case. Regarding the task of translating

university lectures, only a very small amount of matching data is available.

In order to build a translation system with a reasonable translation quality, we first

need to be able to better learn from non-matching data. If we look at the task of

translating TED lectures, there is, for example, the German phrase vor 60000 Jahren

(engl. 60000 years ago). This phrase seems not to be very domain specific, but it was

wrongly translated by the baseline system to before 60000 years. In contrast, a very

small system trained only on the in-domain data was able to translate the sentence

correctly.

Additional problems arise in the scenarios where small amounts of matching data

are available. In these cases we need to improve our ability to learn from a mixture of

matching and non-matching training data. If this is not done correctly, we will often

use translations learned from the largest training domain. In the test domain this can

lead to wrong translations. An example can be found in the following sentence: Wir

wollen uns das bestmögliche Ergebnis vorstellen. (engl. We want to imagine the best

case scenario outcome). The baseline system translated vorstellen as present instead of

imagine, since this is more common in speeches in the European Parliament. Another

example can be found in the phrase der Baupläne des Schiffs, where the word Schiffs

is translated as vessel while the better translation in this sentence would be ship.

Furthermore, the training data might be only partially suitable for the applications.

If we build a translation system for computer science lectures, we might have data from

lectures about mechanical engineering. This data is from the same genre and might

1http://translate.google.de/

3



1. INTRODUCTION

therefore be very helpful. On the other hand, the data is about a completely different

topic. Therefore, using this data might even harm the translation quality.

On the other hand, it might be useful to use research papers about computer science.

This data is about the same topic, but the genre is completely different. Therefore,

the wording used in the research paper is quite different from the ones in the lectures.

But data about the same topic might help us to translate topic-specific words like

Perzeptron (engl. preceptron), Kegelschnitt (engl. cone cut), Rotations-Ellipsoid (engl.

rotation ellipsoid)and Torus (engl. torus) which could not be translated correctly by

our baseline system. Therefore, we need to improve our ability to make the best use of

this data.

1.2 Domain Adaptation

Adaptation techniques have been applied in speech recognition and language modeling

for a long time. More recently, domain adaptation for different machine learning tasks

in natural language processing has gained a lot of attention (Daumé III and Marcu,

2006).

In many natural language processing tasks, we have some input data x ∈ X and need

to predict the corresponding output y ∈ Y. This is the case for machine translation,

where we need to predict the translation given the source sentence, but also for tagging,

parsing and many other natural language processing tasks. In all these tasks statistical

approaches, which try to learn a function f : X → Y, have been proven to be a good

approach. In order to train statistical models, some training data D : {(xn, yn) ∈ X×Y}

is used. These training examples are assumed to be independent and identically dis-

tributed, given some unknown distribution p. Then the model is trained to approximate

yn by f(xn) for all (xn, yn) ∈ D. Afterwards the model is applied to some test data

DA drawn from the same distribution p.

The problem is that this assumption is not true for many real-world applications.

In contrast, the test data DA is typically selected from a different domain and therefore

drawn from a different distribution pA. While the model might approximate yn well

by f(xn) for (xn, yn) ∈ D , this is often no longer true for samples from the test data

DA. If the distribution or domain of the test data and training data differ too much,
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the approximation will often no longer lead to satisfying results. In this case, we need

to adapt the translation system to the domain and distribution of the test data.

A first direction of research, when adapting the models to a new system, is to

develop models that better generalize in order also to match data drawn from other

distributions. These models may be as good on predicting yn for (xn, yn) ∈ D or even

a little worse, but will perform better when predicting samples from DA.

A second research direction is to improve the modeling of the training data. The

assumption that all the training data is drawn from the same distribution is quite a

rough approximation. A better way to model it is to use a set of training data sets

Di with D = ∪Di, where each one is drawn from a distribution pi. The most common

way to do this is to use two sets of training data, an in-domain and an out-of-domain

set. In this case, we can use this additional information about the source of the data to

build a model that better approximates the samples drawn from the distribution pA.

The methods described above mostly rely on the fact that some distributions that

are used to draw parts of the training data are more similar to the distribution of the

test data than others. One problem in such a complex task as machine translation is

that is not straight forward to define whether two domains or distributions are similar

or not. For machine translation, the similarity of the distributions means the similarity

of the input text.

When comparing texts, several dimensions of similarity can be distinguished. Two

texts can be about the same topic, but from different genres like a lecture transcript and

a web page about that topic. On the other hand we can have two university lectures,

one about computer science and the other one about art. In both cases the domains of

the two texts will be very different, but they share some characteristics.

Therefore, it might not only important to model how similar the source of the

training data is to the test case, but also to model in which characteristic or dimension

they are different and in which way they are similar.

1.3 Text Characteristics

A text can be characterized by several properties and these text characteristics can be

used to categorize different texts. As mentioned before, we will try to use these charac-
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teristics to adapt the system using data that matches only in some text characteristic.

In this thesis we concentrated on two main characteristics.

First, texts can be characterized by the topic. The topic of the text describes what

the text is about. So this characteristic focuses on the content of the text. A human

is directly able to determine the topic given a text. But there can be topic switches

in a text and the text can be about different topics. Furthermore, there is a hierarchy

of topics. We can use broader topics like computer science or more specific ones like

speech recognition.

The topic or theme of a text has gained much attention in the natural language

processing community in the context of probabilistic topic models. These approaches

try to determine the topic or a distribution of topics for a given text. In most of

these approaches like, for example, in the most common one called Latent Dirichlet

Allocation (LDA) (Blei et al., 2003), the topic is represented by a distribution over the

words of the vocabulary. In recent years several extensions and additional approaches

were presented (Blei et al., 2010; Shu et al., 2009). Most of them model the topic

mainly by the distribution of words. Therefore, the topic seems to mainly influence the

word choices in a given text.

The second dimension in which different texts can be compared is the genre or type

of text. Initial work in the field of analyzing the type of text was undertaken by Biber

(1991). He distinguishes between the genre and the text type. According to this work,

the genre is defined primarily based on external criteria. For example, “newspaper

articles are found in the news section of newspapers”(Biber, 1989). In contrast, the

text types are defined by analyzing the syntactic and lexical features that occur in the

text.

Biber (1991) analyzed the language structure and phonemes occurring in a large

variety of different text corpora. By performing a statistical analysis he discovered five

main dimensions to characterize the type of text. The first one is “involved versus

information production”. As described in Biber (1993) “involved production” can be

conversations like personal letters or public conversations, while examples for “infor-

mation productions” are official documents and academic prose.

The five dimensions presented in Biber (1991) where used in Biber (1993) to deter-

mine eight major types of English texts. These text types were automatically found
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using a clustering algorithm. Although there is a strong correlation between genre and

text type in the works of Biber, there is no one-to-one mapping between them.

More recently, with availability of even larger corpora, the automatic detection of

genre has received even more attention (Kessler et al., 1997; Petrenz, 2009). In these

works, the authors do not define the genre based on external features only, but combine

internal and external features. A definition based on both features can e.g. be found in

Kessler et al. (1997): “We will use the term genre here to refer to any widely recognized

class of text defined by some common communicative purpose or other functional traits,

provided the function is connected to some formal cues or commonalities and that the

class is extensible”.

It is worth mentioning that the concepts of topic and genre are orthogonal. But, of

course, covariances do exist. For example, in the genre of lectures there will be quite a

lot of examples of the topic mathematics, while this will be a quite rare topic in news

articles.

1.4 Main Contributions

In this thesis we mainly investigated four different problems that arise when porting

a machine translation system to a new task. Since in most scenarios, large amount of

mismatching training data are available, the first contribution of this work concentrated

on the following question:

1. Why does mismatching training data lead to lower performance in machine

translation and how can we exploit this data optimally?

In order to answer this question, we analyzed in how the translations of matching

and mismatching test sentences are generated. We show that one problem when trans-

lating mismatching data is that the selection of the translation can only be made based

on less context. Therefore, we propose to use an additional model in phrase-based

machine translation to increase the available context.

In many real-world scenarios small amounts of matching in-domain data are avail-

able in addition to the mismatching training data. Therefore, the next focus point

is:

2. How can we combine in-domain and out-of-domain information?

7
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In order to improve the combination of in-domain and out-of-domain information,

we present two approaches of combining translation models trained on different data

sets. Furthermore, we analyzed what aspects of the translation model need to be

adapted and how large the influence of the adaptation is.

As mentioned before, text can be categorized using different criteria. In a first step,

we looked at the topic of the text.

3. What problems arise if we change the topic of the task and how is it influenced

by the specificity of the topic?

In this part of the work, we analyzed why the translation system performance gets

worse when translating a text about a new topic. We will compare a task with a

very specific topic like university lectures to a task with a more general topic like the

translation of TED talks. Furthermore, we will present an approach to better handle

out-of-vocabulary (OOV) words that occur if we need to translate input with a very

specific topic.

Finally, we concentrate of a different criterion, the genre. Most of the available

parallel corpora, like the EPPS corpus (Koehn, 2005), News commentary corpus, BTEC

corpus or the TED corpus, contain sentences from the same genre, but with different

topics. If we need to adapt the translation system towards a new domain, the genre of

this domain might be the same as the one of one of these corpora or more similar to

one of the training corpora genres. The question that arises in this case is:

4. How can we exploit genre similarity of the data in the best way?

In order to improve the modeling of the genre similarity, we propose two language

models that generalizes better than a standard n-gram language model when many

topic-specific terms occur.

1.5 Outlook

In Chapter 2, we will give a short overview on SMT systems. In the description we will

concentrate on those parts of an SMT system, which are relevant for the experiments

described in the later chapters. In the following chapter we will review related work
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on the topic of domain adaptation in the context of machine learning and statistical

machine translation.

In Chapter 4 we describe the application scenario, in which we tested the proposed

methods. We will describe the characteristics of the task and the data. Furthermore,

we perform initial experiments using baseline systems.

Afterwards, we describe the problems of generalizing an MT system in order to

match many different domains. We will analyze why our baseline model does not

perform as well when applying it to a different domain. In order to improve the gen-

eralization, we will present the bilingual language model. We show that this model

increases the context considered during translation and also, the translation quality

especially when using non-matching data. This way we are able to better generalize

the translation system.

As mentioned in Section 1.2, another direction of research in domain adaptation

is to include the source of the data into the modeling process. In Chapter 6, we

explore various ways to combine matching and non-matching training data. Therefore,

we review language model combination approaches for the task of lecture translation.

Furthermore, we introduce two new approaches for translation model combination. One

approach is modeled by a log-linear combination with back-off to a default value, while

the other uses the framework of factored translation models. We compare the impact

of these approaches and other related approaches on the translation quality.

In Chapter 7, we try to adapt an MT system to a topic using data that only matches

in topic, but not in genre. Using the example of Wikipedia article titles we show how

data from a completely different genre can be used to help translate topic-specific terms.

Finally, in Chapter 8, we look at the other dimension of text and analyze how to

adapt to the genre of lectures. Therefore, it is often not possible to use data that also

matches in topic. In a lecture translation system we are using a new approach for

continuous space language models. With this approach we are able to make better use

of the TED data, which is homogeneous in genre, but covers different topics.

Finally, we present an overview of the results achieved by applying the proposed

methods in different scenarios. In the end we will give a conclusion of the work.

9





2

Basic SMT System

In this chapter we will describe the basic statistical machine translation system that is

used in this thesis as a baseline system. This system is further extended to improve its

capability to adapt to new translation tasks.

In order to describe the translation system we will introduce the different models

that compose the translation system. First, we will describe the preprocessing that

we apply to the training data as well as the test and development data. In addition

to the general preprocessing, we apply special German preprocessing to handle several

characteristics of the German language. Furthermore, we will describe the translation

model that is used in the SMT system. Afterwards, the two other models used in

the baseline translation model, the language model and the reordering model, will be

presented.

After describing the different models we will present the log-linear model used to

combine these models into one approach. Finally, the decoder as well as the optimiza-

tion procedure used in this thesis will be introduced.

2.1 Preprocessing

In a first step of the training process, training data is preprocessed. This includes

normalizing special symbols, smart-casing the first word of each sentence and removing

long sentences and sentences with length mismatch. For the German language, we also

map words written according to the old orthographic rules to their new writing form.

Furthermore, if we use German as the source language, we apply compound splitting to
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the training and test data to be able to translate unseen German compounds also. For

this purpose, we used the count-based method proposed in Koehn and Knight (2003).

2.2 Translation Model

After the preprocessing, the discriminative word alignment approach as described in

Niehues and Vogel (2008) was applied to generate the alignments between source and

target words. For this, we need to build the generative word alignment using the IBM-4

model using the parallel implementation of GIZA++ (Gao and Vogel, 2008). This in-

formation and POS information from the TreeTagger (Schmid, 1994) in both languages

are used as features in the discriminative word alignment model. Furthermore, features

to model the fertility as well as features to model first-order dependencies are used.

Afterwards, the phrase table is built using the scripts from the Moses package

(Koehn et al., 2007). In a first step, the phrase pairs are extracted from parallel data

using the word alignment information. Therefore, a phrase pair is extracted, if it

does not violate the word alignment. A phrase pair (ē, f̄) with ē = eistart . . . eiend
and

f̄ = fjstart . . . fjend
violates the word alignment if a word outside the phrase pair is

aligned to a word inside the phrase pair. Given the source sentence f = f1 . . . fJ , the

target sentence e = e1 . . . eI and the alignment A = {(j, i)} ⊂ {1 . . . J} × {1 . . . I}, this

is formalized by:

(ē, f̄) consistent withA↔

∀ei ∈ ē : (ei, fj) ∈ A→ fj ∈ f̄

AND ∀fj ∈ f̄ : (ei, fj) ∈ A→ ei ∈ ē

AND ∃ei ∈ ē, fj ∈ f̄ : (ei, fj) ∈ A

(2.1)

After extracting the phrase pairs from the parallel corpus, the scripts calculate four

scores to be able to evaluate the quality of the phrase pair. First, we use the relative

frequency of the phrase pair given the source phrase as well as the inverse relative fre-

quency of the phrase pair given the target phrase. These probabilities can be calculated

as:

p(f̄ |ē) =
count(f̄ , ē)∑
f̄ count(f̄ , ē)

(2.2)

p(ē|f̄) =
count(f̄ , ē)∑
ē count(f̄ , ē)

(2.3)
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Although these features are often very good to estimate the quality of a phrase pair,

their prediction quality is no longer good enough if the source or target phrase only

occurs quite rarely. In the extreme case, where the source phrase does only occur once,

the first probability will always be one. Therefore, we use two approaches to tackle

the problem of having many phrase pairs which only occur rarely. First, we follow

Foster et al. (2006) not to use the relative frequencies themselves as features, but the

smoothed version. We used a fix-discounting method originally proposed for language

model smoothing by Kneser and Ney (1995). In our experiments, we used the modified

version of it using interpolation proposed by Chen and Goodman (1996) . In this case

the probability is defined as:

p(f̄ |ē) =
count(f̄ , ē)−Dcount(f̄ ,ē)∑

f̄ count(f̄ , ē)
+ α(ē)Dcount(f̄ ,ē)pb(f̄ , ē) (2.4)

In the equation α(ē) is defined as

α(ē) =
n1+(∗, ē)∑
f̄ count(f̄ , ē)

(2.5)

where n1+(∗, ē) is the number of phrase pairs with the target side ē that occur at least

once in the corpus. Furthermore, the smoothing distribution pb(f̄ , ē) is defined as:

pb(f̄ , ē) =
n1+(f̄ , ∗)∑
f̄ n1+(f̄ , ∗)

(2.6)

In this equation n1+(f̄ , ∗) is defined analogically to n1+(∗, ē). The discounting value

Dcount(f̄ ,ē) is defined the same way as the one of the language models in Chen and

Goodman (1996). The probabilities p(ē|f̄) in the inverse direction are defined analogi-

cally.

Furthermore, we can use the lexical probabilities additionally to approximate the

translation probability better. They have the advantage that they are based on word

occurrences compared to the previously mentioned ones, which are based on phrase

occurrences. Individual words occur more often than phrases. These lexical proba-

bilities are again used in both directions. Given the alignment inside the phrase pair
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a = {(j, i)|(j, i) ∈ A ∧ jstart ≤ j ≤ jend ∧ istart ≤ i ≤ iend}, they are defined as:

p(f̄ |ē, a) =

jend∏
j=jstart

1

|{i|(j, i) ∈ a}|
∑

i:(j,i)∈a

P (fj |ei) (2.7)

p(ē|f̄ , a) =

iend∏
i=istart

1

|{j|(j, i) ∈ a}|
∑

j:(j,i)∈a

P (ei|fj) (2.8)

For several source phrases there are many different translations, which we cannot all

consider during decoding due to runtime limitations. Furthermore, most of them have

low probabilities and will not lead to good translations of the sentence. Therefore, we

limit the number of translations T (f̄i) for every source phrase f̄i to a maximum of n by a

combination of histogram and beam pruning. We used at most 10 translations for every

source phrase. We rank the phrase pairs in order to be able to select the top translations

by scoring them using some initial weights that were determined heuristically. These

weights are independent from the weights generated by MERT.

2.3 Language Model

To model the target language, we trained a language model on the target side of

the parallel data. If not stated differently, we used a 4-gram language model. The

n-gram probabilities for the language model were trained using the SRILM toolkit

(Stolcke, 2002). We used also modified Kneser-Ney smoothing for the language model

probabilities.

2.4 Reordering Model

In our translation systems we use a reordering model that performs the reordering in

a preprocessing step. During training, we first learn rules how to reorder the source

sentence in a way that its structure is similar to the one of the target sentence. In a

preprocessing step prior to the translation of the sentence, different reordering variants

of the source sentence using these rules are encoded into a lattice. Afterwards this

lattice is used as input to the decoder. The decoder can then translate the lattice from

left to right.
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To train the reordering model we use parallel data together with the automatically

generated word alignment for the translation model. In addition, we generate the part-

of-speech (POS) tags for the source sentences using the TreeTagger (Schmid, 1994).

As described in Rottmann and Vogel (2007), we learn rules how to reorder the source

sentence to generate a monotone alignment. In order to extract these rules, we check

every source sequence in the corpus up to a given length for crossing alignment. When

a crossing alignment occurs, it means that the source words need to be shuffled in

order to translate them in monotone order into the target sequence. In this case, we

extract the source sequence and the reordered sequence that leads to an monotone

alignment. We then extract different types of rules from these sequences. We use the

words themselves as a rule as well as the sequence, where the words are replaced by

POS-tags. By doing so, we are able to generalize new sentences better. In addition, we

use different combinations of words and POS-tags.

In the experiments we consider sequences of a length up to ten and only store rules

that occur at least five times. To evaluate the different rules, we calculate their relative

frequency.

Since we are forced to limit the reordering sequence by a length of ten, we are only

able to model short-range and mid-range reorderings with these reordering rules. If

German is one of the languages we use during translation, often not only short- and

mid-range reorderings are necessary, but also long-range reorderings. In contrast to

English or French, in German the verb is at the end of a sub-clause and even in the

main clause, often the verb consists of two parts. In this case, the second part of the

verb is also at the end of the sentence, while the verb in an English sentence is generally

located at the second position in a sentence. Therefore, in Niehues and Kolss (2009)

the reordering approach was extended to cover long-range reorderings by allowing gaps

in the reordering rules.

In the reordering step prior to the translation, a lattice containing different word

orders is generated. To build lattices we start with the original source sentence. If a

reordering rule can be applied to the source sentence and its probability exceeds the

threshold, a path with the reordering word sequence according to the rule is added to

the lattice. In this case the first edge of the path is weighted by the relative frequency

of the rule and the following edges are assigned a weight of one. If the same reordering

can be generated by several rules, only one path with the highest weight of all rules
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is added. In our experiments we use a threshold of 0.2 for the short-range reordering

rules and a threshold of 0.05 for the long-range reordering rules. In addition, if the

same long-range reordering rule can be applied to a sentence more than five times, it

is not considered helpful for this sentence and ignored.

After the additional edges are added to the lattice, the weight of the edges in the

monotone path is determined. Therefore, we calculate the maximum probability of all

reordering rules starting with the word of the edge. The weight of the monotone edges

is set as subtraction of the maximum from one.

2.5 Log-linear Model

The different models described in the previous parts are all useful to discriminate

between good and bad translations. In our translation system, as in all state-of-the-art

statistical machine translation approaches, these models are combined using a log-linear

model. The log-linear model defines a probability for a target sentence given the source

sentence by:

p(e|f) =
1

Z
exp

 ∑
g∈features

λgg(e, f)

 (2.9)

where the normalizing factored Z is defined as:

Z =
∑
e

exp

 ∑
g∈features

λgg(e, f)

 (2.10)

In this case the first sum iterates over all possible translations e of the source sentence

f .

In our baseline system we use nine different feature functions in the log-linear model.

First, we have the four different features of the translation model. As described in

Section 2.2, we calculate four different scores for every phrase pair. Each of these

scores is used as a feature for the whole sentence in the following way:

gTM (e, f) =

Ī∑
i=1

log(p(ēi|f̄i)) (2.11)

where the translation of f in to e is generated using the Ī phrase pairs ((f̄1, ē1), (f̄2, ē2),

.., (f̄I , ēI)).
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2.5 Log-linear Model

Secondly, we use the language model probability as a feature in the log-linear model.

This leads to the following feature:

gLM (e, f) =
J∑

j=1

log(p(ej |ej−1, . . . , ej−(n−1))) (2.12)

In this equation n is the length of the context used in the language model.

Furthermore, we use two features to model reordering. First, we use the standard

distance-based reordering model used in nearly all current machine translation systems.

This is defined as:

gDRO(e, f) =

Ī−1∑
i=1

1

4
(sourceStarti+1 − sourceEndi − 1)2 (2.13)

In this equation sourceStarti is the index of the first source word of the ith phrase pair

and sourceEndi is the index of the last source word. In contrast to other approaches,

we do not use the original source index of the word, but the index according to the

current path in the lattice that we translate. In addition to this model, we also use

the weights of the edges in the lattice as an additional feature in the log-linear model.

This feature is defined as

gLRO(e, f) =
I∑

i=1

log(w(ei)) (2.14)

where w(ei) is the weight of the edge of the source word ei.

Finally, we use two more count features in the log-linear model. First, we use

the word count model, the value which represents the number of target words in the

sentence. This feature makes it possible to compare translations of different length in

a fair way. If we look at the language model feature, we see that its value will always

decrease if we increase the length of the sentence, since p(ej |ej−1, . . . , ej−(n−1)) is a

probability smaller than one. Therefore, we use the word count feature to prefer longer

sentence.

The second count feature is the phrase count feature. Its value is the number of

phrase pairs used in the translation. One problem in phrase-based machine translation

is that hypotheses produced using different segmentations compete against each other.

On the one hand longer phrase pairs have the advantage of including more context

information compared to shorter phrase pairs. On the other hand, short phrase pairs
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occur more often and therefore their probabilities can be estimated more reliably. One

approach to model this is to use the phrase count feature. Its weight can be used to

prefer longer or short phrase pairs.

2.6 Decoder

The translation of a source sentence is generated using an in-house phrase-based decoder

as described in Vogel (2003). This decoder is capable of taking the reordering lattice

as input as described in Section 2.4. In the decoder, a search of a possible translation

is performed and the best hypothesis according to the log-linear model is generated

2.7 Optimization

Finally, the weights of the log-linear model need to be optimized. For this, we translate

the development data with the decoder and generate an n-best list. In our experiments,

we usually use a 300-best list. Then we use the minimum error rate training (MERT) as

described in Venugopal et al. (2005) to find the parameters that lead to the best BLEU

score (Papineni et al., 2002). This is repeated for several iterations. In the experiments

we normally use 20 iterations. These optimized weights are used for translating the

test data.
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3

Related Work

In recent years, strategies to perform domain adaptation in the field of natural language

processing (NLP) gained an increasing interest in the research community. We will

first review work that has been done in general on domain adaptation in the machine

learning community.

Afterwards, we will focus on the related work in the area of domain adaptation for

statistical machine translation. This work is often motivated by the ideas used in other

NLP tasks, but often the approaches cannot be applied directly since machine transla-

tion is not a classification task like most of the other NLP tasks (Carpuat et al., 2012).

Work in the area of machine translation that is specific to the techniques introduced

in later chapters will be reviewed in these chapters.

3.1 Domain Adaptation in Machine Learning

In many real-world scenarios of tasks considered in machine learning such as named

entity recognition (NER), spam filtering or recapitalization, the assumption that the

training data and test data have the same distribution does not hold. Therefore, domain

adaptation which tries to model the situation where the distribution of the training and

test data is different has gained an increasing interest (Blitzer, 2008; Jiang, 2008).

The approaches presented in the literature can be divided into two main scenarios.

In the first scenario, no labeled data from the target domain is available. In this case,

only unsupervised domain adaptation can be used to adapt the models to the target

domain.
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In the second scenario labeled data in the target domain is also available. Therefore,

we can use supervised approaches which can leverage the fact that the data from the

target domain is more important than the data from the source domain.

An additional strategy to train a classifier, the semi-supervised learning (Chapelle

et al., 2006; Zhu, 2006), has been shown to be very useful. In this approach small

amounts of label data and large amounts of unlabeled data are used to train a model.

This situation is very similar to many domain adaptation scenarios, where we also often

have large amounts of out-of-domain data and small amounts of labeled or unlabeled

in-domain data. Therefore, this technique has been adapted to the domain adaptation

scenario. Dai et al. (2007a) used an EM-based algorithm for domain adaptation and

Xing et al. (2007) used a bridged refinement method. Jiang and Zhai (2007a) extended

an instant weighting approach to the case where there is labeled and unlabeled data.

They showed improvements on the tasks of POS-tagging, NE recognition and spam

classification.

If labeled data from the target domain is available, one method to make use of the

source and target domain data is to use Bayesian priors. In this approach, the source

domain data is used to model priors on the parameters of the model. Then the model

is trained on the target domain data by also including these priors. Li and Bilmes

(2007) proposed a general Bayesian divergence prior. They show results on the vowel

classification and object recognition task using a support vector machine (SVM) and

a multi-layer perceptron (MLP). Chelba and Acero (2006) used Bayesian priors in a

maximum entropy classifier on the task of capitalizing text.

A different strategy to domain adaptation is to augment the features used in the

classifier. In Daumé III (2007) every feature is replaced by a general, a source-domain

and a target-domain specific version. The author evaluated this method on different

NLP tasks, like NE recognition, POS-tagging, recapitalization and shallow parsing.

Jiang and Zhai (2007b) presented a two step approach. They first select features that

generalize well. In the second step, features that are useful for the target domain are

selected.

Since we normally have only a small amount of in-domain data, but a lot of out-

of-domain data, a different strategy is to use mixture models. An approach to include

mixture-models for performing domain adaptation in the maximum entropy framework
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is presented in Daumé III and Marcu (2006). They evaluated their method on mention

type classification and tagging as well as on the recapitalization task.

Finally, Dai et al. (2007b) extends boosting-based learning algorithms to perform

domain adaptation. This algorithm is evaluated on the task of text classification.

In the second scenario for domain adaptation in machine learning no labeled data

for the target domain is available. In this case the model has to be adapted using only

unlabeled training data from the target domain.

One strategy to make use of this data is to re-weight the labeled training examples

from the source domain using statistics from the unlabeled target domain data. Lin

et al. (2002) analyzed this instant weighting approach for SVM classifiers.

A second approach is to use bootstrapping. In this case, a model trained on the

labeled data is used to label the unlabeled data. McClosky et al. (2006) used self-

training to adapt a parser to the target domain. Steedman et al. (2003) used co-training

introduced by Blum and Mitchell (1998) to adapt a parser to the new domain.

Finally, structural correspondence learning (SCL) can be used to adapt linear dis-

criminate models. This method tries to find a representation of the data that behaves

similar in the source and in the target domain. Blitzer et al. (2006) evaluated the model

on POS tagging and Blitzer et al. (2007) on sentiment classification.

3.2 Domain Adaptation in Statistical Machine Transla-

tion

In recent years more and more interest has been gained by the domain adaptation

problem in machine translation. After first improvements by Bulyko et al. (2007)

inspired by research in the field of speech recognition, domain adaptation became one

of the main focus points in machine translation research (Banerjee, 2013; Carpuat et al.,

2012).

As described in the last section, a log-linear model is used in machine translation

to combine the different knowledge sources. In contrast to the other models used in an

SMT system, this one is trained discriminatively and therefore techniques described in

the last section can be applied. But in contrast to the translation model and language

model, quite few data is needed to train this model. Therefore, most work in domain
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adaptation is focused on adapting the different components of the machine translation

system towards the target domain.

Clark et al. (2012) presented an approach to adapt the log-linear model itself. In

their method, they use general as well as domain-specific weights for all the models

combined in the log-linear model. Thereby, dependent on the current domain, the

influence of the models can be changed to get the overall best BLEU score.

In most approaches the two main components of a machine translation system, the

language model and the translation model are adapted towards the target domain.

Since both models are no discriminative models, the techniques described in the last

section cannot be applied directly.

For both models different types of data to perform the adaptation is needed. For the

language model, the adaptation techniques use monolingual target language corpora.

The main advantage here is that this data is widely available. For the translation

model, the first idea is to use parallel data. Since this is often not available techniques

to use other types of data have been presented.

A first approach to perform adaptation for statistical machine translation systems

was presented in Bulyko et al. (2007). Inspired by the improvements of language model

adaptation techniques in speech recognition, they proposed to use a linear and log-linear

combination of different language models trained on in-domain and out-of-domain data.

The weights were optimized using Powell search directly towards minimizing the TER

score.

Similar experiments were done by Koehn and Schroeder (2007), to adapt translation

systems for European languages. They also used log-linear combination of different

language models, with weights optimized directly towards a machine translation error

metric. For the linear combination of language models, they used weights that try to

minimize the perplexity of the development data.

A different approach to perform domain adaptation is to select the language model

training data from huge background data (Moore and Lewis, 2010). Therefore, they

trained first a language model on the in-domain data and a second language model on

a randomly selected subset of the background data. Then the cross-entropy of both

language models is used to select the language model training data.

If translation model adaptation is performed, often no parallel in-domain training

data is available. Therefore, in addition to techniques trying to adapt the translation
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model using some parallel in-domain data, approaches using other resources have been

suggested. These resources can be monolingual data as well as comparable data or

dictionaries.

For the first case, where some in-domain data is available, the approaches can again

be divided into mixture-models, instance weighting and data selection. In most cases,

language model adaptation is done in addition.

Foster and Kuhn (2007) use linear and log-linear language model and translation

model adaptation. They optimize the weights for the different domains on a develop-

ment set or set the weights according to text distance measures. A different way is to

use two translation models and combine them with the alternate decoding path model

(Koehn and Schroeder, 2007).

Another method is presented by Bisazza et al. (2011). They only fall back to

the general model if the in-domain model does not have any information about the

translation unit. Furthermore, they use an indicator feature to prefer the in-domain

model.

In the case where it is unknown which part of the data matches the applications,

Tam et al. (2007) presented an approach to infer the topics of the test and training data

using a bilingual LSA. In this model they enforce a one-to-one topic correspondence

between source and target language. Thereby, they can infer the topic only on the

source test data. They use this information to then perform marginal adaptation of

the language model as well as for the bilingual lexicon. The adapted lexica are then

combined log-linearly with the other models.

A different technique is to increase the weight of the in-domain data. Matsoukas

et al. (2009) changed the weights of the phrase pairs by assigning discriminative weights

to the sentences in the parallel corpus. Thereby it is possible to give more weights to

phrase pairs extracted from sentences found in the in-domain corpus.

Another way to perform instance weighting was presented in Foster et al. (2010). In

contrast to the work mentioned before, in this approach the instance weighting is done

at the phase pair level and not at the sentence level. Furthermore, a feature-based

method is used to determine the usefulness of the phrase pair. Then this model is

linearly combined with the in-domain model.

A third approach to adapt the translation model is to perform data selection. A

first method was proposed by Hildebrand et al. (2005) which adapts the translation
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using similar sentences automatically found using information retrieval techniques.

More recently the approach presented by Moore and Lewis (2010) for the language

model has also been used for translation model data selection. Axelrod et al. (2011)

and Axelrod et al. (2012) used the language model cross-entropy of the source or target

language and in addition, they also showed results using a combination of both. If both

scores are combined, the score is no longer negatively affected when one language is

morphologically rich. In Duh et al. (2013), a continuous space language model using

a recurrent neural network is used for calculating the cross-entropy instead. Since it

can better generalize using only small amounts of in-domain data, they could show

additional improvements compared to using an n-gram language model for calculating

the cross-entropy.

Instead of using only the language model cross entropy, Mansour et al. (2011)

combined it with the IBM1 cross-entropy. They could improve the data selection by

using a combination of both cross-entropies.

Banerjee et al. (2012a) presented an approach to select the training data according

to improvements in translation quality. Small batches of the data are selected and only

added to the training if they lead to an improvement of systems’ translation quality.

In Banerjee et al. (2012b), the sentences which are able to cover OOV words are added

to the training data.

In many tasks, we do not have this parallel in-domain data to perform the adapta-

tion. Therefore, authors suggested approaches to also adapt the translation system in

this condition. One very successful strategy in this condition is to generate synthetic

parallel text by translating the monolingual corpus with a baseline system. Then this

corpus can be used to adapt the baseline system.

Ueffing et al. (2007) used monolingual source texts and translated them using a

baseline system. Then translations having a high confidence are used as additional

training data. In their algorithm this is done for several iterations.

In Schwenk and Senellart (2009) the approach is explicitly used for domain adapta-

tion. They build a baseline system using parallel UN data and then adapt the system

towards the news domain using only monolingual data.

In Bertoldi and Federico (2009), target monolingual data is also used and translated

in the reverse direction. They showed that this data is more helpful than monolingual

source data translated into the target language.
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Another approach is presented by Snover et al. (2008). They used cross-lingual

information retrieval to find similar target language corpora. This data was used to

adapt the language model as well as to learn new possible translations.

In addition, authors tried to use other knowledge sources like dictionaries or com-

parable data. Wu et al. (2008) adapted the system using hand-made dictionaries and

monolingual source and target language texts.

Daumé III and Jagarlamudi (2011) mine comparable data to adapt the translation

system to a new domain. They used Canonical Correlation Analysis to find translations

for unseen words. A similar approach was presented in Prochasson and Fung (2011).

They also use comparable data to find translations for rare words. Carpuat et al.

(2012) tried to find new translations as well by using comparable data as well as active

learning.

In Carpuat and Wu (2007) an approach to phrase-sense disambiguation using a

discriminative classifier is presented. By using this type of translation model, Carpuat

et al. (2012) tried to use techniques from domain adaptation for machine learning to

adapt the model to the target domain.

If documents from different domains need to be translated, Banerjee et al. (2010)

present an approach to combine different adapted translation systems by first determin-

ing the domain of an input sentence using a SVM classifier. Then the domain specific

system of the selected domain is used to translate the input sentence.

3.3 Comparison of this Work to the Related Work

In Chapter 6, we present and analyze two methods to combine in-domain and general

data in a machine translation system. The idea of one of the methods has some similar-

ity with the one presented in Daumé III (2007). Since machine translation in contrast

to other ML tasks uses only very few but complex features, we are also need to change

the features itself, while Daumé III (2007) only duplicates them. As mentioned before,

this task has already drawn the attention of several other research groups (Bisazza

et al., 2011; Foster and Kuhn, 2007; Koehn and Schroeder, 2007) on different adapta-

tion tasks. In this chapter we will compare our method to these approaches and point

out the differences. Furthermore, we will perform a detailed analysis on the influence

of adapting the different aspects of the translation model.
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In Chapter 7 we will concentrate on the problem of adapting the machine translation

system towards a very specific topic. We will show that in this case the problem

of learning new translations for topic-specific words is very important. The problem

of learning new translations has been address by Wu et al. (2008) using hand-made

dictionaries, by Daumé III and Jagarlamudi (2011) and Prochasson and Fung (2011)

by using comparable data and by Banerjee et al. (2012b) by applying text normalization

and using additional parallel data.

In the method presented here, we learn the additional terminology from Wikipedia.

The advantages of this approach are that Wikipedia is freely available for many lan-

guages and very easy to acquire. Furthermore, it covers many different topics providing

even translations for very specific topics. We combine the method with techniques to

translate different morphological word forms.

To improve the modeling of the genre, we present a class-based language model

approach and a continuous space language model. Several continuous space language

models (Le et al., 2011; Mikolov et al., 2010; Schwenk, 2007) have been presented

recently. For domain adaption, Duh et al. (2013) used a continuous space language

model to perform data selection. However, the language model presented in this thesis,

is to our knowledge the first one which is directly integrated into the decoder.
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Application Scenarios

In this chapter we will describe the tasks and applications upon which the approaches

presented in the next chapters will be tested. In the first section, we will give an

overview of the different translation tasks that we investigate in this thesis.

In the next part, we will describe the data that is available for the tasks. The text

corpora differ in size and domain.

Finally, we will perform initial experiments using baseline systems. We will discuss

the translation quality and point out the different problems that need to be tackled by

the methods described in the following chapters.

4.1 Tasks

One interesting application for machine translation is the translation of lectures and

speeches. In this case, the lecture is first recognized by an ASR system. Afterwards, the

machine translation system is used to translate the text of the source language recog-

nized by the ASR system into a different language. In our experiments we concentrated

on translating from German into English. We applied the MT system to two similar

tasks. In the first subtask, we evaluated our approaches on the task of translating TED

lectures. For this subtask, we have got the advantage that we have parallel in-domain

data from the same source.

In the second subtask, we used German computer science lectures collected at the

KIT as a test set. In this case, the in-domain training data from the TED website is
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not perfectly matching. Furthermore, the lectures are targeted for students from the

university and not for a general audience like it is the case with the TED lectures.

4.2 Data

After describing the task in the previous section, we will now describe the data that

we used to train our models as well as the data that we used to test the different

approaches described in this work.

4.2.1 Test Data

As mentioned in the previous section, the main task where we applied machine trans-

lation is the translation of lectures and speeches. To test the performance on this task,

we used two different test sets.

The first test set is extracted from the TED corpus. It consists of talks with a

total length of around 3500 segments. In contrast to most of the other corpora, the

text is not segmented into sentences, but into segments that are used for subtitling.

Usually, these subtitles are shorter than sentences. The TED talks are targeted towards

a general audience. Consequently, the vocabulary in these talks is not as specific as

it is normally in university lectures. This is also indicated by the smaller vocabulary

used in the TED lectures. Furthermore, they are given by very good speakers leading

to less spontaneous effects like disfluencies and repetitions which occur more often in

less staged presentations like university lectures.

The second test case consists of computer science university lectures. In this use

case, we recorded, transcribed and translated computer science lectures from the KIT.

Compared to the TED lectures we have got a more difficult vocabulary and need to

be able to translate quite specific words. We used around 2,000 sentences as test set.

The numbers are summarized in Table 4.1. We calculated all the numbers on the

preprocessed corpus as it is then used for translation.

4.2.2 Training Data

The largest freely available parallel corpus for German to English is the “European

Parliament Proceedings Parallel Corpus ”(EPPS) (Koehn, 2005). This corpus contains

all the proceedings from the European Parliament starting from April 1996. It is
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Table 4.1: Overview of the test data

Corpus Lines
Source Target

#Words Voc. #Words Voc.

TED 3,502 31,414 4,870 31,732 4,089

CS Lectures 2,143 44,619 3,788 47,547 2,937

available in 21 languages. It has been aligned at the document level using the document

IDs and then split into sentences. Afterwards the Church and Gale algorithm has been

used to align this corpus on a sentence level (Gale and Church, 1993).

The parallel German-English version contains around 40M words. The exact statis-

tics are shown in the overview Table 4.2.

A second important corpus for this language pair is the News commentary corpus

(NC). This corpus has been extracted from the web-site “Project Syndicate”. On this

webpage commentaries from different persons mainly about politics and economics are

published and translated into other languages. The size of this corpus is only around

10% of the EPPS corpus. Furthermore, this corpus contains written text compared to

the speeches from the EPPS corpus. However, both corpora cover a wide variety of

topics.

In addition, we used the BTEC corpus in these experiments. We used an in-house

version of this corpus, which is a parallel German-English corpus. The BTEC corpus

is again a speech corpus. It contains transcriptions and translations of spoken dialogs

of basic travel expressions. Therefore, a characteristic of this corpus is that is contains

very short segments and that the language used in the corpus is rather simple.

The last important parallel corpus is the TED corpus. The TED corpus is collected

from the TED website. The corpus contains the subtitles and their translations of

the TED talks. These talks are short presentations given by invited speakers on very

different topics. However, the style of the talks is quite similar. All the talks are very

well prepared and the talks are usually given by good speakers. Furthermore, since

they are geared towards a general audience, quite few technical terms are used. For the

purpose of training an MT system, we joined adjacent segments into sentences, since

the corpus is originally split into shorter segments.
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Table 4.2: Overview of the parallel training data

Corpus Lines Source Words Target Words

EPPS 1.5M 41.5M 41.9M

NC 99K 2.6M 2.4M

BTEC 109K 832K 840K

TED 51K 923K 942K

Lectures 7.4K 144K 150K

In addition, we used a corpus of university lectures for some oracle experiments.

This training data is very similar to the test set of university lectures and it is quite

unrealistic that such well matching data is available in a real-world scenario. Therefore,

we only used this data to show how good we can get with quite small, but very similar

data.

4.2.3 Development Data

After training the statistical machine translation models on the large data described in

the previous part, we normally tune the weights of the different models on a develop-

ment data set. Since the number of different models is quite small, ranging from 10 to

20 in most of our experiments, only small amounts of data compared to the training

data size is needed. In the experiments we typically used around 2,000 sentence of

development data.

Depending on the scenario we used different development sets. In a first scenario,

we simulated a situation where no in-domain data is available. Consequently, we could

not train our log-linear weights on that data. Instead, we used additional data from

the EPPS corpus. Of course, this data does not fit the testing condition as well as

in-domain data and therefore the resulting translation quality will be worse.

In another scenario, we used TED talks of around 2,000 segments to optimize our

weights. In this case, the development and test data match better. Finally, in some

experiments we also used computer science lectures (CS) as development data.

The different development sets are summarized in Table 4.3.
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Table 4.3: Overview of the development data

Corpus Lines
Source Target

#Words Voc. #Words Voc.

EPPS 2,000 57,668 8,069 58,880 6,265

TED 1,711 16,064 3,607 16,475 2,921

CS 1,420 31,467 2,877 34,442 2,141

4.3 Initial Experiments

Before we describe the different techniques we used to adapt an SMT system towards

a task, we will analyze the different tasks in some initial experiments. Therefore, we

will analyze the influence on in-domain data on the different tasks and have a look

at the problems that arise when using the systems on a new task. We will focus on

the number of out-of-vocabulary words as well as on the context that is used during

translation.

In all the experiments, we measured the translation quality in case-sensitive BLEU

scores.

4.3.1 TED Translation Task

In a first series of experiments we looked at the translation quality of the TED transla-

tion task. Here we calculated the BLEU scores on the TED test set mentioned before.

The results are summarized in Table 4.4.

The baseline system does not use any in-domain data. This system is only trained

Table 4.4: Initial experiments on the TED task

Condition Dev Test OOV
Real Avg. Phr. Len.

OOV Source Target

Baseline 27.54 21.34 422/314 307/245 1.75 1.70

+ TED Dev 24.09 21.59 422/314 307/245 1.84 1.86

+ TED Training 26.22 24.12 334/255 255/205 1.89 1.90

TED only 25.34 24.50 862/673 726/592 1.51 1.51
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on the EPPS, news commentary and BTEC corpus. The aforementioned EPPS devel-

opment set was used as the development set. The BLEU scores on the development

data are not comparable to the other results, since it uses a different development set.

Using this data, a BLEU score of 21.34 on the test set can be achieved.

In the test set, 422 words cannot be translated since they do not occur in the

training corpus. These 422 occurrences result from 314 different words. Compared to

the size of the test data of 31,414 words, this means that the OOV rate is 1.34%. As

mentioned before, the TED talks are targeted towards a very broad audience so that

only very few specific words are used. Therefore, the OOV rate is quite low.

Many OOV words are proper names, since these occur quite rarely. If we translate

European languages, proper names are often the same in both languages. Therefore,

a simple strategy to handle OOV words is to pass them to the target language. In

order to see how often this strategy does not solve the problem, we calculated a second

number denoted as real OOV in Table 4.4, which ignores all the OOV words which also

occur in the reference translation. In this case, we only have 307 OOV words, leading

to an even smaller OOV rate of 0.98%.

We also analyzed the average phrase length, since statistical machine translation

systems normally perform better if longer phrase pairs can be used. In this case, we use

phrase pairs with an average source length of 1.75 words and an average target length

of 1.7 words.

In the second system, we optimized the same models on the development data of

the TED corpus. Although we only use around 2,000 segments of in-domain data, we

could already improve the translation quality by 0.25 BLEU points. Since no additional

training data is used, the OOV rate does not change at all, but the different scaling

factors now generate translations using longer phrase pairs. The average phrase pair

length is increased by roughly 0.1 words.

Afterwards, we added the in-domain monolingual and parallel training data and

retrained the models. Although the in-domain data is quite small compared to the

out-of-domain data, this improves the translation quality. The performance on the

development data could be improved by around 2 BLEU points and on the test data

even by 2.5 BLEU points. In addition, the number of OOV words could be reduced

further using this data. Using the modified definition of OOV words, the OOV rate

could be reduced to 0.81%. Furthermore, the average phrase length is increased slightly.
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Finally, we did one additional experiment using only the data from the TED corpus

for training. In this case, the number of OOV words increases dramatically, since

we are using a much smaller training corpus. Furthermore the phrase pair length is

considerably smaller. On the development data, this system performs better than the

system using no TED data, but worse than the system using all data. In contrast, on

the test data this system achieved the best performance. Consequently, concatenating

all the training data seems not to be the best approach.

4.3.1.1 Examples for the TED Translation Task

In addition to the automatic evaluation, we also show some example translations in

Example 4.1. These example sentences from the TED test set illustrate some problem

that arise when using the translation system for a new domain. The translations were

generated with the “+ TED Training” system described in the previous part.

In the first example, a translation which is common in the largest training domain,

the EPPS corpus, is used to generated the translation. But this translation do not fit

well for the TED domain. In the example, the German word Schiff is translated into

vessel instead of ship.

In the second example the verb sich vorstellen has to be translated into to imagine,

but in this case it is translated into present. The problem is that the verb vorstellen is

very often translated into present in the European Parliament.

Finally, there are two examples were we do not generate the correct translations

since we are using a very small context when generating translations for new domains.

In the first example the German word vor is translated into before instead of ago and

in the second case we cannot correctly generate the agreement between these and story.

4.3.2 Computer Science Lectures Translation Task

We performed similar experiments for the second translation task, the translation of

university lectures (CS task). Here we used the computer science lectures as a test set.

The initial experiments are summarized in Table 4.5.

For the task we also build a baseline system that is trained on the EPPS, news

commentary and BTEC corpora. Since we want to test the situation where no in-

domain data is available, we again optimized the system on the EPPS development set.

This leads to an initial BLEU score of 20.21 on this task. In contrast to the TED task,
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Source: der Baupläne des Schiffs.

Reference: on the blueprints of the ship.

Translation: the design of the vessel.

Source: wir wollen uns das best mögliche Ergebnis vorstellen.

Reference: we want to imagine the best case scenario outcome

Translation: we want to present the best possible result.

Source: es gibt Hinweise darauf, dass schon die Neandertaler

vor 60000 Jahren

Reference: there is evidence that Neanderthals, 60000 years ago,

Translation: there are indications that the Neanderthals before 60000 years

Source: denn diese Liebes Geschichte,

Reference: because this love story,

Translation: because these love story,

Example 4.1: Examples of the TED task

Table 4.5: Initial experiments on the CS task

Condition Dev Test OOV
Real Avg. Phr. Len.

OOV Source Target

Baseline 27.54 20.21 1437/624 1150/521 1.64 1.62

+ TED Dev 24.09 21.50 1437/624 1150/521 1.71 1.78

+ TED Training 26.22 22.97 1219/563 959/467 1.76 1.80

TED only 25.34 21.09 2383/985 1993/85 1.42 1.43

CS Dev 25.37 22.72 1437/624 1150/521 1.50 1.64

+ TED Training 25.84 23.55 1219/563 959/467 1.58 1.74

Lectures Training 29.59 27.49 924/492 749/416 1.76 1.92
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a lot more special terms are used in university lectures. Therefore, the OOV rate is

considerably higher. The size of this test set is 44,619 words, therefore the OOV rate is

3.22% and the real OOV rate is 2.58%. The average phrase length of the initial system

is 1.64 source words and 1.62 target words.

In contrast to the last task, in this task we have different types of in-domain data.

First, there is the TED data. Form this source, we have quite a lot of data, but it

does not fit the task perfectly. As already mentioned, the TED lectures do not use as

specific vocabulary as the TED lectures and furthermore, they are more fluently spoken

than university lectures. Secondly, we can use some parallel data also collected at the

university on computer science lectures. This data is perfectly matching the task, but

of course it is difficult to produce this data. Therefore, we would like to limit the need

for this data.

If we look at the first case and use only the in-domain development data, we see

that we again improve the translation quality by around 1.3 BLEU points. The im-

provements are substantially higher than for the other task. Furthermore, the average

phrase length is increased in a similar way.

When also adding the in-domain monolingual and parallel training data, the per-

formance can be increased even further. The gains are not as big as for the TED task,

but the performance could be improved by around 1.5 BLEU points. Furthermore, the

OOV rate could be improved slightly to a real OOV rate of 2.14%.

If we build a system only on the TED data, the performance drops significantly. We

are still better than the system using no TED data at all, but the system using only

the TED development data already performs better. So it is no longer a good solution

to just use the best matching data.

In the second scenario, we have development data from university lectures. In this

case, as shown in line five of the table, we can even gain 2.5 BLEU points, by just using

the in-domain development data instead of the EPPS development data. One main

difference seems to be, that longer translations are generated since the average source

length is decreased, while the target length stays the same.

If we now add the training data from the TED domain, we can improve even more

by 0.8 BLEU points. In this case, again longer phrase pairs are selected.

In a final experiment we used the parallel training data collected at the university

instead of the TED training data. As mentioned before this is not possible for most
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tasks, it is more of an oracle experiment of how good you can become in this task with

in-domain data.

Although this corpus is very small, we could improve the translation quality by 4

BLEU points compared to the previously best system leading to a BLEU score of 27.49.

Furthermore, the real OOV rate could be decreased considerably to 1.67%. Similar to

the other experiments, the additional data also leads to the use of longer phrase pairs.

4.3.2.1 Examples for the CS Translation Task

For this translation task we show some example translations of the baseline system in

Example 4.2. They were generated by the system trained on all data including the

TED training data and optimized on the TED development set. These examples show

problems when porting the translation system to the CS translation task.

In the first example, we have again the problem that translations were generated

using example translations from the European Parliament. In this case, the word

zufällig is translated into adventitious instead of random.

In the next two examples, there are several words which cannot be translated by the

baseline system. The problem is that in the computer science lectures there are several

very specific terms. For these terms no translations can be found in the out-of-domain

parallel training data.

And finally, there is an example where there are several variables. These variables

are treated as unknown words in the translation system. As can be seen in the examples,

this leads to problems in finding the correct word order.
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Source: wir haben zufällige Gewichte.

Reference: we have random weights.

Translation: we have adventitious weights.

Source: nun, Perzeptronen, eine tolle Sache, da hat man sehr viel drüber

geschrieben und viel publiziert in diesen Jahren.

Reference: now, the perceptrons, an awesome thing, much was written

about this and much was published during these years.

Translation: now, Perzeptronen, a great thing, as it has a great deal over

written and published in recent years.

Source: das sind in der Regel Basis Elemente wie Würfel Kegel,

Kegelschnitt, Rotations-Ellipsoid und anderer Torus ...

Reference: these are usually base elements such as cubes, cones, the cone cut,

rotation ellipsoid and the other torus, ...

Translation: these are generally base elements such as cube cone, Kegelschnitt,

rotation-Ellipsoid and other Torus ...

Source: das ist ein Vektor der hier Y zwei plus Y drei auf diesen

Punkt zwei deutet, ja?

Reference: this is a vector Y two plus Y three which points at this

point two, right?

Translation: this is a vector here Y plus two Y to this point three

two suggests, yes?

Example 4.2: Examples of the CS task
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5

Exploiting Mismatching Data

As many other machine learning tasks, machine translation suffers from the problem

that its performance is worse if the training and test data do not match. We train our

model to perform best for inputs drawn from the training distribution. When the test

data is drawn from a different distribution than the training data, the prediction might

no longer be as reliable.

If we want to improve the translation quality for this condition, the first aspect is to

check whether we exploit the mismatching training data in an optimal fashion. As we

mention in the introduction, one way to improve the translation quality on test data

from another domain is to improve the generalization of the model. Therefore, we need

to know why the model does not predict the translation on data from different domains

as well.

One important point during translation is the available context. Since natural

languages are ambiguous, often context information is necessary in order to find the

correct translation. Therefore, we will first illustrate the problem on an example and

then analyze, what happens if we need to translate an out-of-domain text. We will

see that in this case the average phrase pair length is lower and thus, less contextual

information is available to determine the translation.

Afterwards, we will describe the bilingual language model (Niehues et al., 2011)

and its motivation. The bilingual language model makes parallel contextual information

across phrase pairs available. Using this model, we can increase the context that is used

to determine the translation of a word and therefore improve the generalization of the
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translation system. This improves the translation quality especially when translating

out-of-domain documents.

Finally, we will evaluate the approach on different translation tasks and show the

influence on the translation quality.

5.1 Context Information in Phrase-based Machine Trans-

lation

Since all natural languages have ambiguities, it is not possible to translate the words

independently of each other. Instead, there are always words which have different

translations in the target language. To generate the correct translation for these words

additional information are needed. Mostly, these ambiguities can be resolved by using

the context the word is used in.

If we examine the German word vor, we will often translate it into before. For

example, in the German phrase vor der Abstimmung we could translate like before the

vote. But there are other situations, where we need to translate the German word vor

into ago. For example, if we translate the phrase vor einigen Jahren into several years

ago. In this example, we would need more context to select the correct translation. For

example, the word years should indicate that the translation ago is better.

As shown in the examples, in many of these cases, the context within the sentence

can already help to determine the correct translation. Of course, there are also exam-

ples, where even more context is needed. For example, the resolution of anaphors, like

he is often only possible by having a context longer than one sentence.

In phrase-based SMT the default approach to model the bilingual context infor-

mation is to use phrase pairs. In the phrase pairs we will implicitly encode context

information. Therefore, this context is limited by the phrase boundaries. No bilingual

information outside the phrase pair is used for selecting the target word. The effect

can be shown in the following example sentence:

Original: ..., dass schon die Neandertaler vor 6000 Jahren ...

Using our phrase-based SMT system, we get the following segmentation into phrases

on the source side: dass schon # die # Neandertaler # vor # 6000 Jahren. Using this

segmentation the translation of vor is not influenced by any other the source word.
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However, apart from this segmentation, other phrases could have been conceivable

for building a translation:

dass, dass schon, dass schon die, schon, schon die, die, Neandertaler, vor, 6000, 6000

Jahren and Jahren. Since we use a reordering lattice, phrase pairs that match a re-

ordered source word sequence could be also used. Consequently, the phrase for Jahren

vor could be used as well.

Using the phrase pairs mentioned above, different segmentations can be used to

translate the phrase vor 6000 Jahren. It can use the segmentation into vor and 6000

Jahren as done by the baseline system. Instead it could also translate the reordered

source sequence 6000 Jahren vor. As shown in Figure 5.1, in this case the model can

use the same segmentation or the translation can be generated by segmenting it into

6000 and Jahren vor. In the phrase-based system, the decoder cannot make use of the

fact that some of the segmentation variants lead to the same translation, but has to

select one and use only this information for scoring the hypothesis.

Figure 5.1: Alternative segmentations into phrase pairs

Consequently, if the first segmentation of the reordered sequence is chosen, the

fact that Jahren is translated to years affects the translation of vor only by means

of the target language model. No bilingual context, however, can be carried over the

segmentation boundaries. This can lead to a wrong translation of vor into before as it

was done by the baseline system.

If the training and test data would have matched better, the chances of having seen

a translation for for 6000 Jahren would have been higher. Then the translation system

could have used all the bilingual context information.

In order to analyze the context information that is available during translation, we

calculated the average source and target phrase pair length that was used to generate

the translation. We used the initial translation system described in Section 4.3. We

tested the performance of this system that uses no in-domain training data on three

different test sets. The results are summarized in Table 5.1
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Table 5.1: Average phrase pair length of the initial system

Test set BLEU Avg. source PL Avg. target PL

EPPS 27.17 2.19 2.22

TED 21.34 1.75 1.70

CS 20.21 1.64 1.62

Table 5.2: Different phrase pair lengths of the initial system

Dir. Test set 1 2 3 4 5 6 7

EPPS 34.30% 31.46% 20.04% 9.38% 4.83%

Source TED 49.76% 31.71% 13.21% 4.07% 1.25%

CS 54.69% 30.54% 10.87% 3.09% 0.81%

EPPS 39.17% 26.51% 17.57% 9.94% 4.40% 1.70% 0.72 %

Target TED 56.38% 25.78% 11.62% 4.36% 1.42% 0.30% 0.12%

CS 61.82% 23.13% 9.03% 4.04% 1.36% 0.49% 0.10%

The first test set contains documents from the EPPS corpus. This test set is very

similar to the training data and therefore very well covered by the phrase pairs. In this

case, we can use quite long phrase pairs with an average length of 2.19 source words

and 2.22 target words. If we try to translate data from the TED corpus, we see that

the average phrase pair length drops substantially. On this test set the average phrase

pair length is only 1.75 words on the source side and 1.70 words on the target side. If

we go over to translate computer science university lectures, we see that the average

phrase length lowers even more.

In Table 5.2 we show the percentage of phrase pairs of the different lengths. As

shown in the table, the percentage of phrase pairs with length two stays roughly the

same throughout all data sets. But the amount of longer phrase pairs drops consider-

ably, when going from an in-domain test set to an out-of-domain one. For the one word

phrase pairs the opposite is the case. Here we have a huge increase in the number of

phrase pairs when going from an in-domain test set to an out-of-domain test set.

After showing that the phrase pair length drops when translating out-of-domain

data instead of in-domain data with one translation system, we also investigated, what

happens when we add in-domain data to an existing translation system. The results
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Table 5.3: Average phrase pair length for the TED task

Test set BLEU Avg. Source PL Avg. Target PL

Baseline 21.59 1.84 1.86

TED Data 24.12 1.89 1.90

Table 5.4: Average phrase pair length for the CS task

Test set BLEU Avg. Source PL Avg. Target PL

Baseline 22.72 1.50 1.64

TED Data 23.55 1.58 1.74

Lecture Data 27.49 1.76 1.92

for these experiments are shown in Table 5.3 for the TED translation task and in 5.4

for the university lecture translation task. Adding the TED data to both translation

tasks increases the phrase pair length. By having more matching training data, we

are able to use longer phrase pairs and thereby have more context in the translation

process. This results also in an improved BLEU score. If we add a very small amount

of in-domain lecture data instead of the TED data, we see for the translation of the

lecture data even a higher improvement in phrase pair length. This additional data

matches the test data even better and therefore, longer phrase pairs are available.

In summary, we see that we can use longer phrase pairs, if the training data and

test data match better. In this case, a longer context is available when deciding how

to translate the source words. If we want to build a translation system for a new

domain, we have the problem that often this data is not available. In this case only

very local bilingual context can be used to make the decision on the translation options.

To improve the modeling of the bilingual context we introduce the bilingual language

model in the next section.

5.2 Bilingual Language Model

If the machine translation system is used for a new domain, we are not able to en-

code enough bilingual context information with the phrase-based machine translation

approach. This motivates to use ideas from a different approach to statistical machine
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translation in the phrase-based machine translation system as done by the bilingual

language model (Niehues et al., 2011).

Casacuberta and Vidal (2004) proposed to use a stochastic finite state transducer

based on bilingual n-grams. For example, this approach was successfully applied by

Allauzen et al. (2010) on the French-English translation task. In this so-called n-gram

approach the translation model is trained by using an n-gram language model of pairs

of source and target words, called tuples. While the phrase-based approach captures

only bilingual context within the phrase pairs, in the n-gram approach the n-gram

model trained on the tuples is used to capture bilingual context between the tuples.

As in the phrase-based approach, the translation model can also be combined with

additional models such as language models using log-linear combination.

Inspired by the n-gram-based approach, the bilingual language model extends the

translation model of the phrase-based SMT approach by providing additional bilingual

word context. The bilingual language model is based on tokens of target words and

their aligned source words. Then we use an n-gram based language model on these

token. Thereby it is possible to model the bilingual context across phrase boundaries.

In addition to the bilingual word context, this approach enables us also to integrate

a bilingual context based on part of speech (POS) into the translation model as it has

been done for the n-gram approach in Crego and Yvon (2010). When using phrase

pairs, it is complicated to utilize different kinds of bilingual contexts, since the context

of the POS-based phrase pairs should be bigger than the word-based ones to make the

most use of them. There is, however, no straightforward way to integrate phrase pairs

of different lengths into the translation model in the phrase-based approach, while it is

relatively easy to use n-gram models with different context lengths on the tuples. We

show how we can use bilingual POS-based language models to capture longer bilingual

context in phrase-based translation systems.

The advantages of the additional model can be illustrated on the example mentioned

in the previous section. In Figure 5.2 we show the phrase pairs that are used to generate

the translations. In addition, we use now bilingual context by the bi-words. Thereby,

in addition to the target context, the source context stays available across segment

boundaries for the calculation of the language model score of the sentence. The context

which is used while calculating the probabilities of the bi-words is illustrated by the

lines. For example, when calculating the bilingual language model score for the bi-word
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Figure 5.2: Example of segmentation and bilingual tokens

ago vor P ( ago vor | 6000 6000 years Jahren) we can see that through the bilingual

tokens not only the previous target word but also the previous source word is known

and can influence the translation even though it is in a different segment.

5.2.1 Related Work

As previously mentioned, another approach to model the bilingual context during trans-

lation is the n-gram approach. It was presented in Mariño et al. (2006), derived from

the work of Casacuberta and Vidal (2004), which used finite state transducers for sta-

tistical machine translation. In this approach, units of source and target words are used

as basic translation units. Then the translation model is implemented as an n-gram

model over the tuples. As it is also done in phrase-based translations, the different

translations are scored by a log-linear combination of the translation model and addi-

tional models.

Crego and Yvon (2010) extended the approach to be able to handle different word

factors. They used factored language models introduced by Bilmes and Kirchhoff (2003)

to integrate different word factors into the translation process. In contrast, we use a

log-linear combination of language models on different factors in our approach.

A first approach of integrating the idea presented in the n-gram approach into

phrase-based machine translation was described in Matusov et al. (2006). In contrast

to our work, they used the bilingual units as defined in the original approach and

additional word factors were not used in their approach.

Hasan et al. (2008) used lexicalized triplets to introduce bilingual context into the

translation process. Therefore, they calculate the probability p(f |e, e′) not only de-

pending on the target word f and e, but also on an additional trigger word e′. This
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additional source word can be outside the phrase pair and therefore the model is capable

of using context information for translating ambiguous phrases.

Other approaches address this problem by integrating word sense disambiguation

engines into a phrase-based SMT system. In Chan and Ng (2007) a classifier exploits

information such as local collocations, part of speech or surrounding words to determine

the lexical choice of target words, while Carpuat and Wu (2007) use rich context features

based on position, syntax and local collocations to dynamically adapt the lexicons for

each sentence and facilitate the choice of longer phrases. In Mauser et al. (2009) an

maximum-entropy model using input features based on all source words of the sentence

was used to model a longer source context.

Furthermore, Stroppa et al. (2007) and Gimpel and Smith (2008) integrated source

side features to model the context beyond phrase boundaries. They use word based as

well as class or syntactic motivated features.

5.2.2 Model

The bilingual language model is a standard n-gram-based language model trained on

bilingual tokens rather than on simple words. These bilingual tokens are motivated by

the tuples used in n-gram approaches to machine translation. We use different basic

units for the n-gram model compared to the n-gram approach, in order to be able to

integrate them into a phrase-based translation system.

In this context, a bilingual token consists of a target word and all source words

that it is aligned to. Thus, given a sentence pair eI1 = e1...eI and fJ1 = f1...fJ and the

corresponding word alignment A = {(i, j)} the following tokens are created:

tj = {fj} ∪ {ei|(i, j) ∈ A} (5.1)

Therefore, the number of bilingual tokens in a sentence equals the number of target

words. If a source word is aligned to two target words, two bilingual tokens are created.

For example, if we have the German word zum, which often translates into to the, we

create the following bilingual tokens: to zum and the zum. If, in contrast, a target

word is aligned to two source words, only one bilingual token is created consisting of

the target word and both of the aligned source words.

The existence of unaligned words is handled in the following way. If a target word

is not aligned to any source word, the corresponding bilingual token consists only of
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the target word. In contrast, if a source word is not aligned to any word in the target

language sentence, this word is ignored in the bilingual language model. This is the

case the word schon in the example sentence in Figure 5.2.

Using this definition of bilingual tokens, the translation probability of source and

target sentence and the word alignment is defined by:

p(eI1, f
J
1 , A) =

J∏
j=1

P (tj |tj−1...tj−n) (5.2)

The logarithm of this probability is used in the log-linear combination of a phrase-based

translation system as an additional feature. It is worth mentioning that although it

is modeled using a conventional language model, the bilingual language model is an

extension to the translation model, in a way that the translation for the source words

is modeled and not the fluency of the target text. As it is a sequence model, the order

of the bi-words is also modeled. Therefore, this model helps to create the correct word

order additionally.

To train the model, a corpus of bilingual tokens can be created in a straightforward

way. In the generation of this corpus the order of the target words defines the order

of the bilingual tokens. The common language modeling tools can be used to train

the bilingual language model. As it was done for the normal language model, we used

modified Kneser-Ney smoothing.

5.2.3 Comparison to Tuples

While the bilingual tokens are motivated by the tuples in the n-gram approach, there

are major differences. They are mainly due to the fact that the tuples are also used to

guide the search in the n-gram approach, while the search in the phrase-based approach

is guided by the phrase pairs and the bilingual tokens are only used as an additional

feature in scoring.

While no word inside a tuple can be aligned to a word outside the tuple, the bilin-

gual tokens are created based on the target words. Consequently, source words of

one bilingual token can also be aligned to target words inside another bilingual to-

ken. Therefore, we do not face the problems of embedded words, where there is no

independent translation probability.
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With this model, we do not create a monotonic segmentation of the bilingual sen-

tence, but only use the segmentation according to the target word order. Therefore, it

is not clear where to put source words, who have no correspondence on the target side.

As mentioned before, they are ignored in the model.

An advantage of this approach, however, is that there is no problem handling un-

aligned target words. In this case, bilingual tokens with an empty source side are

created. The position of the unaligned target words is guided by the segmentation into

phrase pairs.

Furthermore, it is not required to apply additional pruning of the vocabulary, since

this is already done by the pruning of the phrase pairs. In our phrase-based system, in

most cases we allow only for ten translations of one source phrase.

5.2.4 Comparison to Phrase Pairs

Using the definition of the bilingual language model, we can again examine the intro-

ductory example sentence. We saw that when translating the phrase vor 6000 Jahren

using a phrase-based system and a reordered source sequence 6000 Jahren vor, the

translation of Jahren into years can only be influenced by either the preceding 6000 #

6000 or by the succeeding vor # ago. However, it is not influenced by both of them

at the same time, since either the phrase 6000 Jahren or the phrase Jahren vor has

to be chosen when segmenting the source sentence for translation. If we now exam-

ine the context that can be used when translating this segment applying the bilingual

language model, we see that the translation of Jahren into years is on the one hand

influenced by the translation of the token 6000 # 6000 within the bilingual language

model probability P (years Jahren|6000 6000 ).

On the other hand, it is also influenced by the translation of the word vor into

ago encoded into the probability P (ago vor|6000 6000, years Jahren). In contrast to

the phrase-based translation model, this additional model is capable of using context

information from both sides to score the translation hypothesis. In this way, when

building the target sentence, the information of aligned source words can be considered

even across phrase boundaries.

Furthermore, in the phrase pairs, we can only learn patterns that are continuous

on the source side and on the target side. Consequently, we are not able to learn the

pattern that vor ? Jahren, where the ? is a placeholder for a sequence of words, is
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translated into years ago. In contrast, for the bilingual language model the patterns

have to be continuous on the target side only. So the mentioned phonemena can be

modeled by the sequence years Jahren ago vor.

5.2.5 POS-based Bilingual Language Models

When translating with the phrase-based approach, the decoder evaluates different hy-

potheses with different segmentations of the source sentence into phrases. The segmen-

tation depends on available phrase pair combinations but for one hypothesis translation

the segmentation into phrases is fixed. This leads to problems, when integrating par-

allel POS-based information. Since the amount of different POS tags in a language is

very small compared to the number of words in a language, we could manage much

longer phrase pairs based on POS tags compared to the possible length of phrase pairs

on the word level.

In a phrase-based translation system the average phrase length is often around two

words. For POS sequences, in contrast, sequences of four tokens can often be matched.

Consequently, this information can be helpful only, if a different segmentation could be

chosen for POS-based phrases and for word-based phrases. Unfortunately, there is no

easy way to integrate this into the decoder.

If we compare how the bilingual language model is applied to the application of

the phrase based translation system, it is much easier to integrate the POS-based

information. In addition to the bilingual token, for every target word we can generate

a bilingual token based on the POS information of the source and target words. Using

this bilingual POS token, we can train an additional bilingual POS-based language

model and apply it during translation. Word and POS sequences are scored separately

by two different language models which cover different n-gram lengths. Therefore, even

if the context of the POS-based bilingual language model is longer than the one based

on the word information, it is no longer problematic.

The training of the bilingual POS language model is straightforward. The parallel

corpus of POS tags is generated by running a POS tagger over both source and target

side of the initial parallel corpus. Subsequently, the corpus of bilingual POS tokens

is built using this parallel corpus of POS tags and the alignment information for the

respective words in the text corpora.
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The POS tag for every source and target word is required during decoding as well.

Since we build the sentence incrementally, the tagger cannot be applied directly. In-

stead, we store the POS source and target sequences also during the phrase extraction.

When creating the bilingual phrase pair with POS information, it is possible to have

different possibilities of POS sequences for the source and target phrases. However, in

this case only the most probable one for each phrase pair is kept. For an Arabic-to-

English translation task, we compared the generated target tags with the tags created

by the tagger on the automatic translations. It was found that the tags are different

on only less than 5% of the words.

Using the alignment information as well as the source and target POS sequences,

we can create the POS-based bilingual tokens for every phrase pair and store it in

addition to the normal phrase pairs. At decoding time, the most frequent POS tags

in the bilingual phrases are used as tags for the input sentence and the translation is

generated based on the bilingual POS tokens built from these tags together with their

alignment information.

5.3 Results

After presenting the bilingual language model in the last section, we will now focus on

its impact on the translation quality. In a first step, we measured its impact on the

translation quality on the systems presented before.

In the second part of the section, we will describe results using the bilingual language

model in different conditions. Thereby, we are able to show that on greatly different

tasks it is possible to improve the translation quality using this model.

5.3.1 Speech Translation Tasks

The results for these experiments are summarized in Table 5.5 for the TED task and in

Table 5.6 for the computer science (CS) lectures task. If we look at the BLEU scores

for the TED translation task, we see that the translation quality was improved in all

conditions. In addition, the improvements by up to 0.7 BLEU points on the first two

configuration of this task are substantially higher than the last configuration in Table

5.5. In contrast to the last configurations, in the first two configurations there was

no parallel in-domain training data available. Therefore, there are less long phrase
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Table 5.5: Overview of results for bilingual language model on the TED task

Condition
No BiLM BiLM Gain

Dev Test Dev Test Dev Test

Baseline 27.54 21.34 27.72 21.87 +0.18 +0.53

+ TED Dev 24.09 21.59 24.35 22.36 +0.26 +0.77

+ TED Training 26.22 24.12 26.32 24.24 +0.10 +0.12

Table 5.6: Overview of results for bilingual language model on the CS task

Condition
No BiLM BiLM Gain

Dev Test Dev Test Dev Test

Baseline 27.54 20.21 27.72 20.97 +0.18 +0.76

+ TED Dev 24.09 21.50 24.35 22.44 +0.26 +0.94

+ TED Training 26.22 22.97 26.32 23.60 +0.10 +0.63

CS Dev 25.37 22.72 25.53 23.21 +0.16 +0.49

+ TED Training 25.84 23.55 26.24 24.38 +0.40 +0.83

Lecture Training 29.59 27.49 30.10 28.17 +0.51 +0.68

pairs available and the parallel context available during translation is relatively small.

Consequently, the additional context information introduced by the bilingual language

model is more important.

The picture for the university lectures is similar. The performance was improved by

up to 1 BLEU. Unlike the previous task on TED, significant improvements were yield

even when using TED training data. This may due to the fact that the TED data does

not match the university lecture domain perfectly.

In conclusion, we saw on both tasks the additional model helps to adapt a machine

translation system towards a new domain especially when there is no in-domain training

data available. In this case the bilingual language model can help to use more context

information that normally is not available when using the translation system for a new

domain. However, also in conditions where there is parallel training data available, it

is possible to improve the translation quality by using the bilingual language model.
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Context Length One motivation for using the bilingual language model is its capa-

bility to capture the bilingual contexts in a different way. To see whether additional

bilingual context is used during decoding, we analyzed the context used by the phrase

pairs and by the n-gram bilingual language model.

However, a comparison of the different context lengths is not straightforward. The

context of an n-gram language model is normally described by the average length of

applied n-grams. For phrase pairs, normally the average target phrase pair length (avg.

Target PL) is used as an indicator for the size of the context. Thus these two numbers

cannot be compared directly.

To be able to compare the context used by the phrase pairs to the context used

in the n-gram language model, we calculated the average left context that is used for

every target word where the word itself is included, i.e. the context of a single word

is one. In case of the bilingual language model the score of the average left context is

exactly the average length of applied n-grams in a given translation. For phrase pairs

the average left context can be calculated in the following way: A phrase pair of length

one gets a left context score of one. In a phrase pair of length two, the first word has a

left context score of one, since it is not influenced by any target word to the left. The

second word in that phrase pair gets a left context count of two, because it is influenced

by the first word in the phrase. Correspondingly, the left context score of a phrase pair

of length three is six (composed of the score one for the first word, score two for the

second word and score three for the third word). To get the average left context for

the whole translation, the context scores of all phrases are summed up and divided by

the number of words in the translation.

For each of the two tasks, we selected the condition leading to the largest gains and

showed the results of the context analysis in Table 5.7. As it is shown, the context used

by the bilingual n-gram language model is longer than the one by the phrase pairs. The

average n-gram length increases from 1.71 to 2.18 and from 1.69 to 2.13 respectively

for the two given test sets.

If we compare the average n-gram length of the bilingual language model to the

one of the target language models, the n-gram length of the first is evidently smaller,

since the number of possible bilingual tokens is higher than the number of possible

monolingual words. This was also observable with the perplexities of the two language

models on the generated translations. While the perplexity of the target language
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model is 133 and 137 on the two test sets, the perplexity of the bilingual language

model is 378 and 437.

Table 5.7: Context used by the bilingual language model

Metric
TED CS

No BiLM BiLM No BiLM BiLM

BLEU 21.59 22.36 21.50 22.44

Avg. Target PL 1.66 1.78 1.78 1.71

Avg. PP Left Context 1.71 1.67 1.69 1.66

Avg. Target LM N-Gram 2.68 2.62 2.65 2.58

Avg. BiLM N-Gram 2.18 2.13

Overlapping Context An additional advantage of the n-gram-based approach is

the possibility to have overlapping contexts. If we always use phrase pairs of length

two, only half of the adjacent words would influence each other in the translation. The

others are influenced only by the other target words through the language model. If

we, in contrast, would have a bilingual language model which uses an n-gram length

of two, this means that every choice of word influences the previous and the following

word.

To analyze this influence, we counted how many boundaries of phrase pairs are

covered by a bilingual n-gram. For the test set containing the TED lectures, 8,563 of

the 14,272 boundaries between phrase pairs are covered by a bilingual n-gram. When

translating the university lectures 12,678 of 24,953 boundaries are covered. Conse-

quently, in both cases in 50 to 60 percent of the boundaries additional information can

be used by the bilingual n-gram language model.

Bilingual n-Gram Length For the systems on the computer science task that

gained the most from using the bilingual language model, we performed an additional

experiment comparing different n-gram lengths of the bilingual language model. To

ensure comparability between the experiments and to avoid additional noise due to

different optimization results, we did not perform separate optimization runs for each

53



5. EXPLOITING MISMATCHING DATA

Table 5.8: Different n-gram lengths of the bilingual language model tested on the CS

task

BiLM Length Avg. n-Gram Length BLEU

No 21.50

1 1.00 21.53

2 1.69 22.37

3 2.01 22.44

4 2.16 22.44

5 2.16 22.42

6 2.17 22.41

of the system variants with different n-gram length, but used the same weights for all

of them. The system using no bilingual language model was trained independently.

In Table 5.8 we can see that the BLEU score increased until the bilingual language

model reaches an order of three. Up to a n-gram order of four, the available context

keeps increasing. For higher order bilingual language models, nearly no additional n-

grams can be found in the language models. Also the translation quality does not

increase further when using longer n-grams.

Example In addition to the automatic evaluation using the BLEU metric, the output

of the different systems with and without the bilingual language model was investigated.

An example sentence where we can see the improvements on the translation quality by

using the bilingual language model is shown in Figure 5.1. As already mentioned

previously we are able to use more bilingual context due to the bilingual language

model and therefore translate the preposition vor in the correct way.

Source: es gibt Hinweise darauf, dass schon die Neandertaler

vor 60000 Jahren

Reference: there is evidence that Neanderthals, 60000 years ago,

No BiLM: There are indications that the Neanderthals before 60000 years

BiLM: There are indications that the Neanderthals 60000 years ago

Example 5.1: Example translation using the bilingual language model
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Table 5.9: German-English news translation task using bilingual language model

Metric
Test 1 Test 2

No BiLM BiLM No BiLM BiLM

BLEU 30.37 30.52 44.16 45.09

TER 50.27 50.06 41.02 40.52

5.3.2 Additional Experiments

In order to show that the bilingual language model improves the translation quality

on other conditions than the previously mentioned speech translation task as well,

the performance gains on several other tasks were measured. First, we use a similar

German to English system to translate two different sets of German news text into

English. Furthermore, we used the model to improve the Arabic to English system on

news data as well as web data. The Arabic to English system is trained on the GALE

Arabic data.

5.3.2.1 German-English News Translation

In Table 5.9 the results of translation performance on the German-English translation

task are summarized.

As depicted, the improvements of translation quality vary considerably between

the two different test sets. While using the bilingual language model improves the

translation by only 0.15 BLEU and 0.21 TER points on Test 1, the improvement on

Test 2 is nearly 1 BLEU point and 0.5 TER points. One reason for the scores on the

second test set showing a great deal of improvements compared to the first one is that

the first test set uses one reference while the second one uses two.

5.3.2.2 Arabic-English

The Arabic-English system was optimized on the MT06 data. As test set the in-house

test set Dev07-nw (News) and wb (Web Data) from the GALE project team Rosetta

was used.

The results for the Arabic-English translation task are summarized in Table 5.10.

The performance was tested on two different domains, translation of news and web
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Table 5.10: Arabic-English translation task using bilingual language model

System

News Web

Dev Test Dev Test

BLEU BLEU TER BLEU BLEU TER

NoBiLM 48.42 52.05 40.77 48.42 41.90 47.14

+ BiLM 49.29 53.51 40.04 49.29 43.12 46.66

+ POS BiLM 49.56 53.71 39.85 49.56 43.28 46.40

documents. On both tasks, the translation could be improved by more than 1 BLEU

point. Measuring the performance in TER also shows an improvement by 0.7 and 0.5

BLEU points.

By adding a POS-based bilingual language model, the performance could be im-

proved further. An additional gain of 0.2 BLEU points and decrease of 0.3 points in

TER could be reached. Consequently, an overall improvement of up to 1.7 BLEU points

was achieved by integrating two bilingual language models, one based on surface word

forms and one based on POS.

As for the speech systems, we also compared the context used by the different

models for this translation direction. The results are summarized in Table 5.11. As it

was for the other language pairs, the context used in the bilingual language model is

larger than the one used by the phrase-based translation model.

Another observable point is that when using the POS-based bilingual language

model, shorter phrase are used. This supports the analysis that both bilingual language

models model the context considerably accurately, thereby more frequently appearing

short phrases can be used to generate the translation.
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Table 5.11: Bilingual context used in the Arabic-English translation

Metric

News Web

No
Word POS

No
Word POS

BiLM BiLM BiLM BiLM

BLEU 52.05 53.51 53.71 41.90 43.12 43.28

Avg. Target PL 2.12 2.03 1.79 1.82 1.80 1.57

Avg. PP Left Context 1.92 1.85 1.69 1.72 1.69 1.53

Avg. BiLM N-Gram 2.66 2.65 2.33 2.31

Avg. POS BiLM 4.91 4.49
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6

Adaptation by Combining

In-Domain and Out-of-Domain

Data

In the previous chapter, we described an approach to handle out-of-domain data better.

In this chapter, we will evaluate different methods of exploiting in-domain data for

domain adaptation, in addition to the out-of-domain data.

In general, the performance of the SMT system is improved when the training data

is selected from sources similar to the test data. As seen in the previous chapter, for

example, we are able to use longer phrase pairs and therefore have more context to

decide what the correct translation is. Furthermore, if we have training data from

similar sources, only translation options that match the application are present in the

data, which will be therefore used for generating the translations.

It is not possible for many real-world scenarios to gather enough in-domain data.

One approach to overcome this issue is to use all available data to train a general system

and adapt the system using in-domain training data. For this, we will investigate

different methods to integrate the in-domain data into the different models of the

translation system.

In the introduction, we discussed different dimensions of text similarity. However,

the strategies presented in this chapter will not account for this. For this task, we will

use in-domain data that, in general, is machine better the application and therefore

these examples should be favored the general ones. Confidence of using the in-domain
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data will be automatically learned in the different approaches.

First, we will investigate different approaches to adapt the language model. The

main advantage is that here we only need in-domain monolingual target data but no

parallel data. We will try the existing linear (Stolcke, 2002) and log-linear methods to

adapt the language model.

In Section 6.2.2, we will present a first approach to integrate parallel in-domain

data into a machine translation system (Niehues et al., 2010). In this approach, the

in-domain and general probabilities are combined in a log-linear manner and phrase

pairs that are only seen in the in-domain phrase table are assigned default probabilities.

In the next section, we will present another strategy to integrate the in-domain data

using factored translation models (Niehues and Waibel, 2010). This approach enables

an easy integration of different in-domain corpora.

After briefly reviewing two additional state-of-the-art approaches for integrating

in-domain data, we will analyze and compare the key aspects of these approaches in

Section 6.3. Although these techniques origin from different ideas of how to model the

text data sources, they have many aspects in common and can be differentiated by four

key aspects (Niehues and Waibel, 2012a). After analyzing the influence of the different

aspects, we will present a final approach making use of the advantages of the different

approaches.

6.1 Language Model Adaptation

The first approach to efficiently integrate in-domain data into a translation system is to

adapt the language model. The main advantage is that no parallel in-domain corpus is

required, but monolingual target data can be used. There are mainly two approaches

to integrate the target in-domain data into the system. When adapting the language

model, we can linearly combine the general and in-domain language model or this can

be done in a log-linear way. These two approaches will be described below.

6.1.1 Linear Language Model Adaptation

The first way to combine different languages model is to combine them linearly. When

we have an out-of-domain language model trained on the large out-of-domain corpus

LMOUT and an in-domain language model LMIN trained on the in-domain part of the
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data, we can compute two probabilities for a word w given its history h. We get an

out-of-domain probability POUT (w|h) computed by the first language model and an

in-domain probability PIN (w|h) computed by the in-domain language model.

In order to get a probability, we can combine both probabilities linearly as:

P (w|h) = λINPIN (w|h) + λOUTPOUT (w|h) (6.1)

where λOUT = 1 − λIN . The advantage of this approach is that one language model

probability for the combined language model is available and therefore perplexities can

be calculated. By choosing the weights λ properly, we are able to take advantage of

both language models. The out-of-domain language model LMOUT is estimating the

probabilities more accurate since it was trained on a considerably larger corpus. In

contrast, the in-domain language model estimates probabilities more suitable for the

task, since its training data is more similar to the corresponding task.

The critical point of this adaptation strategy is to choose the mixing weights λ prop-

erly. The first idea is to optimize the weights with the other weights of the log-linear

model towards the best translation quality. However, it is not straightforward to opti-

mize these linear weights together with the log-linear weights of the translation model.

Therefore, we used a different method successfully applied in many ASR systems.

We minimized the perplexity of the development data as it is implemented by

the SRILM Toolkit (Stolcke, 2002). In this case an iterative algorithm minimizes the

perplexity of the combined language model on the development data, which is also

used for the optimization of the other weights. Since the perplexity of the language

model is independent of the other models used in the translation system, we can do this

optimization in a first step. Then the combined language model is used in the decoder

as the only language model and the weight of the language model in the log-linear

model of the translation model is determined as described before.

The problem of this approach is that we perform two optimizations, the linear

language model combination and the log-linear MERT, on the same development set.

Since the language model weights are selected using this data, the language model can

perform better on the development data than on other data. Therefore, the weight for

the language model might be overestimated in the MER training. One could argue to

use two development sets in order to avoid this problem. But there are several reason

we only used one development set. First, as we aim to compare this approach to the
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log-linear combination, the conditions should be the comparable. Furthermore, the

number of weights is in both approaches the same. Consequently, overfitting problems

should be in both techniques the same. And thirdly, in most real-word scenarios, we do

not have additional development data to optimize the weights of the language model

adaptation.

6.1.2 Log-linear Language Model Adaptation

The second strategy to combine language models is to use a log-linear combination.

The previously mentioned probabilities POUT (w|h) and PIN (w|h), can be combined in

the following way:

f(w|h) = λIN log(PIN (w|h)) + λOUT log(POUT (w|h)) (6.2)

The correct selection of the weights plays an important role. In this case the resulting

feature f(w|h) is no longer a probability. Consequently, we cannot calculate, for exam-

ple, the perplexity of the combined language model. In contrast to the aforementioned

method, however, this approach fits smoothly in the log-linear model of the translation

system.

Since we combine them log-linearly, we can add both language models indepen-

dently into the translation system. The main advantage of this approach is that we can

optimize the weights of the language model directly during the MER training. There-

fore, we can select the weights in a way that maximizes the translation quality instead

of solely examining the perplexity of the language model. While it is in general true

that a lower perplexity of the language model increases the translation quality, this

is not always the case. Therefore, it is advantageous to directly optimize towards an

automatic evaluation metric instead of the perplexity.

6.1.3 Results

We evaluated both methods to integrate in-domain data on the task of translating TED

lectures. In Table 6.1 we summarized the results of experiments in two conditions. In

the first condition, there is in-domain parallel development data available and therefore

it is required to optimize the system on the EPPS development data. In the second

condition, in-domain development data from the TED corpus is available.
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Table 6.1: Language model adaptation on the TED task

Approach
EPPS Dev TED Dev

Dev Test Dev Test

Baseline 27.61 24.26 26.32 24.24

Log-linear 27.55 23.98 27.46 25.26

Linear 27.58 23.42 27.50 25.39

Table 6.2: Language model adaptation on the CS task

Approach
EPPS Dev TED Dev CS Dev

Dev Test Dev Test Dev Test

All Data 27.61 22.69 26.32 23.60 26.24 24.38

Log-linear 27.55 22.45 27.46 23.81 26.84 24.65

Linear 27.58 21.71 27.50 23.84 26.85 25.04

In the first condition, the translation performance can not be improved and the

translation quality even decreases. This is especially the case for the linear adaptation

approach. In contrast, when the development data is available, the performance can be

increased significantly in both conditions. In this case, we can improve the translation

quality by at least one BLEU point. Here, the linear adaptation approach performs

slightly better.

The results for the computer science lectures task are shown in Table 6.2. In this

case we evaluated the approach on three conditions. The case, where no in-domain

data is available is examined. One condition with TED development data is evaluated.

TED data nearly fits the domain, but there are differences in terms of Topic and slight

difference in terms of speaking style. In addition, we also evaluated the approaches

with the perfectly fitting development data from the computer science domain.

Similar as before, the translation performance was not improved if we do not have

in-domain development data. In the second condition, both approaches lead to nearly

the same performance and could improve the translation quality by roughly 0.2 BLEU

points. In the last condition, we could improve by 0.3 to 0.6 BLEU points. In this case,

again, the linear approach performed better than the log-linear one.
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In conclusion, this approach can only improve the translation quality if in-domain

development data is available. In this case, the translation quality could be improved

by up to one BLEU point. If the development and test conditions are highly similar,

the linear approach performs slightly better than the log-linear approach.

6.2 Translation Model Adaptation

In the previous section, adaptation techniques for the language model were shown. In

this section, we will now concentrate on the adaptation of the translation model using

parallel in-domain data. Two approaches to model the in-domain and out-of-domain

characteristics of the training data are proposed in this work.

After presenting the two approaches, we compare them to other state-of-the-art

techniques. Thereby, the key differences of these approaches are investigated and these

ideas are combined to derive a better adaptation technique.

6.2.1 Problems Associated with Disregarding the Data Source

In the baseline approach, the phrase-based translation system is trained on the concate-

nated corpus of all available training data. By doing so we lose all information about

the origin of the data and consequently every training sentence is equally important

for generating the translations. In many cases this simplification is acceptable, but it

is no longer the case if the training corpus consists of an in-domain and out-of-domain

set. In this case, the information learned from the in-domain set should be considered

more important than the one from the out-of-domain set.

The simplification is especially problematic, since often the size of the in-domain

training data is very small compared to that of the out-of-domain data. To be able

to make better use of in-domain examples, the translations from the in-domain data

should be taken into account more significantly in the training process than the ones

from out-of-domain data.

For example, for the German-English translation task, the largest available parallel

corpus is the proceedings of the European Parliament. In the context of this corpus,

some words have different English translations than they would have in university or

TED lectures. If all sentences are treated equally, the probability of the translations

specific to the proceedings would be more probable, since they were seen more often.
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For example, the German word Schiff is translated into vessel in the proceedings while

it should be translated into ship in university or TED lectures.

In order to overcome this problem, we need to combine the in-domain information

for the corpus and the out-of-domain information in a more sophisticated way. In this

process, it is important not to lose the better estimated information from the out-of-

domain corpus, while making best use of the better fitting in-domain knowledge.

6.2.2 Domain Adaptation using Back-off Probabilities

In the phrase table adaption approach using back-off probabilities (Niehues et al., 2010)

we try to combine the estimated phrase table probabilities of the in-domain phrase table

with the general ones trained on all available data in a log-linear way.

In a first step, a phrase table on all available training data needs to be trained. This

general phrase table contains all possible phrase pairs (f̄i, ēi) with their two lexical

probabilities ΦG
lex((f̄i, ēi)) and two conditional probabilities ΦG

cond((f̄i, ēi)) estimated

by the relative frequencies of the phrase pairs. Furthermore, the in-domain lexical

probabilities ΦIN
lex((f̄i, ēi)) and in-domain conditional probabilities ΦIN

cond((f̄i, ēi)) can

be calculated by training a phrase table only on the in-domain part of the corpus.

Certainly, we will not be able to calculate these probabilities for all the phrase pairs,

since not all phrase pairs occur in the in-domain corpus. Furthermore, they are often

less accurately estimated, since the corpus is considerably smaller. On the other hand,

they model the in-domain data more precisely.

Once we have the eight different scores for a phrase pair, we need to find a way

to combine them. As mentioned before, the advantage of combining them log-linearly

is the possibility to estimate the weights for the different scores directly during the

optimization of the translation system. By combining the scores, the number of scores

for the translation model is increased from four to eight. One problem, however, is

that the MER training used in the optimization becomes unstable if a large number of

weights is used. Since it is beyond the scope of this thesis to develop an optimization

that is more stable with a large number of features, we analyzed if all features are

needed.

The standard phrase pair has two lexical and two conditional probabilities. The

lexical probabilities are introduced to smooth the conditional probabilities. The condi-

tional probabilities are estimated at the phrase level. In contrast, the lexical probabil-
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ities are estimated at a word level and afterwards the lexical probabilities for all words

in the phrase pair are combined. In general, because word tokens are seen more often

than phrase pairs, the lexical probabilities can be estimated more accurately than the

conditional probabilities. This is especially the case for long phrase pairs.

The in-domain conditional probabilities were already smoothed by the general con-

ditional probabilities, since the phrases are observed more often in the general corpus

than in the in-domain one. Hence, it is not necessary to use in-domain lexical proba-

bilities to smooth the phrase pair translation probability.

In conclusion, we use the four probabilities from the general phrase table as well as

the two conditional probabilities from the in-domain phrase table. Therefore, we have

only six phrase table scores instead of eight . The two in-domain lexical probabilities

are not considered in this model.

After combining the scores in a log-linear way, there is nevertheless the problem

of unknown probabilities. Since several phrase pairs do not occur in all corpora, we

cannot calculate all the probabilities mentioned before for some phrase pairs. However,

we cannot simply set these probabilities to zero since we combine them log-linearly

and the logarithm of zero is not defined. Therefore, this case needs to be handled in a

different way.

For the general probabilities, ΦG
lex((f̄i, ēi)) and ΦG

cond((f̄i, ēi)), the problem does not

occur. Since we do not calculate these probabilities only on the out-of-domain data

but on all data, every phrase pair which occurs in the in-domain data also occurs in

the general phrase table.

In contrast, the in-domain conditional probabilities ΦIN
cond((f̄i, ēi)) are only calcu-

lated on the in-domain data. Since many phrase pairs occur solely in the out-of-domain

data and not in the in-domain data, the probabilities are not defined for these phrase

pairs.

Since these phrase pairs did not occur in the in-domain corpus, they are mostly not

able to generate good translations for this type of data. Therefore, the probability is

backed off to a default probability in this case. In the experiments the lowest occurring

value is taken. If there is another phrase pair that occurs in the in-domain phrase

table, the in-domain condition feature will consequently have a higher value for this

feature. Therefore, it will be preferred if other models do not suggest different pairs.
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Table 6.3: Phrase table adaptation using back-off approach on the TED task

Approach
EPPS Dev TED Dev

Dev Test Dev Test

Baseline 27.61 24.26 26.32 24.24

+ PT Adapt 27.59 24.29 28.03 25.50

Log-linear LM 27.55 23.98 27.46 25.26

+ PT Adapt 27.56 23.77 28.40 25.89

Linear LM 27.58 23.42 27.50 25.39

+ PT Adapt 27.66 24.27 28.27 25.90

In the other case, all phrase pairs will have the same value and therefore the decision

will solely be based on the other models.

6.2.2.1 Results

We tested this approach to adapt the phrase table on the same configuration as we

did for the language model adaptation in the last section. The results are summarized

in Table 6.3 for the TED translation task and in Table 6.4 for the task of translating

computer science university lectures.

For both tasks, we see that the translation quality cannot be improved if we do not

use in-domain development data. The BLEU score even decreases. In this case, the

weights for the in-domain and out-of-domain models cannot be estimated well, since

we do not have any in-domain example in the training process.

If we examine at the result for TED, we find that the translation quality is in-

creased by 1.2 BLEU points if we do not use language model adaptation beforehand.

If the translation system has already been adapted by language model adaptation, the

translation model quality can still be improved by up to 0.6 BLEU points.

If we have only the TED development data to optimize the translation system

for the university lectures, we see in the last series of experiments that the translation

quality is improved only slightly by the the language model adaptation. The translation

model adaptation, in contrast, can improve the translation quality under this conditions

considerably. The BLEU score was improved between 0.7 and 1.2 BLEU points for this
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Table 6.4: Phrase table adaptation using back-off approach on the CS task

Approach
EPPS Dev TED Dev CS Dev

Dev Test Dev Test Dev Test

All Data 27.61 22.69 26.32 23.60 26.24 24.38

+ PT Adapt 25.79 22.50 28.03 24.28 27.29 25.31

Log-linear 27.55 22.45 27.46 23.81 26.84 24.65

+ PT Adapt 27.56 21.89 28.40 25.00 27.50 25.40

Linear 27.58 21.71 27.50 23.84 26.85 25.04

+ PT Adapt 27.66 22.46 28.27 24.58 27.58 25.56

task. Furthermore, the improvements seem to be the same even if we have adapted the

system by language model adaptation before.

If we look at the last condition, where there is development data from the university

lectures available, we can again improve the translation quality by 0.5 to 0.9 BLEU

points. While the linear language model adaptation can outperform the log-linear one

considerably when using no phrase table adaptation, this is no longer the case if we

combine the language model and translation model adaptation.

In conclusion, we can get additional improvements on all conditions if we perform

the translation model adaptation as described before. While the linear language model

adaptation performs better when using no translation model adaptation, this is no

longer the case if we combine language model and translation model adaptation.

6.2.3 Domain Adaptation using Factored Translations Models

A different approach to adapt the translation model is to model the influence of the in-

domain and out-of-domain data explicitly (Niehues and Waibel, 2010). In this approach

we model this by introducing the corpus identifier (corpus ID) as an additional target

factor in the factored translation model (Koehn and Hoang, 2007). This enables us

to adapt the SMT system by introducing two new types of features into the log-linear

model in a phrase-based SMT system. First, we use relative frequencies to model the

generation of the corpus ID tags similar to the translation model features that are used

to model the generation of the target words. We can use features comparable to the

word count and language model features to judge the generated sequence of corpus
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IDs. Using the general framework of factored translation models leads to a simple

integration of this approach into state-of-the-art phrase-based systems.

Factored translation models as presented in Koehn and Hoang (2007) are able to

tightly integrate additional knowledge into the system. In most cases, the approach is

used to incorporate linguistic knowledge, such as morphological, syntactic and semantic

information. In contrast, we will use the approach to integrate domain knowledge into

the system by introducing a corpus ID.

This corpus ID is a unique identifier of the different corpora that are used for

building the translation system. For example, we can use the corpus ID “IN” for

the in-domain part of the corpus, e.g. the TED corpus, and the “OUT” tag for the

remaining part of the training corpus. A different approach would be to use four

different corpus IDs for the four corpora used in building the translation system for

the TED task as described in 4.2.2. In most experiments we only used two corpus IDs,

since some preliminary experiments showed that it is important to distinguish between

the out-of-domain data and the in-domain data, but not that important to distinguish

between the different out-of-domain copora. The resulting representation for using two

corpus IDs of an example sentence is shown in Figure 6.1.

Figure 6.1: Example of German-English translation with corpus ID factors

In order to train this model we need to store for every phrase pair the corpus from

which it was extracted. Using this information, the occurrences of the phrase pairs are

no longer equally important, but we can, for example, prefer phrase pairs that were

extracted from the in-domain corpus by using additional models. Phrases extracted

from the out-of-domain corpus generate the OUT factor on the target side. Similarly,

phrase pairs learned from the in-domain part will generate an IN factor on the target

side.

Many phrase pairs occur in different parts of the corpus. For example, the phrase

pair hier # here shown in the example in Figure 6.1 also occurs in the out-of-domain
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part of the corpus. In these cases, both phrase pairs will be extracted and the decoder

will select one of them depending on the models described in the following sections.

With this approach it is possible to see which parts of the translation are learned

from the in-domain training examples and which parts are translated by using phrase

pairs from the out-of-domain corpus. This information can then be used to judge the

quality of the translation. Translations which are generated from in-domain phrase

pairs will probably be better translations than the ones generated by phrase pairs

extracted only from the out-of-domain corpus.

To be able to model this, we add two types of features to the log-linear model used

in the translation system. The first one, which we call the Domain Factors Translation

Model, models the probability that a sequence of corpus ID tags is generated. Similar to

the translation model of words, we use features based on relative frequencies to model

this probability. The different features are described in detail in the next section.

A second group of features is used to judge the corpus ID tag sequence similar to

the target language model. We count the number of in-domain tags and use this as an

Domain Factors Sequence Model. Different approaches to model this probability will

be described in Section 6.2.3.2.

Since we use the general framework of factored translation models, the weights for

these features can be optimized during the training on the development data of the log-

linear model using, for example, minimum error rate training. The resulting weights

prefer in-domain phrase pairs in a way that leads to the best translation performance

on the development data.

6.2.3.1 Domain Factors Translation Model

The Domain Factors Translation Model describes the probability that a sequence of

corpus ID tags is generated. If we look at the example shown in Figure 6.1, the features

of the model should capture the probability of generating the sequence IN IN IN IN IN

OUT OUT OUT if the input sequence is sieht man sehr gut hier an diesem Beispiel.

As mentioned before, this is similar to the phrase translation model in state-of-the-

art SMT approaches. As described in Section 2.2, the phrase translation probability

consists of a log-linear combination of four different probabilities. First, we use the

conditional probability and the inverse conditional probability approximated by the
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relative frequency. As shown in Equation 2.2, they can be calculated using the co-

occurrence counts (count(f̄ , ē)) of the source and target phrase. In addition, the lexical

translation probabilities in both directions are used.

In our factored model we no longer have only the co-occurrence count depending

on the source and target phrase count(f̄ , ē), but, in addition, a co-occurrence count

depending on three parameters, count(f̄ , ē, d̄), where d̄ is the sequence of corpus ID

tags. Consequently, we can extend the existing probabilities by three more possible

features.

To begin with, we define the probability of the corpus ID tags given the source

phrase P (d̄|f̄ , ē), which can be approximated analogously to the existing translation

probabilities as

P (d̄|f̄ , ē) =
count(f̄ , ē, d̄)∑
d̄ count(f̄ , ē, d̄)

(6.3)

Secondly, we define the probability of the target phrase given the source phrase and

domain tag sequence P (ē|f̄ , d̄). Since we cannot extract a phrase pair partly from one

corpus and partly from another one, the corpus ID tags for all words of one phrase

pair are the same. Consequently, this probability is the same as the probability of

the target phrase given the source phrase restricted to the phrases extracted from the

corpus indicated by the corpus ID tags. The probability can be calculated as

P (ē|f̄ , d̄) =
count(f̄ , ē, d̄)∑
ē count(f̄ , ē, d̄)

(6.4)

Finally, we define the probability with switched roles for the source and target

phrase P (f̄ |ē, d̄). This can be approximated as

P (f̄ |ē, d̄) =
count(f̄ , ē, d̄)∑
f̄ count(f̄ , ē, d̄)

(6.5)

6.2.3.2 Domain Factors Sequence Model

In the last part we described how to model the generation of the corpus ID tags. One

main advantage of this approach is that we are able to introduce models to judge the

different possible domain tag sequences for a given source sentence.

In the example given in Figure 6.1 another possible translation of the source sentence

would generate the tag sequence IN IN OUT OUT IN OUT OUT OUT. By looking
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only at the corpus ID sequence we should prefer the translation shown in the figure,

since it uses more phrase pairs that occur in the in-domain corpus.

When defining the Domain Factors Translation Model, we adapt the standard trans-

lation model. However, when defining the Domain Factors Sequence Model, we cannot

simply extend the language model approach used for the target words. There we would

train a language model on the corpus ID tag sequence and then using this language

model to evaluate the tag sequence. A training sentence always comes from a single

document. Consequently, all words would have the same corpus ID tag. In the test

case, however, we do not want to only generate sentences using phrase pairs extracted

from the same corpus. A language model would not be able to meaningfully score

sequences having different corpus IDs. Since there is no corpus on which to train such

a language model, we have to use different types of models. To model this we propose

two features.

Since we are not able to train a language model, we use a unigram model in the

experiments, although the framework supports general sequence models. The first

technique is to do this at the phrase level leading to a model similar to the phrase

count model. Instead of counting all the phrases we can simply count the phrases with

in-domain corpus ID tags. In the example shown in Figure 6.1, the first three phrase

pairs are from the in-domain corpus. Therefore, the feature would have a value of three.

A second approach is to use an in-domain word count feature similar to the already

existing word count feature. In this case, we do not count the phrase pairs that are

extracted from the in-domain corpus, but the target words. In the example, the first

five words were generated by phrase pairs learned from the in-domain data. The feature

value of this feature is therefore five. We evaluated both types of features and present

the results in the next section.

6.2.3.3 Results

As done for the Back-off approach, the domain adaptation using factored translations

models approach was evaluated on the task of translating German TED and computer

science lectures into English. In a first step, we concentrate on evaluating the two

different domain factor sequence models. In the next step, we focus on the different

scores in the domain factor translation model.

72



6.2 Translation Model Adaptation

In the experiments reported in Section 6.2.2 it became apparent that we can only

improve the translation quality if some in-domain development data is available. There-

fore, we focused this time only on the condition where it is available.

Evaluation of the Domain Factor Sequence Models The results of our exper-

iments using the different Domain Sequence Models are summarized in Table 6.5. In

these experiments we did not use any language model adaptation. In the first two

columns, we present the results for the TED translation task using TED development

data. The next two columns show the results for the translation task of university

lectures, where no additional development data is available. Consequently, in this con-

dition, the TED data is used as development data as well. Finally, the last two columns

show the results for the computer science university lectures if there is development data

from the CS domain available.

We analyzed the influence of the Domain Factor Sequence Model using two different

settings. This settings differ in the Domain Factor Translation Model. In the first

configuration, we used the domain probability and in the second configuration, we used

the source and target probabilities.

It is important to use one type of Domain Factor Sequence Model. If we do not use

a Domain Factor Sequence Model, we often cannot improve over the baseline system

and in several cases even perform worse. This is especially the case for the more difficult

task of the translation of university lectures, where the test and training conditions do

not match as well as in the TED condition. If we, in contrast to not using any Domain

Factor Sequence Model, use the word count or phrase count feature, we can improve

the translation model quality between 0.6 and 1.7 BLEU points for all the tasks.

If we compare both types of Domain Factor Sequence Models, the word count and

phrase count based one, we can see no significant differences. But it seems to be

important to use one of these models, because it is not possible to prefer in-domain

translations without this model. The differences between the to model is that the word

count model can distinguish between short and long in-domain phrase pairs since short

ones have less words and therefore the will not be preferred as much as long ones. But

this differences seems not to be very important.

In the following experiments we will therefore only use the phrase-based Domain

Factor Sequence Model.
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Table 6.5: Domain Factor Sequence Models

TED CS

Translation Sequence Dev on TED Dev on CS

Model Model Dev Test Dev Test Dev Test

Baseline 26.32 24.24 26.32 23.60 26.24 24.38

Domain

None 26.42 24.67 26.42 23.54 25.29 24.15

Word Count 27.71 25.60 27.71 24.39 27.06 25.11

Phrase Count 28.17 25.90 28.17 24.25 27.65 25.19

Source/Target

None 26.92 24.86 26.92 23.54 25.94 24.85

Word Count 28.02 25.62 28.02 24.21 27.55 25.59

Phrase Count 28.11 25.48 28.11 24.63 27.66 25.13

Evaluation of the Domain Factor Translation Model After analyzing the Do-

main Factor Sequence Model, we will now concentrate on the Domain Factor Trans-

lation Model. We looked at three different configurations. In the first one, we only

used the domain frequency. In the second one, we use the source and target relative

frequencies as we did in the last approach for domain adaptation (cf. Section 6.2.2).

Finally, we tested a configuration using all three probabilities.

The results for the TED translation task are summarized in Table 6.6. We tested

all configurations without language model adaptation and with log-linear or linear

language model adaptation. In all the conditions the translation quality could be

improved by using any phrase table adaptation. The largest improvements of around

1.4 BLEU points were gained using no language model adaptation. However, even if we

already use language model adaptation, the translation model quality can be improved

by 0.7 BLEU points using the technique will all features. If we compare the different

Domain Factor Translation Models, no significant difference can be seen for this task.

So it seems to be important to use features that indicate how well the phrase pairs fits

the domain, but all the features seems to perform similarly in this task.

In Table 6.7 we tested the same systems on the task of translating university lectures.

In this set of experiments, we did not use any additional development data, but used

the weights obtained from the optimization on the TED task. For this condition, we

can see significant improvements over the baseline system using the translation model
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Table 6.6: Domain Factor Translation Models for the TED task

Approach
No LM Adapt Log-linear Linear

Dev Test Dev Test Dev Test

Baseline 26.32 24.24 27.46 25.26 27.50 25.39

Dom. Freq. 28.17 25.90 28.37 25.75 28.33 25.76

Source/Target 28.11 25.48 28.51 25.86 28.41 25.90

All 28.08 25.70 28.25 25.99 28.31 25.79

Table 6.7: Domain Factor Translation Models for the CS task (Dev on TED)

Approach
No LM Adapt Log-linear Linear

Dev Test Dev Test Dev Test

Baseline 26.32 23.60 27.46 23.81 27.50 23.84

Dom. Freq. 28.17 24.25 28.37 25.12 28.33 24.46

Source/Target 28.11 24.28 28.51 24.76 28.41 24.67

All 28.08 24.65 28.25 24.45 28.31 24.90

adaptation approach as well. On all conditions, we can improve the translation model

quality by 1 to 1.2 BLEU points, even if we already use language model adaptation.

The results for the university lectures using matching development data are shown

in Table 6.8. Here, considerable improvements over the baseline system could again be

reached. Depending on the condition, the translation quality could be improved by 0.3

to 0.8 BLEU points.

We can gather from the experiments that it seems to be important to use some

kind of Domain Factor Translation Model, but less important which scores to use.

They seem to model similar aspects.

Results for News Task We performed some additional tests on the task of trans-

lating German documents from the news-commentary domain into English in order to

analyze whether this approach also works for different tasks. In this setup we used the

news-commentary corpus as in-domain data. Results are summarized in Table 6.9. In

the experiments we used the word count as a Domain Factor Sequence Model and all

three probabilities in the Domain Factor Translation Model. The translation model
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Table 6.8: Domain Factor Translation Models for the CS task (Dev on CS)

Approach
No LM Adapt Log-linear Linear

Dev Test Dev Test Dev Test

Baseline 26.24 24.38 26.84 24.65 26.85 25.04

Dom. Freq. 27.65 25.19 27.86 25.27 27.76 25.16

Source/Target 27.66 25.13 27.47 25.05 27.72 25.31

All 27.37 25.16 27.86 25.34 27.73 25.29

Table 6.9: Domain adaptation using Factored Translation Models on the NC task

System Dev Test

Baseline 25.90 29.03

+ LM Adaptation 26.68 29.24

+ PT Adapt 27.07 29.69

adaptation could increase the translation quality further, even after performing lan-

guage model adaptation. The BLEU score could be increased by 0.4 BLEU point on

the test data. Consequently, this approach can be used to perform domain adaption

on very different applications. We saw improvements on a speech translation task as

well as on a text translation task.

6.3 Detailed Analysis and Combination of Different Trans-

lation Model Adaptation Strategies

In the previous section we presented two approaches to perform domain adaptation by

integrating small amounts of additional in-domain parallel data. These techniques have

in common that they try to encode the domain specific knowledge without losing the

information learned from the much bigger parallel corpus. They differ in the way they

model this knowledge. In the first approach, we train two different phrase tables and

afterwards try to combine the features of the different phrase tables into a new one.

We will refer to this one as Back-off approach. In the second one we use the factored

translation model framework (Koehn and Schroeder, 2007) to include the source corpus

of the phrase pair as an additional factor (Factored approach). Additional approaches
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were suggested to adapt the translation model under the mentioned condition and will

be reviewed in Section 6.3.1.

Although the modeling is different, several aspects of all approaches are similar.

For example, most of them use the conditional probabilities restricted to the in-domain

corpus as some type of feature. Furthermore, all these strategies try to combine different

features in a log-linear way.

In order to better understand what is important when adapting the translation

model, we analyzed the difference between the approaches (Niehues and Waibel, 2012a).

Furthermore, we evaluated the different aspects of the techniques with respect to their

influence on the translation quality.

By comparing the different approaches of translation model adaptation, we found

two main aspects of the model that can be adapted. The first aspect is the candi-

date selection, where we determine for every possible source phrase, which translation

options to consider during decoding.

The second aspect we can adapt is the selection of the phrase pair scores. Different

possibilities of calculating phrase pair scores are used to encode the information about

the origin of the training data.

6.3.1 Additional Approaches to Domain Adaptation

A first approach to integrate the source of the data into the translation model was

presented in the log-linear adaptation approach (Koehn and Schroeder, 2007). In their

work they used two phrase tables, one trained on the in-domain corpus and another one

trained on the out-of-domain data. Then they used different weights in the log-linear

model for the in-domain and out-of-domain scores. Therefore, they used 8 different

scores in the log-linear model.

A different approach is the Fill-up approach presented by Bisazza et al. (2011). In

this method the in-domain scores are used if the phrase pair occurs in the in-domain

phrase table. Only for phrase pairs that do not occur in the in-domain corpus, they

use the scores calculated on the out-of-domain phrase table. To distinguish between in-

domain and out-of-domain phrase pairs, they introduce an additional indicator feature.

With the help of this indicator feature, they can share the weights for the four scores of

both phrase tables and only five scores are represent in the phrase table. They showed

that this improves the optimization process using MERT.
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6.3.2 Candidate Selection

In our scenario there are three different phrase tables. One trained only on the in-

domain data providing the candidate translations TIN (f̄i) for a given source phrase

f̄i, one trained on the out-of-domain data (TOUT (f̄i)) and one trained on all data

(TALL(f̄i)). Consequently, for a given translation task there are 3 different sets of phrase

pairs, which were determined by candidate selection as described in Chapter 2.2. Each

of these sets contain at most n translations for a given source phrase due to pruning.

In Figure 6.2 we show the situation for three source phrases A, B and C. In the

general phrase table trained on all data, the source phrases A and B have the maximal

number of translation options. For the out-of-domain phrase table, this is only the case

for A, since some of the translations only occur in the in-domain text. Finally, in the

in-domain phrase table no translation for C can be found.

The first approach here is to use the phrase pairs which are selected from the

phrase table trained on all data T (f̄i) = TALL(f̄i) . In this case we would not adapt the

component of the candidate selection at all. This approach was used by the back-off

and factored approaches and will be referred to as NoAdapt.

A second approach is to use the union of the candidates selected from the in-domain

and the out-of-domain phrase table T (f̄i) = TIN (f̄i) ∪ TOUT (f̄i). This was done in the

log-linear and fill-up approaches. We will refer to this method as UnionOut. Instead

of the out-of-domain phrase table, we could alternatively use the phrase table trained

on all data and combine its candidate phrase pairs with the in-domain phrase pair

selection T (f̄i) = TIN (f̄i) ∪ TALL(f̄i). We will refer to this method as UnionAll.

As it is illustrated with source phrase A in Figure 6.2, when applying the union

operation it can happen that more than n translation options end up in the final phrase

table. But since many translation options occur in both phrase tables, the number is

often less than 2n.

A third approach is to mainly rely on the phrase pairs of the in-domain phrase

table. Only if there are no or not enough candidate translations for one source phrase,

we will fill up the candidate list with the ones suggested by the out-of-domain phrase

table or the general phrase table, respectively. This leads to the definition of the

translation candidates set as: T (f̄i) = TIN (f̄i) ∪ T k
ALL(f̄i), where T k

ALL(f̄i) are the top

k translation of TALL(f̄i) and k = n − |TIN (f̄i)|, where n is the maximum number of
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translation candidates and therefore k is always larger than or equal to 0. In our case

n is 10. In contrast to the Union approaches, we will still have at most 10 translations

for every source phrase. Analog to the UnionAll and UnionOut approaches, we will

refer to these ones as PaddingAll and PaddingOut.

In a last approach, we allow only to fall back to the candidates of the out-of-domain

phrase table, if there are no translations at all for the source phrase in the in-domain

phrase table. In this case we will consider all out-of-domain candidates for this source

phrase.

T (f̄i) =

{
TIN (f̄i) : TIN (f̄i) 6= ∅
TOUT (f̄i) : else

We will refer to this approach as SourcePadding. In the example in Figure 6.2 out-of-

domain candidates will only be used for source phrase C.

 Phrase tables  A   B  C
 General PT

 A   B  C
 Out-of-domain PT

 A   B  C
 Indomain PT

 Methods

 A   B  C
 NoCSAdapt

 A   B  C  A   B  C
Union

 A   B  C  A   B  C
 Padding

 A   B  C
 Source Padding

Figure 6.2: Adaptation approaches for candidate selection

6.3.3 Selecting Scores for the Phrase Table

The other step in the translation model that can be adapted is the scoring of the

phrase pairs. Here the approaches differ in four key aspects. But first we need to
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change the definition of the translation probability slightly for the adapted translation

model. Originally the probability for a phrase pair (ēi|f̄i) is defined as:

log(p(ēi|f̄i)) =
S∑

s=1

λslog(Φs(ēi|f̄i))

− log(Zf̄i
)

In most phrase tables, we use S = 4 for different features to describe the probability

of the phrase pair, which are combined log-linearly. The last term log(Zf̄i
) is used to

normalize the probabilities so that they add up to 1. We extend it in the following way:

log(p(ēi|f̄i)) =

S∑
s=1

~λslog(
−−−−−→
Φs(ēi|f̄i))

+
S′∑

s′=1

λs′ log(Φs′(ēi|f̄i))

− log(Zf̄i
)

Instead of one score derived from the S different phrase table features from one

phrase table, we include several sets of phrase table features stemming from different

phrase tables in the calculation of the overall phrase table probability. The different

features are represented as vectors and the logarithm function is applied separately for

each component. Furthermore, in some approaches there might be some additional

features S′ representing for example the corpus the phrase pair is extracted from.

The first key aspect is the usage of the phrase table features trained on all data.

Although these features are not adapted to the target domain, they are often more

reliable, since they are calculated on larger amounts of data. Therefore, they might be

useful for smoothing the adapted features. We can use them for log-linear smoothing

by defining Φs =< ΦAll
s ,ΦAdapted

s > or we can ignore them by using only the adapted

features (Φs =< ΦAdapted
s >) and therefore do not need to train an additional phrase

table on the whole data. While the back-off and factored approaches extend the features

of the general phrase table by the adapted ones, the general ones are not used at all in

the log-linear and fill-up approaches.

Secondly, when adding the in-domain scores to the ones calculated on all data, it

might not be necessary to use all adapted scores, but just adding one or two of the
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four scores might be sufficient. Therefore, we will analyze for which scores we need

an adapted version and for which of them we can just use the score from the general

phrase table. In this case, for some of the scores, the features will then be defined as

Φs =< ΦAll
s > and not Φs =< ΦAll

s ,ΦAdapted
s >.

In addition to removing some of the scores, we can also add scores. In the Factored

Approach, we propose to use the probability of the domain given this phrase pair. This

probability can be estimated by the number of times the phrase pair occurs in the

domain divided by the absolute number of occurrences in the whole corpus.

Thirdly, the out-of-domain features and the in-domain features cannot be calculated

for all phrase pairs, but only for the ones that occur in the corresponding corpus. If

a phrase pair does not occur in the in-domain corpus, its in-domain probability is

unknown. Therefore, we suggest different ways to handle unknown probabilities in the

individual approaches.

Log-linear As it is done in the log-linear approach for domain adaptation, we can

use either the in-domain or the out-domain scores and then use different scaling

factors for each of them. That means both in-domain and out-of-domain phrase

pairs have 8 scores. For in-domain phrase pairs the four out-of-domain phrase

table features are set to 1 and for the out-of-domain phrase pairs the in-domain

features are set to 1. For phrase pairs from the in-domain corpus this leads to

the definition ΦAdapted
s =< ΦIN

s , 1 > and for the out-of-domain phrase pairs we

use the definition: ΦAdapted
s =< 1,ΦOUT

s >.

Back-off In the back-off method the in-domain scores are used for in-domain phrase

pairs. For phrase pairs that only occur in the out-of-domain phrase table each

score is set to the worst value that occurs in the in-domain phrase table for this

score. In this case, for all phrase pairs from the in-domain corpus, we get the

definition ΦAdapted
s = ΦIN

s and for all the other phrase pairs:

ΦAdapted
s = min(ēi|f̄i)Φ

IN
s (ēi|f̄i)

Indicator An indicator feature signals whether the phrase stems from the in-domain

or from the out-of-domain phrase table. As the first four scores we use the

probabilities from the in-domain and out-of-domain phrase table, respectively,

and the last one being the indicator feature. This additional feature will have

81



6. ADAPTATION BY COMBINING IN-DOMAIN AND
OUT-OF-DOMAIN DATA

Table 6.10: Characteristics of the different phrase table adaptation approaches

Characteristic Log-lin. Back-off Factored Fill-up

Selection UnionOut NoAdapt NoAdapt UnionOut

General Scores X X

Adapted Scores all 2 2 all

Unk. Probability Log-lin. Back-off Indicator Indicator

Unique X X

Number of Scores 8 6 7 5

the value 1 for all in-domain phrase pairs and exp(1) for all out-of-domain phrase

pairs.

The fourth and last aspect is the treatment of phrase pairs which can be assigned

both in-domain and out-of-domain scores, because they occur both in the in-domain

and in the out-of-domain corpus. In this case, the back-off and fill-up approach suggest

to use only the in-domain scores, while the other two approaches add the phrase pair

to the phrase table twice, once with in-domain and once with out-of-domain scores.

An overview of the different aspects of the four approaches to phrase table adapta-

tion as mentioned in the related work is given in Table 6.10.

6.3.4 Results

In Sections 6.3.2 and 6.3.3, we analyzed approaches to integrate additional data into

the translation system. Thereby, we identified the things they have in common as well

as their key differences. Now, we want to evaluate the influence of these differences on

the translation quality.

We look at the tasks of translating TED lectures as well as the university lectures

from German to English. First, we compare the different candidate selection strategies.

Afterwards, we investigate the influence of the different scores on the translation quality.

6.3.4.1 Candidate Selection

In the first series of experiments, we analyze the influence of the candidate selection

methods. Before considering the translation quality itself, we analyze the size of the

phrase tables generated by the different methods.
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Table 6.11: Number of phrase pairs generated by different candidate selection methods

TED CS

#PP % #PP %

In 140K 40% 109K 31%

Out 335K 96% 338K 97%

All 348K 100% 347K 100%

UnionOut 425K 122% 408K 118%

UnionAll 413K 118% 399K 115%

PaddingOut 366K 105% 363K 105%

PaddingAll 364K 104% 361K 104%

SourcePadding 250K 72% 258K 74%

In Table 6.11 the number of phrase pairs selected by the different methods for two

test sets are presented. The in-domain phrase table contains 30% to 40% of the phrase

pairs that are in the general phrase table and the out-of-domain phrase table around

95%.

If we take the union of in-domain and out-of-domain (UnionOut) or in-domain

and general phrase table (UnionAll), the size increases by around 20%. By using the

Padding method, the phrase table increases only by around 5%, compared to the phrase

table trained on all data. If we only use out-of-domain phrase pairs for source phrases,

which did not occur in the in-domain corpus, the phrase table size is reduced by around

30%, compared to the general phrase table.

After looking at the phrase table sizes, we measure the quality of the translations

generated using these phrase tables. We use the scores as described in the Back-off

method. Since all phrase tables use the same features, we perform the first experiments

without running separate optimizations for the different methods. The results for the

TED translation task are shown in Table 6.12. For the task of translating computer

science lectures the results are summarized in Table 6.13.

For the TED task we can only see small improvements by adapting the candidate

selection. The best systems can improve by around 0.1 BLEU points over the system

that does not perform any adaptation in the candidate selection step. The two Union

methods as well as the Padding methods perform similarly well and lead to the best
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Table 6.12: Candidate selection for the TED task (No optimization)

Candidate Selection

Language Model Adaptation

No Log-lin. Linear

NoCSAdapt 25.50 25.89 25.90

UnionOut 25.52 25.96 25.96

UnionAll 25.52 25.96 29.95

PaddingOut 25.53 25.97 25.94

PaddingAll 25.53 25.97 25.94

SourcePadding 25.50 25.90 25.76

results. The SourcePadding method leads to slightly worse results than the best two

methods. The differences are bigger, if the language model is also adapted towards the

target domain.

In the next experiments we analyze the performance on the task of translating

university lectures. As mentioned before, in this task the training and test conditions

do not match as well for the TED task. We analyze two conditions. In the first one,

the systems were optimized on data from the TED corpus. In the second condition,

better matching data from the computer science domain was used for optimizing the

model weights.

In the first condition, the Union and Padding methods perform best. However, the

Union method outperforms the Padding technique. We can again improve by around

0.1 BLEU point over the system using no adaptation in the candidate selection step.

Furthermore, the SourcePadding technique performs worse than using no adaptation

of the candidate selection step.

For the system that is optimized on the university lectures, the picture looks dif-

ferently. Here, the system using no adaptation outperforms all adaptation approaches.

The problem might be that in this condition the phrase tables differ more between the

different approaches and using the same weights for all approaches hinders the perfor-

mance of the adaptation approaches. Therefore, we perform additional experiments,

where we optimized each approach individually. The results are summarized in Tables

6.14, 6.15 and 6.16.

However, we point out that in all conditions and for all methods it does not matter
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Table 6.13: Candidate selection for the CS task (No optimization)

Candidate Selection

Language Model Adaptation

None Log-lin. Linear

TED CS TED CS TED CS

NoCSAdapt 24.28 25.31 25.00 25.40 24.58 25.56

UnionOut 24.38 24.87 25.09 24.98 24.64 25.16

UnionAll 24.37 24.86 25.08 24.97 24.63 25.15

PaddingOut 24.29 24.85 24.99 24.96 24.64 25.15

PaddingAll 24.28 24.84 24.98 24.94 24.55 25.14

SourcePadding 24.16 24.76 24.81 24.88 24.44 25.08

Table 6.14: Candidate selection for the TED task

Candidate Selection

Language Model Adaptation

None Log-lin. Linear

Dev Test Dev Test Dev Test

NoCSAdapt 28.03 25.50 28.40 25.89 28.27 25.90

UnionOut 28.14 25.42 28.43 25.96 28.61 25.90

UnionAll 28.34 25.75 28.69 26.04 28.43 26.01

PaddingOut 28.20 25.60 28.68 26.09 28.66 26.24

PaddingAll 28.19 25.40 28.53 26.09 28.61 26.12

SourcePadding 28.13 25.48 28.49 26.08 28.45 26.29

whether we combine the in-domain phrase table with the out-of-domain phrase table

or with the phrase table trained on all data.

For the TED task (Table 6.14), we obtain the worst results in two of three con-

ditions when performing no adaptation. Consequently, the adaptation seems to help.

Furthermore, UnionAll and PaddingOut always perform better than the baseline.

In Table 6.15 we present the results on the university lectures when optimizing on

the TED corpus. In this case, the situation is slightly different. Here again, Sour-

cePadding is worse than the other two approaches to adapt the candidate selection

step. Union produces the best translation in all cases and UnionAll is always better

than the baseline.
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Table 6.15: Candidate selection for the CS task (Dev on TED)

Candidate Selection

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

NoCSAdapt 28.03 24.28 28.40 25.00 28.27 24.58

UnionOut 28.14 23.97 28.43 25.09 28.61 24.93

UnionAll 28.34 24.80 28.69 25.15 28.43 24.60

PaddingOut 28.20 24.12 28.68 25.11 28.66 24.69

PaddingAll 28.19 24.04 28.53 24.56 28.61 24.28

SourcePadding 28.13 24.16 28.49 23.85 28.45 24.27

Table 6.16: Candidate selection for the CS task (Dev on CS)

Candidate Selection

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

NoCSAdapt 27.29 25.31 27.50 25.40 27.58 25.56

UnionOut 27.16 25.44 27.25 25.85 27.33 25.65

UnionAll 26.95 25.48 27.38 25.78 27.47 25.82

PaddingOut 27.10 25.48 27.24 25.87 27.40 25.60

PaddingAll 26.88 25.40 27.30 25.92 27.23 25.88

SourcePadding 26.88 25.21 27.17 25.56 27.20 25.79

Afterwards, we show the results where we optimized on university lectures (Table

6.16). Here, performing no adaptation is always best on the development data, but per-

formance is very poor on the test set. The best performance is achieved by PaddingAll,

but again the UnionAll method performs quite competitively.

Although performing individual optimizations for every configuration introduces

additional random noise that might have influenced the results, it seems to be important

to keep all phrase pairs from the in-domain phrase table. Using no adaptation of the

candidate selection performs worse than the Union or the Padding approach in many

experiments. Furthermore, especially in the case where the in-domain and test data

do not perfectly match, i.e. with CS lectures, it seems also to be important to keep all
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phrase pairs from the general or out-of-domain phrase table. Therefore, we will use the

UnionAll method for all following experiments.

6.3.4.2 Selecting Scores for the Phrase Table

After analyzing the influence of the candidate selection, the remaining experiments

concentrate on the features that can be used as scores for the phrase table entries. In

the first group of experiments we analyze which ones of the adapted features contribute

to an improved translation quality.

In all systems we use the four scores from the phrase table trained on all data.

Then we add one or more of the in-domain scores. We use the in-domain features as

described in the back-off method. Again, the results for the three conditions, TED

translation task and the task of translating computer science lectures without and with

matching development data are shown in the three Tables 6.17, 6.18 and 6.19.

For the TED task, in most conditions adding each single or combinations of features

could improve over the baseline system using no adaptation. On average, the relative

frequencies and the domain probability contributed most to the improvements, while

the lexical features could only improve sightly over the baseline system. Averaged

over all three configurations, the best performance was achieved by adding the relative

frequencies and the domain probabilities, which led to an increase of around 1 BLEU

point over the baseline system. Similar performance is achieved by the system using

relative frequency and lexical features and the system using only relative frequencies.

The two conditions translating computer science lectures present similar results.

This time the best performance is achieved by using only the relative frequencies for the

condition with non-matching development data and using only one relative frequency

in the other condition. Furthermore, when using the non-matching development data,

not all systems can outperform the baseline system. Again the relative frequencies seem

to be very important, while the domain probability has less impact in this condition.

In summary, we evaluated the different phrase table features under nine different

conditions. In average over all conditions, the system using both relative frequencies

performs best. In the condition where no language model adaptation is performed,

this is also the best method. For the configuration using log-linear language model

adaptation, the best performance is achieved by using only one relative frequency. In
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Table 6.17: Feature selection on the TED task

Feature Selection

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

Baseline 26.51 24.36 27.56 25.43 27.65 25.59

rel. Freq 1 28.04 25.32 28.50 25.82 28.37 26.07

rel. Freq 2 28.28 25.54 28.44 25.88 28.56 26.27

rel. Freq 1&2 28.34 25.75 28.69 26.04 28.43 26.01

Lex 1 27.87 25.08 28.40 25.66 28.17 25.84

Lex 2 27.73 25.35 28.42 25.89 28.41 25.65

Lex 1&2 27.47 25.23 28.22 25.53 28.08 25.40

rel. Freq 1&2 + Lex 1&2 28.28 25.63 28.46 26.10 28.43 26.10

Domain 27.95 25.74 28.30 25.93 28.21 25.80

rel. Freq 1&2 + Domain 28.44 25.79 28.67 26.38 28.48 26.27

All 28.46 25.71 28.35 25.87 28.52 26.09

Table 6.18: Feature selection on the CS task (Dev on TED)

Feature Selection

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

Baseline 26.51 23.84 27.56 24.75 27.65 24.02

rel. Freq 1 28.04 24.25 28.50 25.07 28.37 24.32

rel. Freq 2 28.28 24.29 28.44 23.54 28.56 24.19

rel. Freq 1&2 28.34 24.80 28.69 25.15 28.43 24.60

Lex 1 27.87 23.92 28.40 25.06 28.17 24.25

Lex 2 27.73 24.22 28.42 24.36 28.41 24.53

Lex 1&2 27.47 23.98 28.22 23.76 28.08 23.87

rel. Freq 1&2 + Lex 1&2 28.28 23.69 28.46 24.50 28.43 24.11

Domain 27.95 24.29 28.30 24.84 28.21 23.75

rel. Freq 1&2 + Domain 28.44 24.10 28.67 24.48 28.48 24.13

All 28.46 23.96 28.35 24.80 28.52 23.96
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Table 6.19: Feature selection on the CS task (Dev on CS)

Feature Selection

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

Baseline 26.37 24.17 26.97 25.42 26.88 25.18

rel. Freq 1 26.91 25.58 27.31 26.14 27.38 25.91

rel. Freq 2 26.87 25.75 27.25 25.64 27.42 25.65

rel. Freq 1&2 26.95 25.48 27.38 25.78 27.47 25.82

Lex 1 26.90 25.24 26.98 24.69 27.19 25.56

Lex 2 26.71 24.87 27.03 25.85 26.98 25.23

Lex 1&2 26.65 25.11 27.15 25.83 26.85 24.62

rel. Freq 1&2 + Lex 1&2 26.96 25.47 26.97 25.35 27.43 25.73

Domain 26.70 25.14 27.15 25.51 26.99 25.51

rel. Freq 1&2 + Domain 26.99 25.46 27.08 25.74 27.49 26.05

All 26.82 25.14 26.86 25.34 27.10 25.04

contrast, if we use linear language model adaptation, the best performance is reached

by using the relative frequencies together with the domain probability.

In conclusion, the relative frequencies seem to be the most important feature for

adaptation. In some cases, especially when the development and test data match, the

domain probability can help to improve the performance further. By using both relative

frequencies, we can improve by 1 to 1.4 BLEU compared to using no adaptation, if no

language model adaptation is used and by 0.4 to 0.6 BLEU points if language model

adaptation is used. In both tasks, these improvements are bigger than the ones gained

by adapting the candidate selection process.

In Section 6.3.3 we mentioned two additional aspects of selecting the scores of the

phrase pairs. If the phrase pair occurs both in the in-domain and out-of-domain corpus,

we can calculate the adapted scores according to the definition for the in-domain or

out-of-domain phrase pairs for all approaches to except for the back-off approach. Then

we can either use only the phrase pairs with the scores generated by the in-domain data

or add the phrase pair to the translation model twice: Once with the indomain scores

and once with the out-of-domain scores. We preform preliminary experiments, but we

could not find any significant difference between the two approaches. Therefore, we
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always use two phrase table entries, one based on the in-domain scores, and one based

on the out-of-domain scores. Now we concentrated on the other two aspects of the

translation model adaptation: whether to include the general scores in the in-domain

phrase table entry in addition to the in-domain scores and how to deal with unknown

probabilities.

Since the number and types of features is different between those experiments,

separate optimizations had to be run. In all experiments we use the UnionAll method

as candidate selection and use two sets of features for one phrase pair, if the phrase

occurs in both the in-domain and out-of-domain corpus.

The results are shown in Tables 6.20, 6.21 and 6.22 for the three different conditions.

The first system in each table uses no adapted features at all. The next two systems use

only the adapted features using the indicator and log-linear method to handle unknown

probabilities. The back-off methods can only be used in combination with the general

scores. Otherwise all out-of-domain phrase pairs have the same features. The remaining

nine systems use both the general scores and the adapted ones. Out of these systems,

the first three systems use both adapted relative frequencies as well as both adapted

lexical probabilities. The next three systems (General + rel. Back-off, General + rel.

Log-lin., General + rel. Indicator) use only the adapted relative frequencies. The final

three systems use the adapted relative frequencies as well as the domain probability

(Table: General + rel. D.).

The results for the TED translation task presented in Table 6.20, show a similar

performance for the different features.. The maximal average difference between the

approaches is 0.4 BLEU points. Furthermore, all approaches can clearly outperform the

baseline system. The best result is achieved with the General + Log-lin. combination.

The reason for this may be that this approach uses the largest number of features,

which results in more dimensions for the adaptation towards the target domain.

Since the systems using no general scores (Log-lin. and Indicator) performs in

average second and fourth best, the usage of the general scores seems not to be very

important for this task. Among the three best systems using the General scores each of

the three approaches (Back-off, Log-linear and Indicator) are represented. Furthermore,

one of them uses all adapted features, one uses only the relative frequencies and one

uses the relative frequencies and the domain probability. Consequently, when have a

perfect match between the training and test data, it seems to be important to use an
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Table 6.20: Feature combination for the TED task

Feature Combination

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

No 26.51 24.36 27.56 25.43 27.65 25.59

Log-lin. 28.26 25.72 28.63 26.17 28.18 26.54

Indicator 28.23 25.78 28.31 26.51 28.33 25.99

General + Back-off 28.28 25.63 28.46 26.10 28.43 26.10

General + Log-lin. 28.52 25.88 28.60 26.25 28.68 26.44

General + Indicator 28.34 24.49 28.40 26.09 28.31 26.27

General + rel. Back-off 28.34 25.75 28.69 26.04 28.43 26.01

General + rel. Log-lin. 28.23 25.65 28.61 26.14 28.40 25.99

General + rel. Indicator 28.40 25.83 28.48 26.18 28.53 26.18

General + rel. D. Back-off 28.44 25.79 28.67 26.36 28.48 26.27

General + rel. D. Log-lin. 28.24 25.48 27.81 25.66 28.49 25.97

General + rel. D. Indicator 28.46 25.67 28.48 26.28 28.49 26.23

approach to perform phrase table adaptation, but it is not so important which one to

use.

Table 6.21 shows the results for the task of CS lectures translation without matching

development data. For this task not all features could improve over the baseline system

using no in-domain features. It seems to be harder to gain improvements through using

phrase table adaptation, if the test domain does not match the in-domain data perfectly.

Nonetheless, the best approaches could improve the average performance by 0.8 BLEU

points.

Especially, the two approaches using no general scores perform worse than the

baseline system. Using the scores from the general phrase table seems to help the

performance in cases where the data does not match perfectly . Furthermore, the

approaches using fewer adaptive scores perform best in this condition. The best average

performance was achieved by the General + rel. Back-off approach followed by the

General + rel. Indicator approach.

Table 6.22 presents the last condition, where we use both development and test

data from the computer science lecture domain. This time all approaches outper-
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Table 6.21: Feature combination for the CS task (Dev on TED)

Feature Combination

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

No 26.51 23.84 27.56 24.75 27.65 24.02

Log-lin. 28.26 23.93 28.63 24.27 28.18 23.88

Indicator 28.23 23.52 28.31 24.66 28.33 23.42

General + Back-off 28.28 23.69 28.46 24.50 28.43 24.11

General + Log-lin. 28.52 24.01 28.60 24.39 28.68 24.86

General + Indicator 28.34 25.54 28.40 25.05 28.31 24.29

General + rel. Back-off 28.34 24.80 28.69 25.15 28.43 24.60

General + rel. Log-lin. 28.23 24.40 28.61 24.86 28.40 24.73

General + rel. Indicator 28.40 25.05 28.48 24.94 28.53 24.49

General + rel. D. Back-off 28.44 24.10 28.67 24.48 28.48 24.13

General + rel. D. Log-lin. 28.24 23.81 27.81 24.88 28.49 24.46

General + rel. D. Indicator 28.46 24.96 28.48 24.73 28.49 24.77

Table 6.22: Feature combination for the CS task (Dev on CS)

Feature Combination

Language Model Adaptation

No Log-lin. Linear

Dev Test Dev Test Dev Test

No 26.37 24.17 26.97 25.42 26.88 25.18

Log-lin. 27.42 25.23 25.91 24.45 27.24 25.30

Indicator 27.34 25.36 27.06 24.99 27.62 25.27

General + Back-off 26.96 25.47 26.97 25.35 27.43 25.73

General + Log-lin. 27.28 25.57 27.24 25.80 27.33 25.64

General + Indicator 27.44 25.45 26.90 25.29 27.04 25.30

General + rel. Back-off 26.95 25.48 27.38 25.78 27.47 25.82

General + rel. Log-lin. 26.60 24.77 27.43 25.73 27.50 25.74

General + rel. Indicator 26.96 25.51 27.50 26.11 27.22 25.47

General + rel. D. Back-off 26.99 25.46 27.08 25.74 27.49 26.05

General + rel. D. Log-lin. 26.89 25.36 27.03 25.74 26.93 24.99

General + rel. D. Indicator 26.95 25.43 27.11 25.42 27.02 25.02
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6.3 Detailed Analysis and Combination of Different Translation Model
Adaptation Strategies

Table 6.23: Overview of results using data weighting

Task
No Adapt Adapt Gain

Dev Test Dev Test Dev Test

TED 26.32 24.24 28.48 26.18 +2.16 +1.94

CS (TED Dev) 23.60 24.94 + 1.34

CS 26.24 24.38 27.50 26.11 +1.26 +1.73

form the baseline approach. But again, the lowest improvements were achieved by the

systems using no general scores. Thus, the general scores seem to be important in

conditions when the training and test data do not match perfectly. Again, the average

improvement of the best system is 0.8 BLEU points over the baseline system. The

best approaches in this condition are General + rel. D. Back-off and General + rel.

Indicator.

In both computer science conditions it seems to be best to use either the relative

frequencies or the relative frequencies and the domain probabilities for adaptation.

Furthermore, the Back-off and Indicator approaches seem to slightly outperform the

Log-linear approach. Averaged over all conditions the best performance was achieved

by the approaches General + rel. Indicator and General + rel. Back-off.

6.3.4.3 Combining In-Domain and Out-of-Domain Data

After analyzing the different approaches of adapting the system using in-domain train-

ing data in the last part in detail, we will have a final look at how much improvements

can be achieved by performing data weighting. Therefore, we compared the results of

the previous chapter with the ones also using adaptation by model combination. We

used the best performing approach. That means, we perform log-linear language model

adaptation and translation model adaptation. For the translation model adaptation,

we used the Union approach for candidate selection and calculated the scores according

to the General + rel. Indicator method. The results are summarized in Table 6.23.

Furthermore, we present example sentences in Tables 6.1 and 6.2.

As shown in the table, the performance could be improved significantly in all tasks.

The best improvements were achieved in the TED task by around 2 BLEU points. For
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the computer science lectures task the results could be improved by 1.3 to 1.7 BLEU

points depending on whether matching development data is available.

In the first example in Example 6.1 the German word Schiffs is no longer translated

into vessel, but into ship. Although the former is common in the proceedings of the

European Union, in the scenario of translating general talks ship is a more suitable

translation. In the second translation example for the TED task the German word

vorstellen is used. In the context, the word means sich etwas vorstellen (engl. to

imagine), while the baseline system uses the translation for etwas vorstellen (engl. to

present). Although this is a common meaning in the out-of-domain data, with the

adaptation it is possible to generate the correct translation in the given context.

Source: ... der Baupläne des Schiffs.

Reference: ... on the blueprints of the ship.

No Adapt: ... the design of the vessel.

Adapt: ... the design of the ship.

Source: wir wollen uns das best mögliche Ergebnis vorstellen.

Reference: we want to imagine the best case scenario outcome

No Adapt: we want to present the best possible result.

Adapt: we want to imagine the best possible result.

Example 6.1: Examples from the TED task

The third example stems from the university lectures task. Due to the adaptation

the phrase zufällige Gewichte is no longer translated into adventitious weights, but

correctly into random weights.

Source: wir haben zufällige Gewichte.

Reference: we have random weights.

No Adapt: we have adventitious weights.

Adapt: We have random weights.

Example 6.2: Example from the CS task
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7

Adapting towards Specific Topics

In the last chapter we developed different ways to adapt the translation system towards

a new application using small amounts of in-domain data. In these approaches, we did

not distinguish between different aspects of the training data. For example, we did not

differentiate between an adaptation towards a new topic or towards a new genre. In

contrast, we tried to better exploit data that is more appropriate for the application.

In real-world applications, it is quite common that we may need to adapt our system

towards some special aspects of the task. For example, after performing the adaptation

approaches mentioned before, we have a reasonably good translation system for trans-

lating TED lectures. But if we now need to adapt this system to translate computer

science lectures or electrical engineering lectures, we would need special adaptation

techniques to adapt the translation system towards a new topic. In this chapter, we

will develop these types of techniques.

As described in Chapter 1.3, the topic of a text describes its content. The content

can often be described by a hierarchy of topics. While talks such as TED lectures

usually have a more general topic like the environment or music, the topics in university

lectures can be much more specific. The general topic of the university lectures used

in this thesis is computer science. The more specific topic of the lectures is cognitive

systems or speech recognition. Some part of the lecture can be about a very specific

topic such as the HMM algorithm.

In this chapter, we will first present which problems occur when a system is used

for translating text belonging to a very specific topic that is different from the topics

of the training data. We analyze how the problems differ in the case of more general

95



7. ADAPTING TOWARDS SPECIFIC TOPICS

topics of TED talks versus the more specific ones of university lectures. We will see

that more specific topics lead to additional problems.

An intuitive approach to tackle these problems would be to collect parallel data

that matches the application in topic and genre and use approaches described in the

last chapter to integrate this data into the translation system. But if we look at the

example of translating university lectures, we notice that we will often not be able to

collect this data. There is nearly no publicly available German to English parallel data

about computer science. Sometimes we would even need a more specific topic. For

example, it would be good to have parallel data about speech recognition. In this case

there is nearly no chance of finding any appropriate parallel data.

Since it is rather difficult to acquire useful parallel data, we will concentrate on

ways of using other knowledge sources to adapt the system towards the new topic.

Wikipedia1 is a very promising source of information, since it already contains several

million articles in 285 languages and is continuously growing. We will try to integrate

this knowledge source into our translation system as shown in Niehues and Waibel

(2011).

In the case of Wikipedia, we use the titles of lined articles in different languages,

since the articles themselves are not parallel. In this data the words only occur as

lemmas in most cases. This is also the case for many other additional knowledge

sources such as dictionaries. It is especially problematic when we use German as the

input language since German is a highly inflected language. We will therefore try to

learn translations for inflected word forms from the translations of the lemmas.

7.1 Motivation

In addition to the problems that occur when adapting a model in a machine learning

task, SMT-specific problems exist. In many other tasks there is a fixed set of labels Y

and the main problem is to adapt the model in such a way that it selects better fitting

labels. In SMT the labels of the prediction tasks are the target words. For example, if

we talk about a Keller in computer science, we most likely do not mean the basement

but a stack.

1http://www.wikipedia.org
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7.1 Motivation

Table 7.1: Out-of-vocabulary words of the different tasks

Task Condition
OOV mod. OOV

total unique rate total unique rate

TED
Baseline 422 314 1.34% 307 245 0.98%

+ TED Training 334 255 1.06% 255 205 0.81%

CS

Baseline 1437 624 3.22% 1150 521 2.58%

+ TED Training 1219 563 2.73% 959 467 2.15%

Lectures Training 924 492 2.07% 749 416 1.68%

Merely learning better target words is not sufficient for SMT since we also need to

learn new translations for terms that are specific to a topic. That means we need to learn

a new set of target labels Y. This is especially the case when adapting the translation

system towards a new topic. For example, if we want to translate computer science

lectures, we also need to learn translations for terms such as sampling or quantization.

7.1.1 Out-of-Vocabulary Words

In order to tackle the problems occurring when adapting an SMT system towards a new

topic, we first want to analyze the problem of topic specific terms in these conditions.

If we have got a topic specific term, we will most probably have no translation for it.

In this case, it will be treated as an out-of-vocabulary (OOV) word. In a first step, we

will analyze the number of OOV words in the different test conditions.

The default method to handle OOV words when translating European languages is

to pass them through. Since many of the OOV words are proper names, which will be

the same in both languages, this will often lead to a good translation. In a second step,

we will evaluate how well this default strategy performs by looking at the modified

number of OOV words. In this case, a word is only counted as an OOV word if it does

not occur in the reference translation. For all the remaining OOV words the default

approach does not lead to the correct translations.

We summarized the number of OOV words for the different conditions of the two

tasks in Table 7.1. These numbers were already given in Tables 4.4 and 4.5 in Chapter 4.

Using the methods described in the last two chapters we could improve the translation

quality in the different conditions significantly. But the approaches do not attempt to
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learn new translations. Therefore, the number of OOV words is still the same as in the

baseline systems.

The number of OOV words shows the different characteristic of both task. In the

TED lectures, we have common language. Therefore the number of OOV words is quite

small, resulting in an OOV rate of 1.34% or 1.06% depending on whether the TED data

is used. For the computer science lectures translation task, the picture is different. In

this case, the vocabulary used by the lecturer is much more specific. Therefore, the

OOV rate nearly tripled to 3.22% and 2.73%.

Furthermore, these words are often very important to understand the content of

the lecture. While it may not be problematic if 3% of the functions words are not

translated correctly, these words often convey the content of the sentence. Therefore,

the sentence can only be understood correctly, if these words are translated correctly.

Since this problem will always occur when we use the lecture translation system

for a new application, it is important to develop methods that are able to learn these

words automatically.

7.2 Integration of Additional Knowledge Sources

In this thesis we will investigate methods to integrate additional knowledge sources to

be able to learn OOV words. Although most of the methods presented here are quite

generic and can be easily adapted to new knowledge sources (Cho et al., 2013), we will

concentrate on Wikipedia as an example knowledge source.

After a short introduction of the important aspects of Wikipedia that are needed

for this work, we will describe the creation of a lexicon that can be included into

the translation system. Then, we will describe a technique to disambiguate different

meanings of the same word. Finally, we will evaluate the approach on both translation

tasks.

7.2.1 Wikipedia

Wikipedia is the most commonly known online encyclopedia containing articles about

nearly every subject. These articles are written collaboratively by volunteers. The

English version has currently 4.1 million articles.
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Wikipedia is even more interesting for machine translation since it is a multi-lingual

project. Currently, there are versions in 285 languages available. Of course, most of

them are very small compared to the English version. However, five more languages

have more than one million articles.

The different language editions of Wikipedia are developed almost independently.

Articles about the same subject in two languages are almost never a direct translation

of each other and there is therefore no straight forward integration of the knowledge

into an SMT system.

For machine translation one very interesting feature of Wikipedia editions in dif-

ferent languages are the so-called inter-language links. These links connect pages in

different languages about the same topic. Therefore, we can learn the translation for a

concept by following the link from the source language article to the target language.

7.2.2 Related Work

As mentioned in Chapter 3, several approaches to integrate additional resources into

a translation system have been presented in recent years. Wikipedia has already been

shown to be a valuable resource for natural language processing. For example, Erdmann

et al. (2008) proposed to extract bilingual terms from the Wikipedia titles and Yu and

Tsujii (2009) use terms from a comparable corpus created from Wikipedia articles using

the inter-language links.

De Melo and Weikum (2010) tried to extract multilingual concepts by exploiting the

inter-lingual link structure of Wikipedia. They described an approximation algorithm

to correct misleading inter-lingual links. In contrast to the work here, their algorithm

is much more complex and needs the inter-lingual links of all Wikipedia editions as

opposed to only the links between two languages.

7.2.3 Lexicon Creation

Since articles are not translations, we cannot use them as parallel data, but we are

able to make use of the inter-language links. As mentioned before, these links indicate

that two articles are about the same subject. Therefore, the titles of linked articles will

probably be translations.

The first step to create a corpus of translations of Wikipedia titles is to extract the

links from the articles and generate an alignment between articles. As a result, we get
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two alignments, since there are links in the source language article to a target language

article and links in the target language article to a source language article.

The next step in generating the parallel corpus is to symmetrizing this alignment.

It is not always the case that there is a link in both directions. Sometimes a source

language article is aligned to a target language article, which is not aligned to any

source language article or which is aligned to a different source language article. The

main reason for this is that both articles are not about the same topic, but merely

closely related. In some cases, the link directs to a paragraph of another article, which

is itself about a more general topic. Another option is that the article is directly linked

to a more general article since there is no equivalent one in the other language.

In contrast to other parallel data, most phrases occur only once in the corpus of

Wikipedia titles. Therefore, we cannot calculate reliable statistics such as translation

probabilities and consequently it is very important that the corpus is of high quality.

Therefore we use the intersection of both alignments in order to get only high quality

translations, discarding unreliable links.

7.2.3.1 Disambiguation Pages

The main problem of creating this corpus are the word ambiguities. The German word

Bank, for example, translates to bank, if the financial institution is meant and if the

furniture is meant, the translation is bench.

In Wikipedia, this is modeled in the following way: There is a disambiguation page

for Bank with links to the different articles. Then there are separate articles, one for the

financial institution and one for the furniture. Typically, the disambiguation page in one

language for bank is linked to the disambiguation page in the other language. The links

between articles give us helpful translations, but the links between the disambiguation

pages may be misleading. To avoid problems with these links and to acquire a high

quality corpus, we ignore all inter-language links between disambiguation pages. We

only use the inter-language links of the articles the disambiguation page is linking to.

Since the disambiguation pages are marked by a tag, the identification of these pages

is straight forward.
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7.2.3.2 Integration

After acquiring the corpus, we can apply the same preprocessing as for the parallel

training corpus of the translation system. Since all content words are often written in

upper case in the titles, we case each word as it is most often cased in the Wikipedia

corpus.

The baseline approach is to use the corpus of Wikipedia titles as a lexicon. There-

fore, every pair of titles is used as an additional phrase pair in the phrase table.

By integrating the data in this way, problems with the titles of the ambiguous

expressions occur. For example, the title for the bench in German is Bank (Möbel)

(engl.: bench (furniture)). During translation we will of course only find the word

bench alone without the additional domain information in parentheses. Therefore,

this phrase pair will almost never match. To bypass this problem, we tried a second

approach using the corpus in the same way as a normal training corpus. We trained a

GIZA++ alignment on the corpus and then performed phrase extraction. Afterwards,

we added the additional phrase pairs to the general phrase table.

7.2.4 Article Disambiguation

As mentioned before, there are separate articles for each meaning of an ambiguous

word. This means we have multiple translation options in our phrase table. If we

want to apply the translations learned from Wikipedia during the translation, we need

to decide which of the titles to use. This is especially problematic for terms that are

also surnames of famous persons. For example, the German word for cone is Kegel,

but there are also different articles about persons named Kegel. Therefore, we might

translate the German word Kegel into Kegel, since we are using the translations learned

from the Wikipedia tiles about the person.

The default approach in statistical machine translation is to calculate the translation

probabilities. In our case, however, this would not be very helpful. In case there is

more than one person called Kegel, the translation of Kegel into Kegel would have a

high probability, since we extracted the phrase pair from several articles.

Instead of relying on relative frequencies, we use additional information to select the

best translation from our parallel Wikipedia title corpus. In addition to the translation

of the title, we also use the articles themselves by comparing the source article to our
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test set. If the article is similar to the test set, the probability that the translation

of the title will be a good translation is higher than the probability of a translation

extracted from an article about a completely different topic. If we want to translate a

computer science lecture, the source text will be more similar to an article about a cone

than to one about an author or musician called Kegel. Therefore, we use the similarity

between the article and the source document as an additional feature.

To measure the similarity between the article and the document that needs to be

translated, we represent the Wikipedia article as well as the test documents in the

TF-IDF vector space. Then we calculate the cosine similarity to compare the articles.

Afterwards, for every unknown source word, only phrase pairs extracted from the title

of the article with the highest similarity are considered.

7.2.5 Results

After presenting the approach to include Wikipedia as an additional data source into the

machine translation system, we evaluate its performance on the applications mentioned

in the last chapters. We measured improvements in translation quality in BLEU, but

also analyzed the out-of-vocabulary words. Since the main idea was to find translations

for the topic-specific terms, we investigate if we could translate more words using this

approach.

7.2.5.1 Integration of Wikipedia

In a first series of experiments we analyzed the difference between the two approaches

to integrate knowledge from Wikipedia into the translation system. The number of

out-of-vocabulary words for the different development and test sets are summarized in

Table 7.2. The number of OOV words of the systems were calculated for the baseline

system using no TED training data, but the tendency for the other systems is the same.

Since we did not use the development data in this approach for any training and we did

not re-optimize the systems, in these experiments they can be considered as additional

test sets.

The baseline system does not use Wikipedia. In the lexicon system the Wikipedia

titles are integrated as a lexicon as described in Section 7.2.3.2. Finally, we evaluated

the effect of the Wikipedia titles when integrated as an additional training corpus.
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Table 7.2: Integration of Wikipedia data

Data System
OOV mod. OOV

total unique total unique

EPPS Dev

Baseline 153 143 136 127

Lexicon 146 136 133 124

Corpus 135 125 126 117

TED Dev

Baseline 339 271 250 231

Lexicon 287 234 225 195

Corpus 230 192 169 173

TED Test

Baseline 422 314 307 245

Lexicon 373 286 282 227

Corpus 276 225 247 119

CS Dev

Baseline 1095 378 891 239

Lexicon 992 359 801 312

Corpus 601 315 542 279

CS Test

Baseline 1437 624 1150 521

Lexicon 1236 584 958 483

Corpus 1007 501 825 429
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For the first set, the EPPS development set, the OOV rate is already very small for

the baseline system and consequently not much can be gained by the additional data.

Since we train the systems on the big EPPS data, this set is already well covered by

the baseline system.

For the TED sets, the OOV rate is higher than for EPPS. However, the OOV rate

can be reduced. The lexicon approach reduces the OOV rate by 10% and the corpus

approach can even reduce it by 30%. In order to check if these translations are needed,

we calculated the modified OOV rate, where only those words are counted as OOVs

that cannot be passed through to generate a correct translation. As shown in the table,

the number of modified OOV words could also be reduced similarly.

Finally, the table shows the results for the computer science development and test

sets. Here the OOVs are a big problem due to the quite specific topic. In this case the

number of OOV words could be again reduced by around 10% by the approach using

the lexicon. The corpus approach could reduce the number of OOV words even more

by up to 45%. Again, similar improvement could be achieved for the modified OOVs.

One example where the corpus approach performs better than the lexicon approach

is the German word Abtastung (engl. sampling). This can only be translated using

the corpus method since the Wikipedia article is called Abtastung (Signalverarbeitung)

(engl. sampling (signal processing)). If we look at the unique OOVs, we can see that

the method is mainly able to translate the OOVs that occur several times.

In summary, the number of OOVs can be reduced substantially by the presented

approaches on all the sets where they present a problem. In all cases, integrating the

Wikipedia titles as a corpus instead of an lexicon reduces the number of OOVs further.

The impact of the presented approaches on translation quality is shown in Tables 7.3

and 7.4.

For all the experiments on translation quality, we did not perform any re-optimization.

In the Baseline system, we use the EPPS development data. The translation quality

could not be improved on the EPPS development data by using Wikipedia. This is not

surprising, since we already saw earlier that we do not have a lot of OOV words. For

the TED data, we could improve in all conditions slightly by 0.05 to 0.1 BLEU points.

Although the corpus approach is able to translate more words than the lexicon method,

the translation quality of both approaches is similar. The reason for this may be, that
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Table 7.3: Different integration strategies on the TED task

Condition
Baseline Lexicon Corpus

Dev Test Dev Test Dev Test

Baseline 27.51 21.87 27.51 21.96 27.52 21.98

+ TED Dev 22.79 22.36 22.82 22.43 22.89 22.41

+ TED Training 26.59 26.18 26.63 26.22 26.65 26.18

Table 7.4: Different integration strategies on the CS task

Condition
Baseline Lexicon Corpus

Dev Test Dev Test Dev Test

Baseline 27.51 20.97 27.51 21.27 27.52 21.38

+ TED Dev 22.79 22.44 22.82 22.78 22.89 22.93

+ TED Training 26.59 24.94 26.63 25.22 26.65 25.33

CS Dev 24.59 23.21 24.88 23.49 25.60 23.66

+ TED Training 26.22 26.11 26.31 26.30 27.20 26.51

the learned translations are not as reliable as the ones from the lexicon approach. The

phrase extraction may introduce additional errors.

As expected given the results on the OOV words, the improvements on the CS tasks

are larger than the ones for the other tasks. In this case the translation quality could

be improved by up to 1 BLEU point on the development data and by 0.5 BLEU points

on the test data. Furthermore, it seems to be more important to have many translation

options rather than having only the high precision ones, because the corpus approach

is always 0.1 to 0.2 BLEU points better than the lexicon approach.

7.2.5.2 TF-IDF

For the all the sets we calculated the cosine similarity of the TF-IDF vectors to all

Wikipedia articles. We then used this score in addition to the four default scores for

the phrase pairs. When a phrase pair was extracted from different articles, the pair

was kept only once and received the similarity score of the most similar article. We

excluded the 10K most frequent words from the calculation of the TF-IDF score.
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Table 7.5: Wikipedia integration using document similarity

Task Condition
No TF-IDF TF-IDF

Dev Test Dev Test

TED

Baseline 27.52 21.98 27.51 21.94

+ TED Dev 22.89 22.41 22.85 22.40

+ TED Training 26.65 26.18 26.65 26.18

CS

Baseline 27.52 21.38 27.51 21.39

+ TED Dev 22.89 22.93 22.85 22.94

+ TED Training 26.65 25.33 26.65 25.33

CS Dev 25.60 23.66 25.61 23.67

+ TED Training 27.20 26.51 27.17 26.49

As shown in Table 7.5, using the TF-IDF score of the article as an additional feature

did not improve the translation quality as measured in BLEU. However, in some cases

the translation could be improved. For example, the German word Kegel (engl. cone)

is no longer translated into Kegel because of an article about a person named Kegel

but correctly into cone because only the translation into cone is kept in the phrase

table due to the similarity check. However, these are only a few examples. In some

cases choosing a phrase originating from a more similar article over the phrase with the

highest probability even leads to a wrong translation, because of an erroneous alignment

between the words in the Wikipedia titles.

7.3 Quasi-Morphological Operations

Since we are using only the titles of the articles and not the articles themselves, in

most cases the words occur only as lemmas. In the test set, however, we also see other

morphological forms like genitive or plural forms. This is especially problematic when

using languages like German as input language, which are highly inflective.

In the following, we will first motivate our approach to translate inflected words

forms using the translations of lemmas. Afterwards, we will describe the method. Then

we will describe the training and the integration of the quasi-morphological operations.

In the end, we will evaluate the operations in the translation task.
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Figure 7.1: Quasi-morphological operations

7.3.1 Motivation

Even when we use Wikipedia, our system might be able to translate the German

word Spektrogramm (engl. spectrogram), but not the plural form Spektrogramme. Fur-

thermore, if we can translate trigonometrische Funktion using the additional knowl-

edge source, we are not necessarily able to translate the phrase in dative case von

trigonometrischen Funktionen because the titles of Wikipedia articles usually contain

only the lemma, as it is the case for most encyclopedias.

To address this problem, we try to automatically learn rules on how words can be

modified. If we look at the first example, we would like the system to learn the following

rule. If an “e” is appended to the German word, as it is done when creating the Plural

form of Spektogramm, we need to add an “s” to the end of the English word in order

to perform the same morphological word transformation. Or in the second example

adding an “n” to the German adjective represents its transformation into the dative

case. For the English equivalent, no transformation needs to be applied since cases do

not have a distinct surface word form.

Depending on the part-of-speech, number, gender and/or case of the involved words,

the same operation on the source side does not necessarily correspond to the same

operation on the target side.

To account for this ambiguity, we use additional information for selecting the target

operation. For instance, we should not generate target words that do not exist. Here

we have the advantage that we can use monolingual data to determine whether a word

exists. Furthermore, we use the endings of the source and target word to determine

which pair of operations should be used.

An advantage when translating from German to English, i.e. from a morphologically

complex to a less complex language, is that many alternative word forms in German
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map to the same English words. This means that we can ignore the target context in

many cases when generating the English target word. In contrast, when we translate

in the other direction, additional context information would be needed to decide on

one of the possible German word forms. This problem is much more complex and

has gathered a lot of interest in the machine translation community (c.f. Weller et al.,

2013).

7.3.2 Related Work

In recent years, there have been several attempts to model morphology more explicitly

in machine translation. Toutanova et al. (2008) showed improvements translating into

morphologically rich languages by integrating an additional morphological model using

a maximum entropy model introduced by Minkov and Toutanova (2007). Bojar and

Tamchyna (2011) tried to handle morphological problems by using reverse self training.

Macherey et al. (2011) tried to learn morphological operations for parts of the

translation system. They could improve compound splitting by learning morphological

operations for the compound parts.

Our approach to learn the morphological transformations is similar to the Paradig-

matic Cascades model learning pronunciation rules for unknown words presented in

Yvon (1997). In their framework, operations that change the unknown word into a

known word are learned. Since they do not only want to learn the rules for different

morphological forms of the same word, but also for completely new words, more com-

plex rules that also change the prefix of the word need to be learned. Furthermore,

they apply the rules recursively to the unknown word. This makes their approach more

powerful than ours, but also much more computationally complex.

7.3.3 Approach

Given two similar source words f1 and f2, an operation ops that transforms f1 into f2

and a target word e1 which is a translation of f1, we want to find a target word e2,

which is a translation of f2. To achieve this we try to find an operation opt given the

source operation ops and the target word e1, so that we can generate the target word

e2 by:

e2 = opt(e1) (7.1)
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As shown in Figure 7.1, the complete procedure can be modeled in the following way:

To find the translation for an unknown word f2, we apply the inverse source operation

op−1
s to obtain f1. Then we translate f1 and apply the target operation opt to e1:

e2 = trans(f2) = opt(trans(op
−1
s (f2))) (7.2)

As a result we obtain e2, a translation of f2 which we were not able to translate before.

If we look at the example above, we have the source words f1 = Spektrogramm and

f2 = Spektrogramme and the source operation to append an “e” ops = (“” → “e”).

The target word f1 would then be spectrogram. To get the correct translation of f2,

we need to learn that the best target operation opt in this case is to append an “s”

opt = (“”→ “s”). Then we can apply the target operation on spectrogram and obtain

the correct translation e2 = spectrograms.

To be able to apply the model to our data, we need to define a set of source and

target operations. Furthermore, we need to model which target operations to select

given the source and target stems as well as the source operation.

7.3.4 Operations

In our experiments, we used two different types of operations. The first type of opera-

tions are simple replacement operations as described above. These operations replace

the last letters of a word by other letters. The beginning of the word will not be

changed. We will refer to the unchanged part of the word as the word stem. We fur-

ther constrain the first type of operations in three ways to prevent the model to replace

the whole word. Therefore, we set the word stem to be at least m letters long. Second,

in German as well as in English only very few letters need to be changed at the end of

the word in most cases. Therefore, we only allow the model to replace up to ns ≤ n

letters by at most nt ≤ n other letters. In our initial experiments, n = 3 and m = 4

lead to reasonable rules. Therefore, we use these values for all following experiments.

To avoid many operations with the same outcome, we used a third restriction on the

operations. We only use operations where the first letter of both sides of the operations

is different. As a result, there is always only one operation to change e1 into e2. In the

example, the operation (“m”→ “me”) would not be allowed.

If we use Type 1 operations, there are often multiple possible target operations

for one source operation. Therefore, we learn a second type of operations which are
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dependent on the last k letters of the stem. For example, we could learn the operation

(“”→ “e”) given that the word ends with an “m”. In our experiments, we restrict the

model to endings up to a length of k ≤ 5 letters.

With Type 2 operations, different operations to convert e1 to e2 exist. We can use

the operation (“”→ “e”) as well as the same operation given that the word stem ends

with an “m”. Using this type of operations, we are able to learn different mappings

to target operations depending on the ending of the word stems. We can for example

learn that, when adding an “e” to the source word, we have to either add an “s” or

an “es” to the target word. However, this will result in more operations and therefore

the statistics will be less well estimated.

7.3.5 Features

After defining the operations, we need to assign a rank to the target operations given

a source operation and a target word:

R(opt|ops, e1, f1, f2) (7.3)

Then we can select the best ranked target operation and apply it to e1 to obtain a

translation for f2. We used different features to determine the ranking.

We want to ensure that the operation opt applied to e1 generates a valid target

language word. In most cases it will not occur in the parallel corpus or in the titles of

the Wikipedia articles, otherwise we could translate f2 in the first place. Instead, we

can use the complete articles of Wikipedia on the target side. If the word is a valid

word in the target language, it will probably occur in the articles. Therefore, we use a

feature that indicates whether the generated word is in the target Wikipedia corpus.

Furthermore, a target operation that often coincides with a given source operation

should be ranked higher than one that is rarely used together with the source operation.

We therefore look at pairs of entries in the lexicon generated from our parallel training

data and count for how many of them the source operation can be applied to the source

side and the target operation can be applied to the target side. This count is then used

as an additional feature. For the second type of operations, we used an indicator feature

that the operation can be applied at least c times. We performed several experiments

and c = 3 lead to the best score on the development data. Therefore, we use that

threshold for all experiments.
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Table 7.6: Features for quasi-morphological operations

Feature
Operation

Type 1 Type 2

Valid Word x x

Count Feature x

Count > c x

Source Context Length x

Target Context Length x

We calculate additional features, when we use the second type of operations. We

want to prefer operations with more context. Therefore, we use ks, the length of ending

for source operations, as well as kt, the length of the target operations, as additional

features.

For both types of operations we used a product of these features to rank the op-

eration. For the first type, we multiplied the indicator feature for a valid word with

the count feature. The second type of operations is ranked by the product of the valid

word feature, the count > c feature and both context length features. The features and

the corresponding operation types are summarized in Table 7.6.

7.3.6 Training

In order to train a model for the morphological operations, we need to find a set of

candidate operations and their associated feature values to be able to rank them. For

this we use a word aligned corpus. We used the parallel training corpus together with

the automatically generated word alignment. From this corpus, we extracted all source

and target words that are aligned to each other to build a lexicon.

In a next step we checked if a source operation exists that changes one source word

to another source word and a target operation that can be applied to the aligned target

words. If this is the case, we extracted the pair of source and target operations. This

provides us with the source and target operations as well as the co-occurrence counts

of these operations.
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7.3.7 Integration of the Operations

After being able to find a translation for OOV words, we need to integrate the approach

into the phrase-based machine translation system.

We will only use the proposed method for OOVs and will not try to improve trans-

lations of words that the baseline system already covers. Therefore, in a first step we

extract the OOVs from the source text. Since we want to make use of phrase pairs

instead of using word-by-word translation for the OOVs, we try to find phrase pairs in

the original phrase table that contain a word similar to the OOV word. This is done

by looking for phrase pairs, for which a source operation ops exists that changes one of

the source words f1 into the OOV word f2. Since we need to apply a target operation

to one word on the target side of the phrase pair, we only consider phrase pairs, where

f1 is aligned to one of the target words of the phrase pair.

If at least one target operation exists given f1 and ops, we select the one with the

highest rank. Then we generate a new phrase pair by applying ops to f1 and opt to e1.

We do not change the features of the phrase pairs. They are not directly competing

with the unchanged phrase pairs, since there is no phrase pair that exactly matches f2.

7.3.8 Results

We analyzed the impact of the quasi-morphological operations on improving the cov-

erage of the Wikipedia corpus in a group of experiments. First, we analyzed the OOV

words again. The results are summarized in Table 7.7. We use replacement operations

independent of the word stem ending (Type 1) and the operations dependent on word

stem endings (Type 2). For the first type of operations, we only applied the 100 most

frequent operations. The translation quality did not improve with more operations.

If we first look at the EPPS data, the quasi-morphological operations change the

number of the OOV words only slightly, since we have only quite few unknown words,

as already mentioned before. For the TED task, the number of unknown words could

be reduced by up to 20%. For the TED development data, the Type 2 approach leads

to more translation units than the Type 1 operations.

In the computer science task, the difference is greater. Here the number of OOV

words could be reduced by around 30% when adding the operations. For this task, the

Type 2 operations again were able to translate more words than the Type 1 operations.
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Table 7.7: OOV words for quasi-morphological operations

Data System
OOV mod. OOV

total unique total unique

EPPS Dev

No MorphOp 135 125 126 117

Type 1 128 119 119 111

Type 2 120 112 113 105

TED Dev

No MorphOp 230 192 169 173

Type 1 202 168 168 149

Type 2 182 150 155 137

TED Test

No MorphOp 276 225 247 119

Type 1 239 192 211 167

Type 2 239 192 211 167

CS Dev

No MorphOp 601 315 542 279

Type 1 463 263 409 229

Type 2 415 242 375 213

CS Test

No Morph Op 1007 501 825 429

Type 1 784 412 615 350

Type 2 718 378 563 326

Table 7.8: Overview of results using quasi-morphological operations

Task Condition
No MorphOp Type 1 Type 2

Dev Test Dev Test Dev Test

TED

Baseline 27.52 21.98 27.51 21.98 27.51 21.98

+ TED Dev 22.89 22.41 22.91 22.40 22.95 22.40

+ TED Training 26.65 26.18 26.66 26.18 26.68 26.18

CS

Baseline 27.52 21.38 27.51 21.53 27.51 21.55

+ TED Dev 22.89 22.93 22.91 23.09 22.95 23.15

+ TED Training 26.65 25.33 26.66 25.39 26.68 25.43

CS DEV 25.60 23.66 25.74 23.83 25.84 23.88

+ TED Training 27.20 26.51 27.35 26.60 27.39 26.62
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We display the influence on the translation quality in Table 7.8. We can observe no

improvements for the EPPS data. On the TED sets there are also nearly no improve-

ments. This is in line with the results from the previous experiments. We already saw

there that for this task it is more important to have high precision translations than

having more. The translations from the quasi-morphological operations are not as high

precision as the ones directly learned from Wikipedia.

However, for the computer science translation task, the picture is different. Here

we can improve the translation quality further by using the operations. The Type 2

operations could slightly outperform the Type 1 operations. Additional improvements

of 0.1 to 0.2 BLEU points can be achieved by using these operations over the system

using no morphological operations.

7.4 Summary

As shown in the last experiments, the translation quality on the computer science trans-

lation task could be improved significantly by integrating Wikipedia. The best perfor-

mance was achieved by using the corpus method and by performing quasi-morphological

operations in addition. In this case, the number of OOV words could be reduced by

more than 50% on the development and test set. Furthermore, the translation quality

could be improved by up to 0.7 BLEU points on the test set and 1.2 BLEU points on

the development set.

Small improvements could also be achieved for the TED translation task. The

improvements are not as big as for the other test set since the vocabulary used in the

TED talks is not as specific as the one used in university lectures and therefore, the

OOV words are not as problematic as for the first task.

In Example 7.1, two example sentence are shown where the translation could be

improved by the information from Wikipedia. In the first example, several topic-

specific words like Kegelschnitt and Rotations-Ellipsoid could be translated using the

knowledge from Wikipedia. In the second example, this is only possible due to the quasi-

morphological information. The word Perzeptronen does not occur in the Wikipedia

titles, only the singular form Perzeptron. Using the quasi-morphological operations, we

are able to generate the English plural form perceptrons from the singular perceptron.
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Source das sind in der Regel Basis Elemente wie Würfel Kegel,

Kegelschnitt, Rotations-Ellipsoid und anderer Torus...

Reference these are usually base elements such as cubes, cones, the cone cut,

rotation ellipsoid and the other torus, ...

Baseline these are generally base elements such as cube cone, Kegelschnitt,

rotation-Ellipsoid and other Torus ...

Wikipedia these are usually base elements such as cube cone, conic section,

rotation ellipsoid and other torus ...

Source nun, Perzeptronen, eine tolle Sache, da hat man sehr viel drüber

geschrieben und viel publiziert in diesen Jahren.

Reference now, the perceptrons, an awesome thing, much was written

about this and much was published during these years.

Baseline now, Perzeptronen, a great thing, because it was very much over

written and much published in these years.

Wikipedia now, perceptrons, a great thing, because it was very much over

written and much published in these years.

Example 7.1: Examples of the CS task
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8

Exploiting Genre Similarity of

Training Data

In the previous chapter we focused on improving the topic modeling of a translation

system. Now, we will concentrate on another aspect of the data, the genre. When we

analyze the training data available for machine translation, a corpus typically contains

texts about different topics, as a whole it represents one genre.

For many topics there is not enough data for training. In contrast, for the TED

task, the TED corpus can be used as genre matching training data. The genre of

the university lectures is not exactly the same one, since university lectures are more

spontaneous presentations compared to the practiced performances of TED talks, but

they are very similar in genre. Both can be attributed to more abstract genre of talks.

Therefore, for this task training data from a similar genre is available. Furthermore,

also for other genres, like political speeches, news, laws and movie subtitles, there are

German-English bilingual corpora available. Therefore, it is quite realistic that some

amount of in-genre training data is available for most genres.

In Chapter 1.3 we gave a definition for a genre of a text. While the topic mainly

influences what a text is about, the genre defines how it is expressed. In the SMT

system, the two most important models are the language model and the translation

model. In order to better exploit the genre-matching data, it is most promising to

adapt one of these two models to the target genre. Since the genre mainly influences

how the content is expressed, the straight forward approach is to adapt the language

model. This idea has the additional advantage that only monolingual in-genre data
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and no parallel data is needed.

We will use the language model adaptation techniques presented in Chapter 6.1.

As a motivation, we analyze the problems when using the in-genre data in a standard

n-gram-based language model. We will see that one main issue is that the context used

for predicting the probabilities is often very limited. In order to overcome this problem,

we will present two approaches.

First, we combine the n-gram based approach with class-based approaches and

thereby try to increase the context that is used during the application of the language

model.

In a second approach, we developed a continuous space language model. One main

advantage is that this language model always uses the same context size. Therefore, it

does not have the same data sparseness problem as it is the case for the n-gram-based

language model.

8.1 Motivation for Genre Modeling

In our experiments we have two different test sets, consisting of TED talks and univer-

sity lectures. While the genre is the same or very similar depending on the granularity

of the genre definition, the two test sets differ in their topic. The TED talks treat

different topics, but in a quite general way, since they are directed to a general audi-

ence. In contrast, the university lectures are about computer science and held in front

of computer science students. Therefore, the vocabulary used in these lectures is more

specific.

In a first step, we will analyze how well the language of the particular genres is

represented by different language models. Therefore, we measure the applicable context

for the language models on the test sets from the genres. The results are summarized

in Tables 8.1 and 8.2.

First, we calculated the language model probability of the sentences of both test

sets using the baseline language model without training data from the TED domain.

When calculating the probabilities we often cannot use the full 4-gram context of the

language model, but have to back off to shorter context lengths. We can use longer

context lengths, if the language model matches the test data better. In order to analyze

how well the language model fits the test data, both tables show how many unigrams,
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Table 8.1: Analysis of the different language models on the TED task

Language Model OOV 1 2 3 4 Average

Baseline
256 3593 14448 10026 7363

2.58
0.7% 10.1% 40.5% 28.1% 20.6%

Random
947 8078 17136 7319 2206

2.05
2.7% 22.6% 48% 20.5% 6.2%

TED
506 6209 16229 8342 4400

2.28
1.4% 17.4% 45.5% 23.4% 12.3%

Table 8.2: Analysis of the different language models on the CS task

Language Model OOV 1 2 3 4 Average

Baseline
664 6644 18727 14508 9872

2.52
1.3 % 13.2 % 37.2% 28.8% 19.6%

Random
1833 12325 22454 10499 3304

2.02
3.6 % 24.4 % 44.5% 20.8% 6.6%

TED
1271 11969 2200 10745 4421

2.17
2.5 % 23.7 % 43.6% 21.3% 8.8%
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bigrams, trigram and 4-grams are used to estimate the probability of the test sentences.

In the first line of each table the numbers for the baseline language model are shown.

Since the distributions of the different context lengths are similar, both test sets are

modeled quite similarly by the baseline language model.

Although, it is quite likely that in-genre data is available, its size is normally signifi-

cantly smaller than the size of the general data. Therefore, we analyzed how the size of

the training data influences the used context length in the two test sets. We randomly

selected the same amount of sentences as there are in the TED training corpus from

the general corpus and trained a language model on this corpus. The results are shown

as Random in the tables. As expected, the average context length used in both test

set decreases, since fewer n-grams occur in the training data. But still both test sets

behave very similarly.

Afterwards, we applied a language model trained on the TED corpus to the test sets.

In this case, both test sets behave quite differently. For the TED test sets, the context

used for every word can be increased considerably by using the TED language model.

For example, the number of 4-grams, that are used when predicting the test sets nearly

doubles compared to the language model trained on randomly selected sentences.

In contrast, the context used by the TED language model on the computer science

test set is only slightly larger than the one of the random language model. Consequently,

the TED language model can apply a larger context on the TED test set than to the

lecture test set. For example, for 35% of all words trigrams or 4-grams can by used for

the TED data. For the university lectures this is only the case for 30% of the words.

One reason might be that many of the topic specific terms in the computer science

lectures do not occur in the TED data. Therefore, no n-grams spanning these words

can be used and we often need to fall back to shorter n-grams. If we were able to extend

the context for the university lectures test set, without necessarily having to exactly

match the n-grams in the TED language model, we could make better use of the genre

similarity of TED and university lectures and thereby improve the translation quality.

8.2 Class-based Approaches

By analyzing the n-gram coverage of the genre-matching language model on a test set

from an exactly matching genre and a similar genre in the previous section, we realized
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that a language model trained on the TED corpus may not be the best way to exploit

this data for use cases like the university lectures. There we already mentioned the

problem of topic specific terms in the text.

A characteristic of data from one genre is that the overall structure of the text is

the same or at least very similar, but different topic-dependent terms are used in the

sentences. Griffiths et al. (2004) presented a model which tries to learn this structure in

an unsupervised way. In this model, the words are either grouped into syntactic classes

or into semantic topics. The context words from the different semantic topics can then

be used interchangeably in the sentences. In our work we will ignore the different topics

and treat all topic words the same, since we want to model the genre of the text only.

Modeling the sentence structure by an n-gram language model has been shown to

be very efficient. But if we use a small language model trained on data matching only

in genre, we often lose all the context information at the topic-specific words. Since

the topic-dependent words never or only rarely occurred in the training data, they

cannot be estimated well given the preceding context. Furthermore, the estimation of

the following words is also affected, since the topic-specific words occur infrequently in

language model n-grams.

In order to improve the modeling of the genre, it would be necessary to use an

n-gram language model which is capable of skipping the topic-dependent words and

keeping the context. We propose to use a standard n-gram language model, but to

replace the topic-dependent words by a class. Then the language model treats all these

words equally. Furthermore, since they are no longer modeled as an out-of-vocabulary

word, but as a class, we do not lose the history and we can use contexts spanning over

these words. Equation 8.1 describes this in formula.

P (w1 . . . wL) =
L+1∏
i=1

P (wi|hi) (8.1)

=
L+1∏
i=1

P (c(wi)|c(wi−N+1) . . . c(wi−1))

c(w) =

{
CLASS : w ∈ T
w : w /∈ T (8.2)

In this equation, L is the sentence length. wi is the ith word in the sentence and

wL+1 is the sentence end marker </s>. N is the context length used by the n-gram
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language model. Finally, we use a set T of topic-dependent words. The definition

of this set is the most important part of the model. If the set is overly small, the

model will work as a normal language model and the additional language model will be

unprofitable. On the other hand, if we put excessively many words in this set, we can

no longer discriminate between different hypotheses and therefore, the model becomes

ineffective. In the extreme case, where all words are in the set T , every n-gram has the

same probability and the model is not beneficial.

Since we change the reference, by changing the set T , we cannot compare the

perplexity of the language models using different sets. Instead, we can only evaluate

the effect of the model on the translation quality.

In preliminary experiments we also tried to cluster the topic-dependent words into

several classes by using the POS tag of the word as its class. However, this did not

lead to any addition improvements, so we used only one class for all words.

8.2.1 Topic-dependent Words

As mentioned before, one of the most important factors of this model is the definition

of this set T of topic-dependent words. In our experiments we tested two different

approaches to define the set of words given the two corpora in our setup: the corpus

consisting of TED lectures and the corpus from general sources. The first one is based

on the vocabulary of the different corpora and the second one uses TF-IDF scores.

8.2.1.1 Class Definition based on OOV Words

The topic-dependent words occurs only in texts about the specific topic. Therefore,

they rarely occur in a general corpus. This motivates the definition of the set T by

the out-of-vocabulary words. We assume that all words that occur in both the general

corpus and in the TED corpus belong to the general vocabulary and should therefore

not be considered as topic-dependent words. In contrast, the words that only occur in

the TED corpus can be seen as examples of topic-dependent words and will be part of

the set T .

If a word is not in the TED corpus, it is not clear whether it is a topic-dependent

word or a general word that does not occur that often and that is the reason why it

is not part of the TED corpus. Since it is more harmful for the model if we did not

include a topic-dependent word into T than modeling a general word for which we
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anyway cannot estimate the context by T , we included all words that do not occur in

the TED corpus in T .

This leads to the formal definition of the class T as:

T = V \(VTED ∩ VGeneral) (8.3)

Thus, T is defined as all words except the words in the intersection of the vocabulary

of the TED corpus and the general corpus.

8.2.1.2 Class Definition based on TF-IDF

The TF-IDF score of a word w and a document d reflects how important a word is to

a document given a set of documents like the TED corpus. The TF-IDF score is a well

known measurement of the importance of a word in the area of information retrieval.

A word with a high TF-IDF score occurs very often in the given document and occurs

only in very few documents. This is the behavior that is typical for topic-dependent

words.

Therefore, the second approach to select the topic-dependent words depends on the

TF-IDF score. In a first step, we calculate the TF-IDF score tfidf(w, d) for every word

w and every individual TED talk d of the training data.

We cannot use this score directly for the task, since we need one score for every word

in the whole TED corpus and not one score for every word and every individual talk.

Therefore, we define the score of a word tfidf(w) as the maximum over all documents.

tfidf(w) = maxd∈Dtfidf(w, d) (8.4)

The intuition here is that the topic-dependent word will occur frequently in one or two

documents, while it will occur rarely in most others. In the topic-relevant documents

the TF-IDF score will be high. Since we want to mark this word as a topic-dependent

word, it should also have a high tfidf(w). Therefore, we take the maximum over all

documents.

We then define the set T as the n words with the highest TF-IDF scores. In our

experiments we set n to 5000. In addition, we again also assign all words that are not

in the vocabulary of the TED corpus to this set.
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Table 8.3: Analysis of the class-based language models for the TED task

Language Model OOV 1 2 3 4 Average

TED
506 6209 16229 8342 4400

2.27
1.4% 17.4% 45.5% 23.4% 12.3%

OOV
0 5727 16563 8796 4602

2.34
0% 16.0% 46.4% 24.6% 12.9%

TF-IDF
0 3558 13215 10288 8625

2.67
0% 10.0% 37.0% 28.8% 24.2%

8.2.2 Comparison to Class-based n-gram Models

Traditional class-based language models as introduced in Brown et al. (1992) are defined

differently. In this case the probability of a word sequence is calculated as:

P (w1 . . . wL) =

L+1∏
i=1

P (wi|hi)

=
L+1∏
i=1

P (c(wi)|c(wi−L+1) . . . c(wi−1)) ∗ P (wi|c(wi))

In contrast to this traditional approach, we ignore the conditional probability of

the word given the class. In our scenario this is very hard to guess, since it should

be different for every topic. In our model we want to model the common genre of the

training data and the test data and try to ignore their difference in the topic. Therefore,

we ignore this probability.

This leads to the problem, that we get the same probability when replacing one

word of T by another. However,the original language model and the translation model

will distinguish between different translations for the topic words.

8.2.3 Results

We tested the approach by using an additional class-based language model on both test

sets, the TED lectures and the university lectures. Before evaluating the translation

quality of this approach, we again look at the matching n-grams of the new language

model. We used the two sets of topic-dependent words described above. The results

are shown in Tables 8.3 and 8.4.
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Table 8.4: Analysis of the class-based language models for the CS task

Language Model OOV 1 2 3 4 Average

TED
1271 11969 2200 10745 4421

2.17
2.5% 23.7 % 43.6% 21.3% 8.8%

OOV
0 11136 22668 11824 4787

2.20
0% 22.1 % 45.0% 23.5% 9.3%

TF-IDF
0 7304 18789 13718 10604

2.55
0% 14.5 % 37.3% 27.2% 21%

Table 8.5: Class-based language models on the TED task

Condition
No Class LM OOV TF-IDF

Dev Test Dev Test Dev Test

Baseline 26.32 24.38 27.24 25.32 27.02 24.86

+ LM Adapt 27.45 25.26 27.33 25.25 27.65 25.29

+ TM Adapt 28.48 26.18 28.32 25.98 28.32 26.12

First of all, we do no longer have OOV words, since all the words, that are OOV

words in the original language model, are now assigned to the set T and therefore can

be modeled directly by the class. But also the other n-gram counts change. Using the

new models, we are able to use more context in the language model.

In addition, we see that the two test sets behave more similarly again. This approach

was designed to especially increase the available context for the university test sets. And

we see in the results that especially in this case the context that is used for estimating

the probability of the words in this test set can be increased.

The context used in the model using the TF-IDF score is also substantially higher

than the one used by the model based on OOV words. This is due to the fact that

the set T is larger and therefore, we can fall back to a well estimated context of this

class more often instead of using the contexts containing the word. Since we cannot

discriminate between the words in the set T , this of course has also disadvantages.

Therefore, we will show the differences in translation quality of the different ap-

proaches. These results are summarized in Tables 8.5 and 8.6.

For the TED translation task, both models can improve the translation quality
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Table 8.6: Class-based language models on the CS task

Condition
No Class LM OOV TF-IDF

Dev Test Dev Test Dev Test

Baseline 26.32 23.60 27.24 24.27 27.02 23.50

+ LM Adapt 27.45 23.81 27.33 24.25 27.65 24.47

+ TM Adapt 28.48 24.94 28.32 24.20 28.32 24.45

CS Dev 26.24 24.38 26.74 24.77 26.48 24.86

+ LM Adapt 26.84 24.65 26.85 24.75 26.87 25.07

+ TM Adapt 27.50 26.11 27.33 25.89 27.29 26.04

significantly with respect to the baseline system. Furthermore, the model lead to similar

or slightly worse performance than the standard n-gram language model trained on the

TED data.

If we combine the class-based language model with the normal log-linear language

model adaptation technique, no further improvements can be achieved. The same is

true if we also add the phrase table adaptation. Again, the performance is similar or

slightly worse. Furthermore, both definitions of the topic word set T lead to quite

similar results on this task.

When examining the university lectures translation task, the results are different.

In Table 8.6 the baseline system uses the TED development set, while the three lower

lines of the table present the scores for a system using a university lectures development

set.

First of all, the new model can improve the baseline system in most cases. For

this translation task, we can even improve the quality by combining the in-genre class

language model with the default language model adaptation technique. We can achieve

improvements of up to 0.6 BLEU points. In most cases defining the class of topic-

dependent words using the TF-IDF score performs better than using the OOV words.

When adding the translation model adaptation, we can no longer improve by adding

the class-based language model in the condition without matching development data,

we even perform worse. As a conclusion, we can improve the translation quality if we

only have in-genre monolingual data and the test data does not match the test set

perfectly. Hence, the class-based language model is a possibility to improve exploiting
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data that only matches in genre but not in topic.

8.3 Restricted Boltzmann Machine-based Language Mod-

els

In the previous section, we showed that with the class-based language model it is

possible to better exploit data that matches or is similar in genre. One disadvantage

of this approach is that it is difficult to define the set of topic-dependent words, even

though the definition of the set is very important for the performance of the system.

One reason is that we can only make a hard decision. If a word w is in the set, the

model does not distinguish between w and any other words in the set. Therefore, if

two n-grams differ only in a way that w is replaced by another word of the set, they

are treated the same in the model. Consequently, when predicting the probability of a

word given a n-gram containing w the model can fall back to a similar n-gram instead

of backing off to a shorter context. However, the class-based language model is not

capable of differentiating between w and any other words in the set. In contrast, if the

word w is not in the set, the model can differentiate between w and all other words,

but it will more often back off to shorter contexts when an n-gram containing w occurs.

A different approach to language modeling became very popular in speech recogni-

tion and machine translation in recent years. In the so-called continuous space language

models the probability of the text is modeled by a neural network. This approach pro-

vides the possibility to perform approximate matches of the history and therefore, we

do not loose the whole history due to an out-of-vocabulary word anymore.

Currently, continuous space language models have two main disadvantages. First

of all, training is very time-consuming. Therefore, it is possible to train such models

only on relatively small amounts of training data. However, we can ignore this problem

since we want to better exploit the genre-matching data. We want to train the model

only this data, which is typically available in small amounts anyway.

The second disadvantage is that the calculation of the probability is slow. Therefore,

it is only used in a re-ranking step. In order to overcome this problem, we presented

in Niehues and Waibel (2012b) the first approach to use a continuous space language

model directly in the decoder. In this approach, we use a Restricted Boltzmann Machine

(RBM) to model the language model probability.
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8.3.1 Related Work

Already in the early 1990s initial attempts at using neural networks to model language

were presented. In a first approach Nakamura et al. (1990) presented a neural network

to predict word categories. Later, Bengio et al. (2003) used neuronal networks for

statistical language modeling. They described in detail a language model based on

multi-layer perceptrons and could show that this reduces the perplexity on a test set

compared to n-gram-based and class-based language models. In addition, they gave a

short outlook on energy minimization networks.

Multi-layer perceptrons based language models have successfully been applied to

speech recognition by Schwenk and Gauvain (2002), Schwenk (2007) and Mikolov et al.

(2010). One main problem of continuous space language models is the size of the output

vocabulary in large vocabulary continuous speech recognition. A first way to overcome

this is to use a short list. Recently, Le et al. (2011) presented a structured output layer

neural network which is able to handle large output vocabularies by using automatic

word classes to group the output vocabulary.

A different approach using Restricted Boltzmann Machines was presented in Mnih

and Hinton (2007). In contrast to our work, no approximation was performed and

therefore, calculation of the language model probabilities was computationally more

intensive. This model and the one mentioned before based on feed-forward networks

were compared by Le et al. (2010).

Motivated by the improvements in speech recognition accuracy as well as in trans-

lation quality, authors tried to use neural networks also for the translation model in a

statistical machine translation system. In Schwenk et al. (2007) as well as in Le et al.

(2012) the authors modified the n-gram-based translation model to use neural networks

to model the translation probabilities.

Restricted Boltzmann machines have already been successfully used for different

tasks such as user rating of movies (Salakhutdinov et al., 2007) and images (Hinton

et al., 2006).

8.3.2 Overview of Restricted Boltzmann Machines

Before we present language models based on Restricted Boltzmann Machines (RBMs),

we will give a brief overview on RBMs. We will concentrate only on the points that are
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important for our RBM-based language model (RBMLM). After describing the layout

of an RBM, we will explain how the probability can be inferred by the model. Finally,

we will briefly discuss the training methods. In this thesis, we adhere to the definition

of RBMs as given in Hinton (2010).

RBMs are generative models that have been used successfully in many machine

learning applications. As implied by the name, RBMs are a special case of general

Boltzmann machines, where the layout is restricted to be a bipartite graph. Due to

this restriction, the training of RBMs can be performed efficiently.

In order to use an RBM as a language model, two requirements must be met. On

the one hand we need to be able to calculate a probability for any input given to the

RBM. On the other hand, we need methods to train the RBM.

Since Boltzmann machines are energy-based models, the first problem can be solved

using the energy associated with every possible configuration of the network. This

energy can be used to model the probability of the configuration. The lower the energy

in the model, the higher the probability of the input. We will describe the associated

probability of an RBM in detail later on.

An RBM can be trained efficiently using contrastive divergence (Hinton, 2002). In

this standard approach the gradient of the derivation of the log-likelihood of the training

data is used to perform a gradient descent. Although the gradient is only approximated

in this method, it has been shown to be very efficient in many applications.

8.3.2.1 Layout

A general Boltzmann machine can be described by a weighted graph. In this architec-

ture, the nodes correspond to the units of the Boltzmann machine and the weighted

edges represent connections between units. This graph has to be non-cyclic. This

means there is no edge from a node to itself. Furthermore, the graph is undirected.

Therefore, the weights are symmetric, meaning the weight between nodes i and j is the

same as the weight between nodes j and i.

In an RBM, the graph also needs to be bipartite. That means, the units can be

separated into two layers and there are only connections between the layers and no

connections within the layers. One layer is the visible input layer, whose values are set

to the current event, and the second layer consists of the hidden units. Since the graph

is bipartite, there are no connections within each layer.
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In most cases units are binary units, which can have two states. In the case of

RBM-based language models, an n-gram will be represented by the states of the input

layer. We will use “softmax” units instead of binary units for the input layer, because

the softmax units can have K different states instead of only two. They can be modeled

as K different binary states with the restriction that exactly one binary unit is in state

1 while all others are in state 0.

8.3.2.2 Calculating Probabilities in RBMs

As mentioned in the beginning, RBMs are energy-based models, which define an energy

for every configuration of the network. Therefore, the network defines a probability for

a given set of states of the input and hidden units by using this energy function. Let

v = {vi}i∈hidden be the vector of all the states of the input units and h be the vector of

all the states of the hidden units. Then the probability of the input and hidden states

is defined as

p(v, h) =
1

Z
e−E(v,h) (8.5)

using the energy function

E(v, h) = −
∑

i∈visible
aivi −

∑
j∈hidden

bjhj −
∑
i,j

vihjwij (8.6)

and the partition function

Z =
∑
v,h

e−E(v,h) (8.7)

In these formulas ai is the bias of the visible units, while bj is the bias of the hidden

units. wij is the weight of the connection between the visible unit i and the hidden

unit j.

If we want to assign the probability to a word sequence, we only have the input

vector, but not the hidden values. In oder to use the model, we need the probability of

this word sequence summed over all possible hidden value. The probability of a visible

vector is defined as:

p(v) =
1

Z

∑
h

e−E(v,h) (8.8)

The problem of this definition is that the number of terms which are summed up in the

calculation of the free energy is exponential in the number of hidden units. A better
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way to calculate this probability is to use the free energy of the visible vector F (v):

e−F (v) =
∑
h

e−E(v,h) (8.9)

The free energy can by calculated as:

F (v) = −
∑
i

aivi −
∑
j

log(1 + exj ) (8.10)

xj = bj +
∑
i

viwij

Using this definition, we are still not able to calculate the probability p(v) efficiently

because of Z. However, we can calculate e−F (v) efficiently, which is proportional to the

probability p(v), since Z is constant for all input vectors.

8.3.2.3 Training

RBMs are commonly trained using Contrastive Divergence(CD). The aim of this train-

ing method is to increase the probability of the training examples. In order to do this,

we need to calculate the derivation of the probability of the example v given the weights

wij :
δlog(p(v))

δwij
= 〈vihj〉data − 〈vihj〉model (8.11)

〈·〉 denotes the expectation of the value in the angle brackets given the distribution

indicated after the brackets. The first term can be calculated easily, since there are no

interconnections between the hidden units.

The second term can only be calculated in exponential time. Even if we use Markov-

Chain Monte Carlo methods, this can not be done efficiently. Therefore, Contrastive

Divergence does not use this gradient, but tries to minimize the Kullback–Leibler di-

vergence. In this case the derivation can be approximated by

δlog(p(v))

δwij
= 〈vihj〉data − 〈vihj〉T (8.12)

In this case 〈·〉T is the expectation of the value within the angle backets after T

iterations of Gibbs sampling. Although this leads to a very rough approximation of the

gradient, it was shown in several experiments that it performs very well. It is possible

to approximate the log-likelihood arbitrarily well by increasing T , but this is normally

not done in practice, because it does not improve the training.
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Figure 8.1: Layout of the Restricted Boltzman Machine-based language model

8.3.3 Layout of the RBM for Language Modeling

After giving a general overview of RBMs we will now describe the layout of the RBM

that we use for language modeling in detail. The layout of the RBM is shown in Figure

8.1. The input layer of the n-gram language model consists of N blocks of input units,

one for every word of the n-gram. Each of these blocks consists of a softmax unit, which

can assume V different states representing the words of the vocabulary, where V is the

vocabulary size. These softmax units are modeled by V binary units, where always

exactly one unit has the value 1 and the other units have the value 0. An example can

be found in Figure 8.1, where units with value 1 are shown in black. The vocabulary

consists of all the words of the training text as well as sentence start and end marks

(<s>, </s>) and the unknown word <unk>.

The hidden layer consists of H hidden units, where H is a free parameter, which

has to be set when defining the model.

Using this setup, we need to train N · V · H weights connecting the hidden and

visible units as well as N · V + H bias values using the CD algorithm as described in

the previous section.

8.3.3.1 Word Factors

The RBM layout described above can easily be extended to also use different word

factors as used in the factored translation model (Koehn and Hoang, 2007). We can,

for example, use also the part-of-speech (POS) tags of the words or we can use auto-

matically generated word clusters. Such abstract word classes have the advantage that
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they are seen more often and therefore their weights can be trained more reliably. In

this case, the additional word factor can be seen as a kind of smoothing.

In order to used a factored word representation, each of the N blocks consists of W

sub-blocks, where W is the number of word factors that are used. These sub-blocks are

softmax units of different sizes depending on the vocabulary size of the factor. Like in

the original layout, all the softmax units are then fully connected to all hidden units.

The remaining layout of the framework stays the same.

8.3.4 Training of RBM-based Language Models

As it is done in most RBMs, we train our model using Contrastive Divergence. In a

first step, we collect all n-grams of the training corpus and shuffle them randomly. We

then split the training examples into chunks of m examples to calculate the weight

updates. This is done using Equation 8.12. The first term of the equation 〈vjhj〉data
is straightforward to calculate. The second term 〈vihj〉T is approximated using Gibbs

sampling as suggested in Hinton (2010). Therefore, first the values of the hidden

values are calculated given the input. Then the values of the visible units given the

hidden values are calculated. And finally, a second forward calculation is used. In our

experiments we used only one iteration of Gibbs sampling with m = 10 as suggested

by Hinton (2010).

After calculating the updates, we average over all examples and then update the

weights using a learning rate of 0.1. As described in Hinton (2010), by averaging over

the examples the size of the update is independent of m and therefore the learning rate

does not need to be changed depending on the batch size.

Unless stated otherwise, we perform this training procedure for one iteration on the

whole corpus.

8.3.5 Sentence Probability

Using the network described before we are able to calculate e−F (v) efficiently, which is

proportional to the probability of the n-gram P (w1 . . . wN ).

If we want to use the language model as part of a translation system, we are

not interested in the probability of an n-gram, but the probability of a sentence

S = <s>w1 . . . wL</s>. In an n-gram-based language model this is done by defining

the probability of the sentence as a product of the word probabilities given the word’s
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history P (S) =
∏L+1

i=1 P (wi|hi), where wi = <s> for i ≤ 0 and wi = </s> for i > L.

In an n-gram-based approach, P (wi|hi) is approximated by P (wi|wi−N+1 . . . wi−1).

In our approach we are able to calculate a score proportional to P (w1 . . . wN ) ef-

ficiently, but for the conditional probability we would need to sum over the whole

vocabulary as shown in Equation 8.13, which would no longer be efficient.

P (wi|wi−N+1 . . . wi−1) =
P (wi−N+1 . . . wi)∑

w′∈V P (wi−N+1 . . . wi−1w′)
(8.13)

One technique often used for n-gram-based language models is to interpolate the

probabilities of different history lengths. If we use the geometric mean of all n-gram

probabilities up to the length N in our model, we arrive at the following definition for

the conditional probability:

PGM (wi|hi) =
1

Zhi

N
√
µGM (wi|hi) (8.14)

µGM (wi|hi) =

N∏
j=1

P (wi|wi−j+1 . . . wi−1)

Zhi
=

∑
w′

N
√
µGM (w′|hi)

For N = 1, we use the uni-gram probabilities P (wi). To simplify the notation, we

also write it as P (wi|wi−j+1 . . . wi−1). In this case, j = 1 and our history would be

wi . . . wi−1. Since i > i − 1, we define it as the empty string. Using this definition we
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can express the sentence probability PRBM (S) of our RBM-based language model as:

PRBM (S) =

L+1∏
i=1

PGM (wi|hi) (8.15)

=

L+1∏
i=1

(
1

Zhi

· N
√
µGM ((wi|hi)

)

=

(
L+1∏
i=1

1

Zhi

)
· N

√√√√L+1∏
i=1

N∏
j=1

P (wi|wi−j+1 . . . wi−1)

=

(
L+1∏
i=1

1

Zhi

)
· N
√
µRBM (S)

µRBM (S) =
L+1∏
i=1

N∏
j=1

P (wi|wi−j+1 . . . wi−1)

(†)
=

L∏
i=1

P (wi−N+1 . . . wi)

·
N∏
j=2

P (wL−j+2 . . . wL</s>)

P (<s>)
· P (</s>)

=
1

ZS

L+N−1∏
j=1

1

ZM
e−F (wj−N+1...wj)

In (†) we used the fact that P (wi|wi−j+1 . . . wi−1) = P (wi−j+1...wi−1wi)/P (wi−j+1...wi−1).

Then, except for the beginning and the end, all n-gram probabilities for n < N cancel

out. ZM is the partition function of the RBM and ZS = P (</s>)/P (<s>)N−1.

To use the probability in the log-linear model we get:

log (PRBM (S)) = log

(L+1∏
i=1

1

Zhi

)
N

√√√√ 1

ZS

L+N−1∏
j=1

1

ZM
e−F (wj−N+1

 (8.16)

= − 1

N
(log(ZS) + (N − 1) · log(ZM ))

− L

N
log(ZM )

−
L+1∑
i=1

log(Zhi
)

+
1

N

L+N−1∑
j=1

F (wj−N+1 . . . wj)
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Here the first term is constant for all sentences, so we do not need to consider it in

the log-linear model. Furthermore, the second term only depends on the length of the

sentence. This is already modeled by the word count model in most phrase-based trans-

lation systems. We cannot calculate the third term efficiently. If we ignore this term,

it means that we approximate all n-gram probabilities by the unigram probabilities in

this term, because in this case Zhi
is 1 and therefore the log(Zhi

) is 0. By using this

approximation, we can use the last term as a good feature to describe the language

model probability in our log-linear model. As described before, it can be calculated

efficiently.

The integration into the decoding process is very similar to the one used in n-gram-

based language models. If we extend one translation hypothesis by a word, we have to

add the additional n-gram probability to the current feature value as it is also done in

the standard approach. We also have to save the context of N − 1 words to calculate

the probability. The only difference is that we add at the end of the sentence not only

one n-gram ending with <s>, but all the ones containing </s>.

8.3.6 Results

As we did in the previous evaluation, we tested the RBM-based language models on

the TED data and on the university lectures. The results are summarized in Tables

8.7a and 8.7b. In some preliminary experiments, we analyzed the influence of different

network layouts and training iterations. These experiments will be described in detail

later. In the summary, we report the results with 32 hidden units, which led to the

best performance.

In the baseline system, we used only a 4-gram language model trained on the target

side of all parallel data. If we look at the TED task, we can improve the translation

quality on the test data by 0.8 BLEU points (RBMLM H32 1Iter), if we add a 4-gram

RBM-based language model trained only on the TED data for 1 iteration using 32

hidden units. We can gain additional 0.6 BLEU points by carrying out 10 instead of

only 1 iteration of Contrastive Divergence.

If we use a factored language model trained on the surface word forms and the

automatic clusters generated by the MKCLS algorithm (Och, 1999) (FRBMLM H32

1Iter), we can see an improvement of 1.1 BLEU points already after the first iteration.

We grouped the words into 50 word classes with the MKCLS algorithm.
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Table 8.7: Overview on RBM-based language models

(a) Results on the TED Task

System Dev Test

Baseline 26.32 24.38

+ RBMLM H32 1Iter 27.39 25.13

+ RBMLM H32 10Iter 27.61 25.76

+ FRBMLM H32 1Iter 27.54 25.44

Baseline + TED LM 27.45 25.26

+ RBMLM H32 1Iter 27.64 25.52

+ RBMLM H32 10Iter 27.95 25.67

+ FRBMLM H32 1Iter 27.80 25.64

LM + PT Adapt 28.48 26.18

+ FRBMLM H32 1Iter 28.75 26.19

(b) Results on the CS task

System
TED Dev CS Dev

Dev Test Dev Test

Baseline 26.32 23.60 26.24 24.38

+ RBMLM H32 1Iter 27.39 24.79 26.57 25.04

+ RBMLM H32 10Iter 27.61 24.87 26.91 24.94

+ FRBMLM H32 1Iter 27.54 24.55 26.80 25.29

Baseline + TED LM 27.45 23.81 26.84 24.65

+ RBMLM H32 1Iter 27.64 24.77 27.00 25.01

+ RBMLM H32 10Iter 27.95 24.37 26.95 25.14

+ FRBMLM H32 1Iter 27.80 25.17 27.21 25.45

LM + PT Adapt 28.48 24.94 27.50 26.11

+ FRBMLM H32 1Iter 28.75 25.55 27.53 26.30
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If we add an 4-gram-based language model trained only on the TED data (Baseline

+ TED LM) to the original baseline system, we can improve by 1 BLEU point over the

baseline system. The factored RBM-based language model as well as the one trained

for 10 iterations can outperform the TED n-gram-based language model by up to 0.4

BLEU points.

If we look at both scenarios for the university lectures test set (Table 8.7b), we can

also improve the baseline translation quality with all RBMLM approaches. For this

task, all three systems perform better than the system using an additional small TED

n-gram based language model. In this case, training for 1 and 10 iterations perform

similarly.

For the TED task, as shown in the first table, we can get further improvements by

combining the n-gram-based TED language model and the RBM-based language model.

Then we use three different language models in our system. As shown in the lower part

of Table 8.7a, additional improvements of 0.3 to 0.4 BLEU points can be achieved

compared to the system not using any RBM-based language model. Furthermore, it is

no longer as important to perform 10 iterations of training. The difference between 1

and 10 training iterations is quite small. The factored version of the language model

still performs slightly better than the language model trained only on words.

For the computer science task, the corresponding experiments are shown in Table

8.7b. For this task, it is a little bit different. The translation system using the RBM-

based language model based only words can not be improved significantly by adding

the n-gram based TED language model. But the system using the factored language

model can be improved by adding the small n-gram based language model leading to

the best performance on both tasks. The RBM-based language model can improve by

1.4 and 0.8 BLEU points over the system using only n-gram based language models

(Basline + TED LM). We can gain more on the computer science task than on the

TED task.

Finally, we added the factored RBM-based language model to a system using already

language model and phrase table adaptation as described in Chapter 6. The results

are shown in the last two lines of both tables. In this case we can improve on the

development data for the TED task, but only very slightly on the test data. In contrast,

on the university lecture data we can improve more. Here we can still gain 0.61 and

0.19 BLEU points over the fully adapted system.
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Table 8.8: Number of hidden units for the TED task

System Hidden Units
BLEU Score

Dev Test

TED LM 27.09 23.80

RBMLM

8 25.65 23.16

16 25.67 23.07

32 26.40 23.41

64 26.12 23.18

Table 8.9: Number of hidden units for the CS task

System Hidden Units
TED Dev CS Dev

Dev Test Dev Test

TED LM 27.09 23.10 26.49 24.75

RBMLM

8 25.65 23.44 25.86 24.00

16 25.67 23.50 26.04 24.23

32 26.40 24.23 25.90 24.35

64 26.12 24.38 26.38 24.38

In conclusion, we are able to improve the translation quality by using the RBM-

based language model. As expected, more improvements can be achieved on the com-

puter science task. Here we have more topic-specific words and therefore, more often

loose the context in the n-gram based language model. Furthermore, the factored-

based language model mostly performs better than the language model only based on

the surface word forms. The additional smoothing performed by the automatic word

classes improve the language modeling.

In a related project, the RBM-based language model was compared to a language

model based on feed forward neural networks. The results are summarized in the ap-

pendix in Table A.1. In these experiments both language models perform quite similar.

While the feed forward neural network can only be used in an additional reranking

step, the RBM-based language model was directly integrated into the decoder.
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Table 8.10: Number of training iterations for the TED task

System Iterations
No Large LM Large LM

Dev Test Dev Test

TED LM 27.09 25.02 27.45 25.26

1 26.40 24.64 27.39 25.13

5 26.72 24.63 27.40 25.24

RBMLM 10 26.90 24.70 27.61 25.76

15 26.57 24.71 27.63 25.49

20 26.16 24.45 27.49 25.60

8.3.6.1 Network Layout

We carried out more experiments on both tasks to analyze the influence of the network

layout on the translation quality. We used a smaller system only using the n-gram-

based or RBM-based in-domain language models trained on the target side of the TED

corpus. The results of these experiments are summarized in Tables 8.8 and 8.9. The

first system uses an n-gram-based language model trained on the TED corpus. The

other systems all use an RBMLM trained for one iteration on the same corpus.

Comparing the BLEU scores on the development and test data for the TED task,

we see that we can improve the translation quality by increasing the number of hidden

units to up to 32 hidden states. If we use less hidden states, the network is not able

to store the probabilities of the n-grams properly. If we increase the number of hidden

units further, the performance in translation quality decreases again. One reason for

this might be that we have too many parameters to train given the size of the training

data.

If we look at the configurations for the computer science lectures, the performance

can improve even by using 64 hidden units. But there are only quite small improvements

when going from 32 to 64 hidden units.

Therefore, we used a layout with 32 hidden units in most of the experiments.
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8.3.6.2 Training Iterations

One critical point of the continuous space language model is the training time. While

an n-gram-based language model can be trained very quickly on a small corpus like the

TED corpus without any parallelization, the training of the continuous space language

model takes a lot longer. In our case the corpus consists of 942K words and the

vocabulary size is 28K. We trained the RBM-based language model using ten cores in

parallel and it took eight hours to train the language model for one iteration.

Therefore, we analyzed in detail the influence of the number of iterations on the

translation performance. The experiments were again performed on the smaller system

using no large n-gram-based language model mentioned before (No Large LM) and

the system using a large n-gram language model trained on all data mentioned in

the beginning (Large LM). We performed these experiments on the TED task and

summarized them in Table 8.10. In the first line we show the performance of the system

using a n-gram-based language model trained only on the TED corpus for comparison.

In these experiments, we see that the performance increases up to ten iterations of

the training data. Using ten instead of one iteration, we can increase the translation

quality by up to 0.5 BLEU points on the development data as well as on the test data.

Using the large language model in our baseline, adding the RBM-based language model

helps more than adding the small n-gram-based language model. Performing more

than ten iterations does not lead to further improvements. The translation quality

even decreases again. The reason for this might be that we are facing over-fitting after

the tenth iteration. In the smaller setup, using the RBM language model cannot help

to outperform the n-gram-based language model. It seems to be important to use the

RBMLM only in addition and not as only language model.

In summary, as we see in the results we already archive a good performance after one

iterations. Since the training is quite slow, it is important that only very few iterations

are needed. Up to ten iterations, small additional improvements can be achieved.

8.3.6.3 Combination with Topic Adaptation

In the last experiments we showed that the best results can be achieved with the

RBMLM using the factored approach and 32 hidden units, while training the system

for 1 iteration. Furthermore, this language model performs better than the class-based

141



8. EXPLOITING GENRE SIMILARITY OF TRAINING DATA

Table 8.11: Combining RBM-based language models with topic adaptation

System
Topic Adapted + RBMLM Gain

Dev Test Dev Test Dev Test

TED 28.56 26.18 28.82 26.19 +0.26 +0.01

CS 28.56 25.43 28.82 26.04 +0.26 +0.61

+ CS Dev 28.73 26.62 28.58 26.78 −0.15 +0.16

language models. Therefore, we also tested this language model on the currently best

system on all conditions using TED data. This system uses the topic adaptation from

the last section.

The results of these experiments are summarized in Table 8.11. For all the cases,

the performance on the test set is either as good as the baseline system or better.

As it was already the case in the last experiment, the biggest improvements could be

achieved on the university lectures. Here, especially if we do not have any perfectly

matching development data, significant improvements can be achieved. In this case the

best improvement of 0.6 BLEU points was achieved. So it is possible to combine the

adaptation towards the topic described in the previous chapter with the adaptation

performed in this chapter.

8.3.6.4 RBMLM for English-French

We also tested the RBMLM on the English to French translation task of TED lectures.

We trained and tested the system on the data provided for the official IWSLT Evalu-

ation Campaign 2012 (Cettolo et al., 2012). The system is similar to the one used on

the German to English tasks. The results for this task are shown in Table 8.12.

The difference between the Baseline system and the systems using RBM-based

language models is smaller than in the last experiments, since the baseline system uses

already several n-gram-based language models. On the development set both the RBM-

based language model as well as the factored RBM-based language model using also

automatic word classes could improve the baseline system, by 0.1 BLEU points. For

the test set only the factored version can improve the translation quality by 0.1 BLEU

points. The reason may be that the system is already adapted very well to the TED

data.
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Table 8.12: RBM-based language model on the English-French task

System Dev Test

Baseline 28.93 31.90

RBMLM 28.99 31.76

FRBMLM 29.02 32.03

So it is possible to also improve the translation quality on a different language pair.

Furthermore, even the performance of a very strong state-of-the-art system could be

improve by this additional model.

8.4 Summary

In this chapter we analyzed how to best exploit data that is similar to the application

in genre. If we look at the available data we have often corpora that represent one

genre, but contain parts about different topics (EPPS corpus, TED corpus). In this

chapter, we presented two approaches that could improve the translation quality if

the genre of the test data is the same or similar to the one of the corpus or parts of

the corpus. In a first approach, we trained a class-based language model on the data

that matches in genre. In the second approach we presented a new continuous space

language model that is fast enough to be used directly during decoding. If we train

the model on the genre matching data we are able to gain even higher improvements

than the class-based language model. As shown in Table 8.11 improvements of up to

0.6 BLEU points can be achieved even if the system has already been adapted to the

task with the approaches presented in the previous chapters.

In addition to the automatic evaluation, we also compared the sentences manually.

One example sentence from each test set can be found in Examples 8.1 and 8.2. In the

first sentence, we are now able to select the correct singular article instead of the plural

one, although there is an addition noun between article and the corresponding noun.

With the additional model we are able to generalize over the additional noun although

we might not have seen it in the context with the other noun.

In the second example, we are able to put the words two and plus in the correct

word order. Here again, the context in the n-gram-based language model does not
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cover the word Y and therefore, the translation model is not able to put the words in

the correct word order.

Source: ... denn diese Liebes Geschichte, ...

Reference: ... because this love story, ...

Baseline: ... because these love story, ...

RBMLM: ... because this love story, ...

Example 8.1: Example sentence using the RBMLM on the TED task

Source: das ist ein Vektor der hier Y zwei plus Y drei auf diesen

Punkt zwei deutet, ja?

Reference: this is a vector Y two plus Y three which points at this

point two, right?

Baseline: this is a vector of here Y plus two Y three indicates this

point two, yes?

RBMLM: this is a vector here Y two plus Y three indicates this

point two, yes?

Example 8.2: Example sentence using the RBMLM on the CS task
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9

Results Overview

In previous chapters we analyzed the different approaches developed in this thesis in

detail. After showing the influence of these techniques separately, we will give an

overview of the techniques and compare their influence in this chapter.

We will first review and summarize the influence on the two tasks used throughout

this thesis, the translation of TED task and the translation of computer science lectures.

These techniques were also used in several international evaluations. In the second part,

we will analyze the influence of the techniques on the systems submitted by KIT to these

evaluations and show the performance of the systems compared to other participants.

9.1 Speech Translation Task

Before discussing the results from the evaluation campaigns, we will review the scenarios

we analyzed in this thesis. We analyzed two different tasks of a translation system.

In the first one, we tried to translate more general talks directed to a broad audience

as they occur in the TED talks. The second task of the systems is the translation of

university lectures. In this case, we have a more specific audience and therefore the

vocabulary used is also more specific.

We analyzed the tasks in different data scenarios. For the TED task, we used three

scenarios and for the computer science task we used five. In the first scenario, data

matching to the task is not available. In this case, we optimize the systems on parallel

data from the EPPS corpus. Then we analyzed each task in a scenario where only a

small amount of matching data form the TED corpus is available. This data can be
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Table 9.1: Overview on all scenarios without matching training data

Technique
Baseline Dev on TED Dev on CS

Dev TED CS Dev TED CS Dev CS

Baseline 27.54 21.34 20.21 24.09 21.59 21.50 25.37 22.72

BiLM
27.72 21.87 20.97 24.35 22.36 22.44 25.53 23.21

+0.18 +0.53 +0.76 +0.26 +0.77 +0.94 +0.16 +0.49

Topic
27.72 21.98 21.55 24.48 22.40 23.15 26.80 23.88

+0.00 +0.09 +0.58 +0.13 +0.04 +0.71 +1.27 +0.67

Overall +0.18 +0.62 +1.32 +0.39 +0.81 +1.65 +1.43 +1.16

used to optimize the weights of the log-linear model. This is perfectly matching data

for the TED task and roughly matching data for the university lectures. Finally, for

the university lectures task, we also analyzed a scenario where we have some perfectly

matching development data available.

In addition we investigated the scenarios where more matching data is available. In

this case we used this data to train the translation and language model also. We test

both tasks in scenarios, where some amount of parallel TED data is also available.

All results are summarized in Table 9.1 and 9.2. In the first table we summarized

all scenarios using no matching training data.

In the first scenario we examine the case, where no matching data at all is available.

In this case, the mismatching data is exploited better using the bilingual language model

as described in Chapter 5 and we can adapt to the topic using additional knowledge

sources as Wikipedia as described in Chapter 7. The results for both tasks are shown

in the first three columns of Table 9.1.

The bilingual language model improves the performance by 0.5 and 0.8 BLEU point.

Compared to other situations, this is a relatively large improvement by the bilingual

language model. The additional context is more important when long matching phrases

are not available. The system can be improved further by using Wikipedia as an ad-

ditional knowledge source. As we expected, this mainly helps on the computer science

task, since here a more specific vocabulary is used. In this case an additional improve-

ment of 0.6 BLEU points can be achieved.

In summary, with the both techniques an improvement of 0.6 and 1.3 BLEU points
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can be achieved for this scenario. Thus, we can conclude that it is possible to improve

the performance significantly in a scenario where only mismatching data is available.

In the second scenario a small amount of TED data is available to optimize the

system on this parallel data. In this case, we can again use the two techniques mentioned

before to improve the performance of our system. The results for this scenario are shown

in the same table in the middle columns with the title Dev on TED.

In this case bigger improvement is achieved by using the bilingual language model.

On the two tasks, we improved the system by 0.8 and 0.9 BLEU points. As the matching

or partly matching development data is able to estimate the correct influence of this

model more accurately, the performance is improved further. For the topic adaptation,

we have a similar improvements as in the last data scenario.

In this scenario using the TED development data translation quality can be im-

proved by 0.8 and 1.7 BLEU points on the different tasks. This scenario is very com-

mon when building a new application. We have a considerably amount of data, but

this data mismatches the domain of the application. Furthermore, we have a very small

amount of well matching data as in the case of the TED task or roughly matching data

as in the university lectures task.

Finally, we also analyzed what happens if we have perfectly matching development

data also for the computer science lectures task. Results are shown in the right columns

of Table 9.1.

In this case, we have also substantial improvements from the bilingual language

model, but not as much as in the scenarios discussed before. The topic adaptation

improves the performance to a similar degree.

In summary, we are able to gain 1.2 BLEU on the task of translating university

lectures. If we compare it to the last scenario, it is possible to improve the performance

by 0.7 BLEU points by using the perfectly matching development data instead of using

one from the TED domain.

In the next scenarios we have in addition training data more similar to the test

set. In these scenarios we used additional training data from the TED corpus. For the

TED task, this data matches the task considerably well. In contrast, for the computer

science lectures task, it only matches partly the task. In both cases, we are able to

use additional methods presented in this work. First, the system can be adapted by

combining models trained on different parts of the data as described in Chapter 6.
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Table 9.2: Overview on all scenarios using TED training data

Technique
Dev on TED Dev on CS

Dev TED CS Dev CS

Baseline 26.22 24.12 22.97 25.84 23.55

BiLM
26.32 24.24 23.60 26.24 24.38

+0.10 +0.12 +0.63 +0.4 +0.83

Model Combination
28.48 26.18 24.94 27.50 26.11

+2.16 +1.94 +1.34 +1.26 +1.73

Topic
28.56 26.18 25.43 28.73 26.62

+0.08 +0.00 +0.49 +1.23 +0.51

Genre
28.82 26.19 26.04 28.58 26.78

+0.26 +0.01 +0.61 -0.16 +0.16

Overall +2.60 +2.07 +3.07 +2.74 +3.23

Furthermore, we present a technique using RBM-based language models to specially

model the similarity of the genre of some data by not considering its topical differences

(Chapter 8).

In the left columns of Table 9.2, we show the results when using the development

data from the TED corpus. In this case, we can improve the translation quality using

the bilingual language model. This time, however, the improvements are smaller, espe-

cially for the TED task. One possible reason is that the training data matches better

the task and therefore, the context used in the standard translation model is already

larger.

Even more improvements is achieved by model combination. The model combi-

nation includes different adaptation techniques like the language model combination,

adaptation of the candidate selection and log-linear combination of phrase table scores.

The language model combination has not been developed within the scope of this the-

sis. However, as described in Chapter 6, this method contributed only a part of the

relatively huge improvements achieved by this approach. All model combination tech-

niques can improve the translation quality by 1.9 BLEU points for the TED task and

1.3 BLEU points for the computer science task. Since the TED data matches better

the TED task, it obviously leads to more substantial improvements for this task.
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Afterwards, we also perform topic adaptation for this approach. The additional

data can not improve for the TED task, but we again can improve the system by 0.5

BLEU points for the computer science task. This is slightly less improvement than the

same task in the last scenario, since the baseline system in this data scenario is already

trained with more data. Nevertheless a considerable improvement is still observed using

this additional mismatching data.

Finally, in this scenario we can also adapt to the genre using the RBM-based lan-

guage model. Using the additional language model does not change the BLEU scores

of the TED task, but it can improve the translation performance additionally by 0.6

BLEU points for the university lectures task.

In summary, we achieve improvements of 2.1 and 3.1 BLEU points with all tech-

niques in the data scenario. In this scenario the improvements are considerable larger

than the improvements in the previous scenarios, since for the first time, all techniques

developed through this thesis can be applied.

The data used in this scenario is, for example, available for every European language

pair and we do not use any university lecture data. Therefore, similar improvements of

the translation system can be achieved on any other task of translating speech directed

to a specific audience, for example, as in conferences.

Finally, in the two most right columns of Table 9.2 we present the result for the

scenario where we also have development data from the university domain. In this case,

we again use all the techniques presented in this thesis.

The bilingual language model can again lead to significant improvements of 0.8

BLEU points. Compared to the scenario with TED development data, the improvement

is larger is we have perfectly matching development data. Further improvements of 1.7

BLEU points is gained by using model combination. The improvement is nearly 0.4

BLEU points more than in the scenario where matching development data is available.

So for both techniques can benefit from better estimated weights in the log-linear model

due to the matching development data.

The improvements by topic adaptation are also very similar as the ones in the last

scenario. The adaptation towards the genre increases the BLEU score only by 0.2

points compared to the 0.6 BLEU points when we use the TED development set. It is

interesting, that although the improvements of the genre adaptation and model com-

bination are similar in this and the last data scenario of the computer science lectures
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task, in this scenario nearly all improvements are achieved only by the model combi-

nation. So it seems that the model adaptation and the genre adaptation techniques

handle similar phonemes in the translation process, but the genre adaptation is more

robust to differences between the development and test data.

If we look at the last scenario, it is possible to improve the performance by up to

3.2 BLEU points using the techniques developed and presented in this work. In this

scenario, we only use data which does not match or only partly match the task. This

type of data is more often available and easier to obtain than perfectly matching data.

In Table 4.5 in Chapter 4 we presented the result of a baseline system using a small

amount of parallel data from the university lectures. This data matches perfectly the

task and therefore is able to improve the translation quality significantly by 4 BLEU

points reaching a BLEU score of 27.49 points. In reality, however, it is nearly impossible

to obtain this type of data. Furthermore, if we use this type of data the system performs

good only on this specific type of task. Therefore, for another application we need to

collect new data for the next application.

If we compare the performance of the system with the lecture training data to

the final system using only training data from the TED domain, the system performs

almost as good as the oracle experiment without having a significant amount of parallel

data. Our final system reached a BLEU score of 26.04 and 26.78 BLEU points on the

task of translating university lectures, which are only 1.5 and 0.7 BLEU points worse

than the system having the perfectly matching data available.

9.1.1 Examples

In Chapter 4, we examine some example sentences where the baseline machine trans-

lation system does not produce satisfying results. In Chapters 5 to 8 we already had

a look at the sentences which could be improved by the approaches presented in these

chapters. In Examples 9.1 and 9.2 we present again how the translation quality can be

improved in all the examples by using all techniques presented in this thesis.

As it is expected in most of the examples, the translation can be improved by

making better lexical choices. By adapting the translation system towards the task,

it is possible to determine more accurately how to translate lexical items which have

different translations in the target language depending on the domain. In the first

example from the TED task, we are able to translate the German word Schiffs into
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ship and not into vessel and in the first example from the computer science task, we

no longer translate zufällige into adventitious, but into random.

Furthermore, the integration of additional knowledge sources enable us to translate

highly topic-specific words. As shown in the example for the computer science lectures

translation task, we are now able to translate words like Perzeptronen or Rotations-

Ellipsoid.

Moreover, additional aspects of the translation can be improved. As the training

data does not fit well any longer the test condition, the phrase-based machine transla-

tion system falls back to smaller units. Therefore, less context is available for selecting

the correct translation. Using the techniques presented in this thesis, this can be pre-

vented at some extent and improve the target word order as in example three of the

TED task or the last example of the second task. Furthermore, in the last example of

the TED task, the agreement is improved.

Source: der Baupläne des Schiffs.

Reference: on the blueprints of the ship.

Before: the design of the vessel.

After: the design of the ship.

Source: wir wollen uns das best mögliche Ergebnis vorstellen.

Reference: we want to imagine the best case scenario outcome

Before: we want to present the best possible result.

After: we want to imagine the best possible result.

Source: es gibt Hinweise darauf, dass schon die Neandertaler

vor 60000 Jahren

Reference: there is evidence that Neanderthals, 60000 years ago,

Before: there are indications that the Neanderthals before 60000 years

After: there is evidence that the neanderthal 60000 years ago,

Source: denn diese Liebes Geschichte,

Reference: because this love story,

Before: because these love story,

After: because this love story,

Example 9.1: Examples of the TED task
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Source: wir haben zufällige Gewichte.

Reference: we have random weights.

Before: we have adventitious weights.

After: We have random weights.

Source: nun, Perzeptronen, eine tolle Sache, da hat man sehr viel drüber

geschrieben und viel publiziert in diesen Jahren.

Reference: now, the perceptrons, an awesome thing, much was written

about this and much was published during these years.

Before: now, Perzeptronen, a great thing, as it has a great deal over

written and published in recent years.

After: now, perceptrons, a great thing, because it was very much over

written and much published in these years.

Source: das sind in der Regel Basis Elemente wie Würfel, Kegel,

Kegelschnitt, Rotations-Ellipsoid und anderer Torus ...

Reference: these are usually base elements such as cubes, cones, the cone cut,

rotation ellipsoid and the other torus, ...

Before: these are generally base elements such as cube cone, Kegelschnitt,

rotation-Ellipsoid and other Torus ...

After: these are usually base elements as cube cone, conic section,

rotation ellipsoid and other torus ...

Source: das ist ein Vektor der hier Y zwei plus Y drei auf diesen

Punkt zwei deutet, ja?

Reference: this is a vector Y two plus Y three which points at this

point two, right?

Before: this is a vector here Y plus two Y to this point three

two suggests, yes?

After: This is a vector here Y two plus Y three

indicates this point two, yes?

Example 9.2: Examples of the CS task
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9.2 Evaluation Campaigns

Several of the techniques presented in this thesis have already successfully been used

in competitive evaluations. In order to show the influence of the techniques, we review

the contributions of these techniques to the final system submitted to the evaluations

by KIT. Furthermore, we then compare these final systems to systems submitted to

the evaluations by other groups.

KIT participated in several of these machine translation evaluations of previous

years. We analyze the contribution to the WMT 2012 Evaluation1, the Quaero 2012

Evaluation and the IWSLT 2012 Evaluation2.

9.2.1 WMT 2012

This evaluation was part of the NAACL 2012 Seventh Workshop on Statistical Machine

Translation. The task is to translate general newspaper text from and to English. KIT

participated in the German to English, English to German, French to English and

English to French task. A detailed descriptions of the system can be found in Niehues

et al. (2012).

The tables describing the influence of all the techniques used in the system can also

be found in the Appendix B.1. We summarize the contribution of the models presented

in this thesis in Table 9.3.

In all language pairs we can improve the translation quality by using the bilingual

language model. The improvements are between 0.15 and 0.27 BLEU points. The

improvements by the model is not as substantial as for some of the task described in

1http://www.statmt.org/wmt12/
2http://hltc.cs.ust.hk/iwslt/index.php/evaluation-campaign.html

Table 9.3: Contributions to WMT 2012 results

Technique DE-EN EN-DE FR-EN EN-FR

BiLM +0.18 +0.15 +0.27 +0.27

Model Combiation +0.20 +0.12

Morphological Operations +0.05
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this thesis. One reason can be that the training data matches better the task and

therefore, we have already more parallel context in the phrase pairs available.

In the French-English and English-French systems we used also the phrase table

adaptation techniques described in Chapter 6. In this evaluation we used the ap-

proaches described as Backoff approach. Instead of preferring better matching data,

in this setup the technique was used to prefer data from a cleaner corpus. We used

the EPPS and news commentary corpus as in-domain data. As out-of-domain data we

used the Giga corpus, which is crawled from the web. This technique could improve

the translation quality by up to 0.2 BLEU points.

Finally, for German to English we improved the translation quality by using the

quasi-morphological operations described in Chapter 7 by 0.05 BLEU points.

In summary, the system performance was improved by 0.15 to 0.47 BLEU points

using the techniques described in this thesis.

On a different test set, the official test set, the system was compared to systems

submitted by other teams. The results are described in detail in Callison-Burch et al.

(2012). The KIT system participated in the constrained task in all language pair. The

main metric of this evaluation is the manual evaluation. In this measure every system

which is not significantly worse than the best system counts as a winning system. In

Callison-Burch et al. (2012), it is described that “KIT appeared in four tasks and was

constrained winner each time”. The systems were ranked third in all human evaluation

task.

Also the automatic metric scores were calculated. The KIT system was ranked first

once, second once and third twice in BLEU. In TED it is ranked first once and second

three times.

9.2.2 Quaero 2012

In the Quaero Project1 KIT participates in additional internal evaluations of MT sys-

tems. In this evaluation, the performance of the translation between German and

French was measured. In one condition, the participants needed to translate news text

from the project-syndicate webpage. In addition, in a speech translation task tran-

scripts from broadcast news needed to be translated. The detailed contributions of the

1http://www.quaero.org
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Table 9.4: Contributions to Quaero 2012 results

Technique
Text Speech

DE-FR FR-DE DE-FR FR-DE

BiLM +0.18 +0.47 +0.25 +0.31

Model Combination +0.11 +0.20

Morphological Operations +0.04

different techniques to the KIT system can be found in Appendix B.2. A summary can

be found in Table 9.4.

Again, the bilingual language model improved the translation quality in all condi-

tions. For the text translation task, some parts of the parallel corpus was collected

from the same web page. Therefore, we could use this corpus to perform phrase ta-

ble adaptation using the Backoff approach. For the German to French direction, we

also adapted the candidate selection of the translation model by using the CSUnion

approach. This let to additional improvements of up to 0.2 BLEU points. In addition,

we used the quasi-morphological operations for the German to French text system to

translate unknown words.

The KIT system was very competitive, compared to other participants on the official

test set. On the text translation task in the German to French direction the KIT system

performed the best on TER and was ranked fourth on BLEU. For the opposite direction,

the system performed second in both metrics. In the speech translation task, the system

was ranked as best in both directions and both metrics.

9.2.3 IWSLT 2012

The IWSLT 2012 evaluation was carried out during the International Workshop on

Spoken Language Translation. In this evaluation the task was to translate English

TED lectures into French. KIT participated in the MT evaluation, where the human

generated transcripts of the lectures were translated as well as in the SLT task. In the

SLT task the output of the ASR system was used as an input for the translation. A

detailed description of the KIT systems can be found in Mediani et al. (2012).

The contribution of the different models can be again found in the paper or in the

Appendix B.3. For both tasks, the bilingual language model improved the performance
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Table 9.5: Contributions to IWSLT 2012 results

Technique EN-FR MT EN-FR SLT

BiLM +0.17 +0.17

Model Combiation +1.15 +0.22

RBMLM +0.08

by 0.17 BLEU points. This improvement is similar to the one in the WMT. In this

case a very good matching corpus is available, which is the TED corpus. Therefore,

the model combination improved the performance substantially more. In this system

the TED corpus was used as in-domain data and all other data as out-of-domain data.

For both systems we used the Backoff approach. In the MT system, we also adapted

the candidate selection by using the CS Union. This let to improvements of 1.15 BLEU

points on the MT task and 0.22 BLEU points on the SLT task. Additional 0.08 BLEU

points was gained by a continuous space language model based on RBMs.

After developing the system using this development test set, the system was com-

pared to the system of other participants on the official test set and on the progress

test set. The evaluation is described in detail in Cettolo et al. (2012). The MT system

was ranked second in BLEU, first in TER on the official test set, and third and second

respectively on the progress test set. On the progress test set also a human evaluation

was performed. In the human evaluation the KIT system was ranked first together

with three other systems.

On the SLT task, the KIT was first in all automatic metrics on both test sets.

Furthermore, the KIT system was ranked first on the human evaluation on the progress

test set.
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Conclusion and Outlook

Statistical machine translation is currently the most promising approach to machine

translation. The main advantage of this approach compared to other approaches like

rule-based machine translation is the possibility to learn automatically from parallel

data. In rule-based machine translation, instead, expert knowledge is required to build

the translation system. By using comparably cheaper parallel data it is possible to

build SMT systems for many different language pairs. Nowadays, SMT systems for up

to 70 languages are available.

Consequently, if parallel data is available, relatively good translation results can

be achieved. One drawback is that there is mostly only data for certain domains like

general news or speeches in the European Parliament. For many other domains, such

as university lectures, it is very difficult to acquire parallel data.

One problem of current SMT systems is that they perform comparatively well when

the training and test data are fairly similar. But the performance drops significantly,

if the testing and training conditions differ. For many real-world scenarios no well

performing translation systems exist, due to the difficulty of data acquisition.

In order to improve on these conditions, we developed several techniques in this the-

sis to handle data which does not match the task. Furthermore, we proposed techniques

to integrate matching or partly-matching data. We evaluated these approaches mainly

on two tasks of translating German speech transcripts into English. In the first task,

we translated TED talks and in the second one, university lectures were translated.

In a first step, we considered the condition, where no in-domain training data is

available. We showed that the bilingual context available for making the translation
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decision is substantially shorter than for the translation task with matching training

data. In order to use more bilingual context in the decision process, we introduced the

bilingual language model as an additional information source in our translation system.

Using this model we were able to improve the translation quality especially in cases

where the training and testing data condition do not match.

If in-domain data is available, we investigated three possibilities of exploiting this

data. First, we ignored different aspects of similarity between the training data and

the task. Then we analyzed what problems arise when we use a translation system for

a new topic and how to model the genre of the data more precisely.

In the first approach, we tried to exploit small amounts of in-domain data, with-

out distinguishing between genre and topic. We showed that significant gains can be

achieved by adapting the language and translation model. For the language model we

used the standard log-linear combination of different individual models. For the trans-

lation model, we proposed two new techniques to optimally use the in-domain data by

combining models trained on different parts of the data. Furthermore, we analyzed

different strategies of phrase table adaptation in detail and showed which aspects are

the most important ones for the adaptation.

A further direction of research may be a combination of these techniques with other

adaptation techniques like data selection methods (Moore and Lewis, 2010). This is

especially helpful if the data source is unknown and therefore it is not possible to define

manually which part of the data is the in-domain one. For other tasks, it is important

to develop methods to acquire in-domain data. Often it is the case that no parallel

data is available, but only other types of data such as comparable data. Then the

additional problem of integrating this data optimally into the translation system has

to be investigated.

In further techniques developed in this thesis, we tried to distinguish between topic

and genre. Since it is difficult to obtain parallel topic matching data for many university

lectures, we use the inter-language links of Wikipedia to retrieve additional translations

for topic-specific terminology. Using this approach, we improved the translation quality

significantly. In the document titles of Wikipedia only the basic forms are used, while

a lecture can contain different word forms. In order to solve this problem, we had to

generate translations for the different morphological forms of topic-specific terms.
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In addition to finding translations for unknown source words, future research may

be directed at learning new translations for existing words as mentioned in Carpuat

et al. (2012) to improve the translation quality further. In this case, we will need to

develop techniques to recognize when a source word has a new meaning.

Finally, we focused on genre matching data, an example of which is the TED corpus.

Here, we concentrated on using it in the language model to better model the lecture

genre. We developed a new continuous space language model, which allows to keep

the context around topic-specific words. Previously, continuous space language models

could only be applied in a re-scoring step. With the proposed model, a direct integration

into the decoding process could be achieved, reducing the additional latency in a speech-

to-speech translation system.

Using all the presented techniques enables us to build a translation system that

performs significantly better on a new application, even if no or almost no new data

can be collected. All resources that are used in this thesis can be easily found for many

language pairs especially for European language pairs.

In all applications analyzed during this thesis, we adapted the system to one type of

data. However, there are also applications where input data stems from several domains

(Banerjee, 2013). It would be interesting to analyze how the techniques presented here

perform in such situations. Furthermore, there are applications where user feedback

may be used to adapt the system to the current tasks. The adaptation techniques

presented in this thesis would need to be adjusted to accommodate additional feedback

from the user.
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Appendix A

Continuous Space Language

Models using Restricted

Boltzmann Machines

In a related project, the RBM-based language model was compared to the continuous

space language model using feed forward neural networks presented in Schwenk (2007)

(FFLM). The results of these experiments are summarized in Table A.1. The RBM-

based language model was directly integrated into the decoder, while the FFLM was

used in hypothesis reranking. The language models were tested on the German-English

TED task using three different setups. First, the system was tested in a baseline system.

Afterwards, first language model adaptation and then translation model adaptation was

added. As can be seen in the results, both language models perform very similar. In

most cases, they could outperform the system without any kind of neural network

language model. The RBM-based language model performed two times better than the

language model using feed forward neural networks and once worse.

Table A.1: Comparison of language models based on RBMs and feed-forward networks

System No CSLM FFLM RBMLM

Baseline 23.02 23.97 23.77

LM Adapt 24.06 23.78 24.18

LM+TM Adapt 24.57 24.82 24.89
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Evaluation Campaigns

B.1 WMT 2012

Table B.1: German-English results for WMT 2012

System Dev Test

Baseline 23.64 21.32

+ Lattice Phrase Extraction 23.76 21.36

+ Gigaward Language Model 24.01 21.73

+ Bilingual LM 24.19 21.91

+ Cluster LM 24.16 22.09

+ DWL 24.19 22.19

+ Tree-based Reordering - 22.26

+ OOV - 22.31

Table B.2: English-German results for WMT 2012

System Dev Test

Baseline 17.06 15.57

+ POSLM 17.27 15.63

+ Bilingual LM 17.40 15.78

+ Cluster LM 17.77 16.06

+ DWL 17.75 16.28
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Table B.3: English-French results for WMT 2012

System Dev Test

Baseline 24.96 26.67

+ GigParData 26.12 28.16

+ Big LMs 29.22 29.92

+ All Reo 29.14 30.10

+ PT Adaptation 29.15 30.22

+ Bilingual LM 29.17 30.49

+ Cluster LM 29.08 30.58

Table B.4: French-English results for WMT 2012

System Dev Test

Baseline 25.81 27.15

+ Indomain LM 26.17 27.91

+ PT Adaptation 26.33 28.11

+ Big LMs 28.90 29.82

+ Bilingual LM 29.14 30.09

+ Cluster LM 29.31 30.25
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B.2 Quaero 2012

Table B.5: German-French results for Quaero text evaluation 2012

System Dev Test

Baseline 38.9 36.19

+ PT Adaptation 39.02 36.18

+ LM Adaptation 39.14 36.55

+ Bilingual LM 38.27 36.73

+ Long-range Reordering + GigaLM 40.60 37.08

+ Lattice Phrase Extraction 41.03 37.41

+ DWL 41.23 37.73

+ Cluster LM 41.35 38.19

+ CSUnion 41.60 38.31

+ MorphOperation 38.35

Table B.6: French-German results for Quaero text evaluation 2012

System Dev Test

Baseline 25.8 25.12

+ PT Adaptation 25.89 25.32

+ LM Adaptation 26.28 25.50

+ Bilingual LM 26.54 25.97

+ Long- Range + Lattice Phrase Extraction 26.58 25.93

+ Discriminative Word Lexicon 26.86 25.95

+ Cluster LM 26.82 26.13

+ POS LM 27.00 26.43
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Table B.7: German-French results for Quaero speech translation evaluation 2012

System Dev Test

Baseline 26.39 28.19

+ Bilingual LM 26.82 28.53

+ Long Range+ GigaLM 27.05 28.62

+ Lattice Phrase Extraction 27.14 28.85

+ Discriminative Word Lexicon 27.35 29.29

+ Cluster LM 27.45 29.46

Table B.8: French-German results for Quaero speech translation evaluation 2012

System Dev Test

Baseline 28.35 27.86

+ Bilingual LM 29.27 28.17

+ Long-range Reordering 29.20 28.29

+ Lattice Phrase Extraction 29.28 28.45

+ Discriminative Word Lexicon 29.41 28.68

+ Cluster LM 29.23 29.08

+ POS LM + CSUnion 29.43 29.21
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B.3 IWSLT 2012

Table B.9: English-French results for IWSLT 2012 MT task

System Dev Test

Baseline 28.28 30.58

+PT Adaptation 28.50 31.73

+Bilingual LM 28.93 31.90

+Cluster LM 29.15 32.13

+CSUnion 29.27 32.21

+DWL 29.37 32.70

+RBM LM 29.46 32.78

+Agreement Correction - 32.84

Table B.10: English-French results for IWSLT 2013 SLT task

Dev on Text Dev on ASR

System Dev Test Test Dev Test

(Text) (Text) (ASR) (ASR) (ASR)

Baseline 25.37 27.57 21.68 19.11 21.86

+ Adaptation 25.64 28.08 21.90 19.31 22.04

+ Bilingual LM 25.07 28.08 22.07 19.14 22.28

+ Cluster LM 25.17 28.79 22.57 19.32 22.40

+ DWL 25.06 28.84 22.79 19.34 22.23

+ Agreement Correction - - 22.86 - -
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