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Abstract

Many robotic hands have been developed over the last decades - yet we are still far away
from robots that are able to grasp objects, dexterously manipulate them and safely in-
teract with humans. Although robotics research and particularly the fields of computer
vision and artificial intelligence have advanced rapidly, state-of-the-art robotic hands
still fall short compared to their human counterpart. The emerging field of soft robotics
employs compliant materials to build and control robots which are inherently safe and
promise to hold great potential to create and control dexterous hands. However, com-
pliant materials are difficult to model, and new tools and methods must be developed to
aid the design and control of soft robotic hands.

This work presents the overall system and a series of tools and methods to design,
fabricate and operate a new class of robotic hands: tendon-driven soft foam hands.

Apart from being truly soft, a major goal for this type of robot is accessibility. If we
want robotic hands to overcome their current confinement to research labs and cages in
factories, they have to be safe, affordable, easy to build and straightforward to control.
In the scope of this work, easy fabrication techniques are presented, and an interactive
simulation framework for predicting hand deformations for different hand morpholo-
gies and tendon patterns is developed and evaluated. A modular control framework is
created, and grasping and manipulation abilities of foam robot hands are demonstrated.
Additionally, data-driven approaches to learn the inverse kinematics of foam hands are
presented, which can be learned using either the physical or the simulated hand.





Kurzzusammenfassung

In den letzten Jahrzehnten wurde eine Vielzahl von Roboterhänden entwickelt - und
doch sind wir noch weit entfernt von Robotern, die Objekte sicher greifen und manipu-
lieren können und Sicherheit im Umgang mit Menschen garantieren. Obwohl die Ro-
botikforschung große Fortschritte gemacht hat, insbesondere in den Bereichen maschi-
nelles Sehen und künstliche Intelligenz, erreichen Roboterhände vom aktuellen Stand
der Technik noch lange nicht die Fähigkeiten der menschlichen Hand. Das Gebiet der
Weichrobotik, „Soft Robotics", stellt ein gerade entstehendes, aufstrebendes Feld in der
Robotik dar. Weichroboter bestehen aus nachgiebigen Materialien, sind daher sicher im
Umgang mit Personen und haben großes Potenzial für die Entwicklung vielseitiger Ro-
boterhände.

Im Rahmen dieser Arbeit wurde ein Gesamtsystem entwickelt für das Design, die Fer-
tigung und die Anwendung eines neuen Roboterhandtyps: sehnengetriebene, weiche
Schaumstoffroboterhände. Die entwickelten Hände bestehen ausschließlich aus wei-
chen Materialien. Ein weiteres Ziel dieser Entwicklung ist das Design, die Fertigung,
und Anwendung von Roboterhänden möglichst zugänglich zu gestalten, um deren mo-
mentane Beschränkung auf Forschungslabore und Käfige in Indutrieanlagen zu über-
winden. Dafür müssen Roboterhände sicher und einfach herzustellen und simpel zu
steuern sein.

Diese Arbeit stellt entsprechend einfache Fertigungsmethoden vor, und präsentiert
und evaluiert eine interaktive Simulationsumgebung, mit der Verformungen der wei-
chen Hand für verschiedene Handmorphologien und Sehnen simuliert werden können.
Eine modulare Steuerungssoftware wird entwickelt und die Fähigkeiten der Schaum-
stoffroboterhände in Bezug auf Greifen und Manipulation werden aufgezeigt. Deswei-
teren werden verschiedene datengetriebene Ansätze vorgestellt um die inverse Kinema-
tik der Hände zu lernen, einerseits am physischen Roboter und andererseits auf Basis
der Simulation.
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1. Introduction

Conventional robots are built from rigid materials to achieve precise and predictable behavior. This
enables the usage of relatively easy modeling and control approaches, but as a safe interaction with
humans cannot be guaranteed, it also limits their application to strictly separated spaces such as cages in
factories, or research labs.

To overcome this limitation and bridge the gap between machines and humans, the research field of
soft robotics uses compliant materials and develops new techniques to build and control safe robots.
Apart from safe interaction with humans and handling of delicate objects, a further motivation for soft
structures in robotics is the observation that biological systems which demonstrate softness and body
compliance often exceed rigid machines in their capabilities. A variety of plants and animals are able to
perform complex movements with soft structures and adapt easily to object shapes in grasping, e.g. the
elephant trunk or octopus arms.

Robotic grasping and manipulation technologies have advanced rapidly over the last decades, and could
be used to solve a variety of pressing issues in our world. Two examples of recent problems where robots
could potentially be helpful are the shortages of workers in the agricultural and in the care sector.

These tasks could be carried out by robots - if they had the appropriate hands. As an example, picking
soft fruits and vegetables may seem to be a simple task. However, in addition to the unstructured and
constantly changing environment, the large variety in shape, size and order of ripeness of fruits are a big
challenge for conventional robotic grippers, and require careful design of gripper hardware and control
schemes.

Particularly if we want robots to interact with people or handle delicate objects, and robustly perform
grasps and manipulations, the concept of soft hands offers an interesting approach towards the develop-
ment of easy-to-control, compliant and dexterous manipulators. In order to be accessible, these hands
must meet a set of criteria:

They must be inherently soft, the hands must be compliant enough to cause no harm to people, delicate
objects or their environment. To be affordable for everyone who wishes to experiment with them and use
them, soft hands have to be inexpensive. Depending on the underlying task we want to use a hand for,
different requirements can be identified for a hand design (e.g. a simple pick and place task requires a
basic gripper, while a complex in-hand manipulation requires a more sophisticated hand design). There-
fore, accessible soft robot hands must be customizable and be tailored to the desired task.

This work presents methods for the design, fabrication and operation of tendon-driven soft foam robot
hands, a new class of soft robots which promise to be low-cost, customizable and accessible to non-
experts. Since the main body of these robots consists of flexible foam they are termed ’foam robots’. A
foam robot is moved by tendons which are sewn through a textile skin on the robot, and driven by servo
mounted winches.

Chapter 2 describes mathematical principles, methods and hardware used in this work, and introduces
the fundamentals of grasping and manipulation. Insights on the nature of human hands and how we use
them are fundamental to understanding the challenges a robotic hand system must face.

Related works concerned with the design, fabrication and control of soft robotic hands are presented
in Chapter 3.

Chapter 4 introduces the concept of tendon-driven soft foam robot hands and Chapter 5 details their
fabrication. A simulation framework is developed to predict deformation and behavior of these hands
and described in Chapter 6. Methods to operate foam hands are explored in Chapter 7, and Chapter 8
summarizes the results of this work and presents approaches to be addressed in future works.
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2. Fundamentals

In order to facilitate understanding the nature and challenges of soft robotic grasping and manipulation,
this chapter reviews fundamental principles, mechanisms and techniques that are used to describe, build
and control soft hands.

2.1. Robot Kinematics

This section summarizes essential principles and techniques to describe movements of robotic systems. A
brief overview of methods to express position and orientation in 3D space will be followed by a descrip-
tion of the forward and inverse kinematics problem in rigid manipulators, which has been extensively
studied by researchers. In contrast to rigid manipulators, soft robots possess great compliance and/or a
deformable nature, which significantly complicates the study of their kinematics.

2.1.1. Position and Orientation in 3D Space

Positions in 3D space are denoted by a 3x1 vector jp =
(

px py pz
)T relative to an inertial coordinate

frame j. All coordinate frames in this section are right-handed. To express rotations, several represen-
tations exist, however this section will only introduce two of them, rotation matrices and quaternions.
For a more detailed description and a summary of more representations of rotation (e.g. Euler angles,
axis-angle) see [77, 107].

Rotation matrices: The three base vectors of a coordinate frame i are expressed in the inertial coordi-
nate frame j: jxi,

j yi,
j zi ∈ R3. Writing them together yields a rotation matrix R ∈ R3×3,

R =
( jxi

jyi
jzi
)

(2.1)

with the columns of R being mutually orthonormal, and the determinant 1, detR = 1. The rotation
matrix jRi transforms a vector expressed in the coordinate frame i to a vector in the coordinate
frame j. It can therefore be used to express rotations between frames. A sequence of rotations can
be obtained by simple matrix multiplication: jRk =

jRi
iRk.

Quaternions: A quaternion formally is a vector quantity of the form

q = a+u1i+u2j+u3k (2.2)

where a is referred to as the scalar component, and u = (u1,u2,u3) represents the vector compo-
nent. Quaternions are often expressed in the shorthand notation q = (a,u). The conjugate of a
quaternion q is given by q∗ = (a,−u), and q is a unit quaternion, if ‖q‖2 = q ·q∗ = 1.

For a unit quaternion q= (a,u) and a vector p, the operation qpq∗ rotates p about the axis u. Given
a desired axis w and angle θ for a rotation, the associated unit quaternion is q = (cos θ

2 ,wsin θ

2 ).

The representation of orientations with quaternions is efficient and extremely useful in robotics to
avoid singularities resulting from vector/matrix representation. As an example they can be used
for continuous interpolation between two orientations.

Homogeneous Transformation: The combination of position and orientation is collectively termed the
pose. A compact notation for a given pose of a coordinate frame i relative to the coordinate frame
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j, is the 4×4 homogeneous transformation matrix

jTi =

( jRi
jpi

0 1

)
(2.3)

A sequence of transformations is expressed by matrix multiplication: Given the transformations
jTi,

i Tk, the transformation matrix jTk is obtained by jTk =
jTi

iTk. This property is especially
helpful in the robotics domain to describe forward kinematics.

2.1.2. Forward and Inverse Kinematics

Traditional robotic manipulators are systems of rigid bodies (links), which are connected by joints, form-
ing a kinematic chain from the robot base to the end effector. The term "end effector" describes the
interface between a robot manipulator and the environment. The position and orientation of each link is
usually described by a coordinate frame attached to the link. Several conventions have been developed
to locate coordinate frames of adjacent links relative to another, with the Denavit-Hartenberg convention
being the most widely used. Detailed explanations of methods to describe configurations of robotic sys-
tems, as well as more information on robot kinematics in general can be found in literature [25, 107, 77].

Forward kinematics refers to the problem of determining the robot end effector pose relative to the
robot base for a given set of joint angles. For a serial chain, the transformation between the end effector
frame and base frame can be obtained by simple concatenation of the transformations between adjacent
links. The manipulator workspace describes the set of all end effector poses which can be reached by a
choice of joint angles.

The inverse problem, finding the corresponding joint angles for a given end effector pose, is termed
inverse kinematics. Methods to describe and solve both forward and inverse kinematics for rigid manip-
ulators have been studied and reviewed extensively in literature (e.g. [77, 25, 107]) and are therefore not
further detailed here.

While the inverse kinematics problem has been largely solved for rigid manipulators, in the emerging
field of soft robotics additional problems have to be addressed. Their ability to accomplish motions such
as buckling, contraction, extension or bending, results in soft robots having virtually infinite degrees of
freedom. Additionally, Thuruthel et al. [113] mention nonlinear material effects such as compliance and
hysteresis, as well as the wide range of design and actuation techniques that account for the non-trivial
nature of this problem. Previous works have particularly studied the problem of inverse kinematics in
soft robotics and are reviewed more detailed in Section 3.3.

2.2. Grasping and Manipulation

The human hand represents a highly complex mechanism and much effort has been devoted to understand
and catalogue human grasping. A major goal for roboticists is to not only understand the human hand
and underlying grasping techniques but to leverage those to create robotic hands capable of dexterous
grasping and manipulation. This section details essential grasp properties and the structure of the human,
and summarizes grasp and manipulation taxonomies.

2.2.1. Human Hand Anatomy

Figure 2.1 illustrates the 27 bones of a human hand and the joints connecting them. They are divided
into the following subgroups:
The carpals, eight short bones, form the wrist of the hand. Carpometacarpal (CM) joints connect the
wrist to the metacarpals. The proximal phalanges articulate with the Metacarpals at the metacarpopha-
langeal (MP) joints. Intermediate and distal phalanges are connected by proximal (PIP) and distal
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Intermediate phalanges

Proximal phalanges

Distal phalanges

Metacarpals

Carpals

Distal interphalangeal (DIP)

Proximal interphalangeal (PIP)

Carpometacarpal (CM)

Metacarpophalangeal (MP)

Figure 2.1.: Skeletal structure of the human hand. Bones are listed on the left, joints on the
right.

interphalangeal (DIP) joints. The thumb only contains a proximal and a distal phalanx.
The motions of limbs are classified according to the anatomical plane they occur in:

Flexion/Extension: Extension describes a straightening motion wherein the angle between body parts
increases. Flexion denotes the contrary movement.

Abduction/Adduction: Abduction is characterized by a movement away from the center line of the boy,
whereas adduction describes motions towards the body’s midline.

Rotation: Rotation refers to the movement of limbs around their long axis.

The human hand has 27 degrees of freedom (DoF): Each finger has three DoF for flexion/extension
and one DoF for abduction/adduction. The thumb is more complex than the other fingers, it has 5 DoF: 3
flexion/extension and 2 abduction/adduction. This leaves 6 DoF at the wrist for rotation and translation.
Depending on purpose and application, a variety of human hand models can be found in literature.
They vary in kinematics and number of DoF and always represent a trade-off between performance and
simplicity. Human hand models have been developed not only in the field of robotics, but also in other
research areas, e.g. computer vision, biomedical engineering, human-computer interaction. Examples of
human hand models are described in [86, 64, 23, 109, 112].

2.2.2. Grasp Properties and Contact Models

A grasp describes a system wherein the fingers of a robot or human hand grip a desired object. One im-
portant analytical measure to describe a grasp is force closure, which implies that the fingers are able to
resist any arbitrary force and/or moment acting on the object externally [105]. In order to perform every-
day tasks, a force closure grasp must possess certain properties which have been identified and studied
by researchers [27, 68, 47]. Shimoga [105] divides them into four mutually independent properties:

• Dexterity: “(The) capability of changing the position and orientation of the manipulated ob-
ject from a given reference configuration to a different one, arbitrarily chosen within the hand
workspace”, [7].

• Equilibrium: The resultant forces and torques applied on the grasped object (by external distur-
bances and fingers) is null [60, 13].
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• Stability: A stable grasp refers to a grasped object at equilibrium point, when after an arbitrary
small deflection, the grasp returns to its original position [45, 26].

• Dynamic behavior: "(The) time response of the grasp for changes in its motion or force trajecto-
ries", [105].

In the robotics domain, the term grasp synthesis generally refers to the problem of finding a suitable
finger configuration for a given object, where the grasp satisfies a number of criteria for a given grasping
task. For a known object (a complete geometrical object model is available) this task is usually referred
to as grasp planning. Grasp analysis describes the study of grasp properties for a given set of finger
properties [105].

Humans as well as robotic manipulators use contact forces to grasp and interact with objects in their
environment. Modeling and controlling contacts is therefore crucial for grasping. To depict the interface
between the hand and the object, three different contact models are generally used [95, 87]:

Frictionless point contact: The contact patch is very small and object and hand surfaces are slippery.
Only the normal component of the translational velocity and the normal component of the contact
force are transmitted. Frictional forces and moments are neglected.

Frictional point contact / hard finger: The contact patch is very small, but there is significant friction.
All three translational velocity and force components are transmitted. No angular velocities or
moments are transmitted.

Soft contact / soft finger: Surface friction and contact patch size are large enough to produce signifi-
cant friction forces and a moment about the contact normal. All three translational velocities and
the normal angular velocity component are transmitted, as well as all three translational forces and
the moment about the contact normal.

Friction is usually modeled using the Coulomb friction model. In this model tangential force is propor-
tional to normal force and the coefficient of proportionality is determined by the materials forming the
contact. A more detailed explanation of contact models can be found in [77]

According to work by Iberall [48] and MacKenzie and Iberall [70], there are three basic directions rel-
ative to the hand coordinate frame for the hand to apply forces on the object to hold it securely, shown
in Figure 2.2: Pad Opposition refers to a configuration where involved hand surfaces are opposed along
the x-axis, a direction parallel to the palm. Palm Opposition occurs along the z-axis, hand surfaces are
oriented perpendicular to the palm. Side Opposition occurs between hand surfaces along the y-axis. In
order to perform a grasping task, several fingers work together as a functional unit, the Virtual Finger
(VF) ([46]). Fingers or hand parts are assigned to the same virtual finger if they apply forces in a similar
direction and work in unison.

Figure 2.2.: Virtual Fingers (VF) and Opposition types: a) Pad Opposition, b) Palm Opposition, c) Side
Opposition. d) shows the hand coordinate system. From [36]
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2.2.3. Grasp Taxonomies

Grasp taxonomies categorize grasp types and represent benchmarks which can be used to quantify robot
hand abilities (e.g. how many grasps of the taxonomy can be achieved?). Additionally, they can be useful
for grasp synthesis and inspire hand designs.

Napier [80] distinguishes between two types of grasps: precision and power grasps (Figure 2.3). In
the former, an object is held by the fingertips and the thumb. A power grasp in contrast is characterized
by large areas of contact between the surface of the fingers and palm and the grasped object. This work
also states that when grasping an object, the intended activity determines which grasp type is chosen.

Figure 2.3.: Left: A human hand performing power
grasps to hold a cylindrical object. Right: Precision
grasps of a disk. From [80]

The distinction between power and precision
grasps can be found throughout a variety of grasp
taxonomies. In robotics, the most widely cited
taxonomy is the Cutkosky taxonomy [27]. This
work includes 16 grasp types based on observa-
tions of skilled tool use by machinists in a work-
shop. Within its hierarchical tree structure shown
in Figure 2.4, it is distinguished between power
and precision grasps in the top layer. From left to
right, object size decreases and the grasps become
less powerful. Grasp taxonomies regarding tasks
of everyday living have been developed by Ka-
pandji [57] and Kamakura et al. [55]. Kamakura
et al. studied finger positions and contact areas
human subjects demonstrated when grasping ob-
jects to perform everyday tasks. They identified
14 patterns under 4 categories (power grip, inter-
mediate grip, precision grip and grip involving no
thumb).

Recently, Feix et al. [36] have reviewed existing grasp taxonomies, additionally considering their
own observations and synthesizing them into a single comprehensive GRASP taxonomy. They define
a grasp as “(...) every static hand posture with which an object can be held securely with one hand,
irrespective of the hand orientation”. This definition rules out bimanual tasks, in-hand movements and
gravity dependent grasps (e.g. the hook grasp and the flat hand grasp). The taxonomy identifies a total
of 33 unique prehensile grasp types.

The GRASP taxonomy was regrouped by Nancy Pollard1 into six categories with respect to grasp type
(power/precision) and considering which parts of the hand are used in the grasp:

• Power grasps using the palmar gutter

• Power grasps using other parts of the palm

• Power grasps with lateral stabilization

• Precision grasps with lateral stabilization

• Power grasps with pad opposition

• Precision grasps with pad opposition

Figure 2.5 shows the six categories and the regrouped grasps. The numbers correspond to the grasp
type number in the GRASP taxonomy [36].

1http://graphics.cs.cmu.edu/nsp/index.html

http://graphics.cs.cmu.edu/nsp/index.html
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Figure 2.4.: Cutkosky taxonomy: The top level classifies power and precision grasps. Following the
tree structure from left to right, object size and grasp intensity decreases. Retrieved from https:
//cdn.hackaday.io/images/285241475755961545.png.

https://cdn.hackaday.io/images/285241475755961545.png
https://cdn.hackaday.io/images/285241475755961545.png
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Power grasps using the palmar gutter

3. Medium
Wrap [33]

4. Adducted
Thumb [56]

17. Index Finger
Extension [33]

18. Extension
Type [55]

19. Distal
Type [33]

29. Stick [93] 32. Ventral
[56]

Power grasps using other parts of the palm

2. Small
Diameter [91]

5. Light Tool
[56]

10. Power Disk [33] 15. Fixed
Hook [55]

30. Palmar
[93]

Power grasps with lateral stabilization

16. Lateral [18] 25. Lateral
Tripod [58]

26. Sphere
4-finger [58]

28. Sphere
3-finger [58]

Precision grasps with lateral stabilization

20. Writing Tripod [35] 21. Tripod [55] 23. Adduction
Grip [58]

Power grasps with pad opposition

1. Large
Diameter [33]

11. Power
Sphere [33]

22. Parallel
Extension [55]

Precision grasps with pad opposition

6. Prismatic
4-finger [35]

7. Prismatic
3-finger [55]

8. Prismatic
2-finger [35]

9. Palmar
Pinch [33]

13. Precision
Sphere [55]

27. Quadpod
[58]

14. Tripod
[33]

31. Ring [33]

Figure 2.5.: Cumulative taxonomy by Nancy Pollard. Grasp types are divided into power and precision
grasps, and grouped with respect to the parts of the hand (palmar gutter, palm, lateral finger, finger pads)
that are used for the grasp. Image by Dominik Bauer [3].



Section 2.2: Grasping and Manipulation 11

2.2.4. Manipulation Taxonomies

Researchers have furthermore worked on characterizing and classifying manipulation actions.
Chang and Pollard [17] categorize manipulation actions before grasping. Elliott and Connolly [35]

group manipulative hand movements into three categories: simple synergies (e.g. squeeze), reciprocal
synergies such as roll, and sequential patterns (e.g. a stepping motion of the fingers to alter contact
positions on the object in order to rotate the object).

Bullock et al. [12] provide a hand-centric and motion-centric manipulation classification, focusing on
hand motion and relative motion of hand and object at contact. Their classification scheme is not limited
to a specific hand design and can therefore be applied to both the human and the robotic domain.

2.2.5. Control of Grasping

Neuroscience

Despite the complex physical structure of the human hand we are able to efficiently and subconsciously
choose the appropriate grasp and coordinate our hand motions. A variety of studies have been conducted
to identify and understand human control strategies during grasping. Jeannerod [52, 53] analyzed the
grip aperture (separation between thumb and index finger) during grasping. He found that the reach-
to-grasp motion is characterized by a progressive opening of the grip followed by gradual closure of
the grip until the object’s size is matched. The largest grip aperture is highly correlated with object
size and occurs at 60 - 70% of the reach movement, representing a distinct landmark. Castiello [15]
summarizes results from various studies which have explored neurophysiology of grasping in humans
and monkeys. Experiments in macaque monkeys using lesion of targeted areas in the brain show that
the grasping circuit involves several areas of the monkey brain. In humans, neural grasping mechanisms
and corresponding brain areas are investigated by observing grasping in patients with brain damage and
noninvasive imaging studies. A grasping circuit similar to the one identified in monkeys can also be
found in humans, but human grasping involves a much wider network of brain areas. In summary, these
studies have advanced the knowledge on neural grasping mechanisms but fully understanding the human
grasping circuit will require further experiments and analysis.

Postural Synergies and Underactuation

Figure 2.6.: Postural synergies given by the first two
principal components (PC1, PC2). From [96].

Neuroscientific studies suggest that during grasp-
ing the joints of the human hand are not con-
trolled individually. Instead, "Experimental
evidence indicates that the simultaneous mo-
tion and force of the fingers are character-
ized by coordination and covariation patterns
that reduce the number of independent degrees
of freedom to be controlled" (Bicchi et al.
[8]).

In an experiment, Santello et al. [96] asked
human subjects to shape their hand to grasp and
use a number of objects. The imaginary objects
were items of everyday use of different shape and
size, which are normally held with a variety of
power and precision grasps (e.g. "wrench": power
grasp, "chalk": precision grasp). The hand joint
angles were recorded using a 15-sensor Cyber-
Glove, and principal component analysis (PCA,
see Appendix A.1) revealed that human grasping
is controlled in a low-dimensional subspace. In
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fact, the first two principal components (PCs) shown in Figure 2.6 accounted for over 80% of variance in
the recorded grasps, while the first three PCs explained 90% of the variance. The principle components
are termed postural synergies, and the results indicate that the number of control parameters necessary
for successful grasping may be significantly reduced. Although a small number of postural synergies
accounted for a large part of the data, pairs of joint angles were poorly correlated in many instances. This
suggests that the PCs of higher order do not simply represent noise in the system, but are contributing
information about the hand shape corresponding the object.
Building on the concept of postural synergies, Bicchi et al. [8] present a model to introduce elasticity
into the system. The soft synergy model combines two force fields to control the hand: An attracting field
pulling the hand towards a virtual hand shaped according to the synergy manifold, and a field repelling
the hand from penetrating the object. The dynamic equilibrium is found depending on the impedance
of the actuation and control system. They show that this model is also able to predict grasp force distri-
bution patterns. This work suggests the great potential of transferring the concept of postural synergies
to artificial systems. Ciocarlie et al. [22] coined the term eigengrasps for the principal components and
demonstrate how this concept can be used to reduce the dimensionality of the grasp planning problem in
robotics. They optimize for grasps in the low-dimensional eigengrasp space and are able to find stable
grasps for various robotic hands (e.g. Robonaut hand, Barret hand) and objects. Apart from aiding grasp
planning for existing artificial hands, the postural synergy concept can also inspire the design and control
of new robotic hands. Brown and Asada [10] for example present a mechanism that implements the hand
synergies using a system of pulleys. Their mechanism and prototype represent one example of many
underactuated hands developed by researchers over the last decades. The term underactuation describes
systems with an input vector of lower dimension than the system output vector. In the robotic hands
domain this refers to the number of actuators compared to degrees of freedom: Underactuated robotic
hands have fewer actuators than degrees of freedom.

Many researchers have worked towards the understanding of the physical capabilities of the human hand.
Similarly, much work has gone into identifying human strategies to synthesize and control grasps, and
understanding transitions between grasps we perform in order to manipulate objects and execute desired
tasks. Despite these efforts, human manipulation is still not well understood and state of the art robotic
hands are still far behind humans in terms of dexterity. Nevertheless transferring human grasping and
manipulation techniques is a promising approach towards the creation of more successful and widespread
robotic hands.

2.3. Software Frameworks

The following sections briefly introduce communication between different computers via the Internet’s
Transmission Control Protocol and Internet Protocol (TCP/IP), and the Robot Operating System (ROS).

2.3.1. Network Communication

A computer network can generally be defined as a group of host computers which are connected together
to execute a given task. In order to regulate communication within the network, a set of rules that govern
the communication, a protocol, is necessary. A generic protocol model known as the Open System Inter-
connection (OSI) model characterizes and standardizes how different software and hardware components
should divide tasks and interact in network communication. It defines a set of 7 different layers ranging
from the physical layer, handling data as raw bits, to the top-level application layer handling the services
presented to the user. Unlike the generic OSI model, the TCP/IP model was developed based on a set of
existing protocols. A detailed description of protocols and different layers in protocol models is beyond
the scope of this thesis and can be found in [63].

TCP/IP provides client-server based end-to-end connectivity through a network. Every device on a
TCP/IP network is identified by its IP address, and the network port identifies the application or service
running on the device. The interface which is used to send data through the network is termed socket,
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and a socket is associated with the local IP address and port number. On the server side, a socket is
established and waits, "listens", for connection requests from a client. Once the client socket initiates the
connection, bytestreams can be sent from the client to the server, and the server can process the received
data.

To create socket applications, libraries and Application Programming Interfaces (APIs) are available
for many operating systems and can be used in various programming languages, e.g. using the Winsock
API in a C++ project.

2.3.2. Robot Operating System (ROS)

Robot Operating System (ROS) is a platform that supports the development of robot applications. De-
veloped by Willow Garage2, ROS provides a variety of libraries and tools to aid software development to
control robots. The main ROS client libraries (C++: roscpp, Python: rospy) largely rely on open-source
software dependencies, therefore the official ROS support is only provided for Linux (Ubuntu and De-
bian). For Windows, support is very limited and termed "experimental" (community based).

Basic components of ROS are:

Nodes: Processes that perform computation. Nodes communicate and exchange data with each other
through the ROS communication interface.

Messages: Simple data structure of field types. Nodes can publish messages to topics, and subscribe to
topics to receive messages that are published to the topic.

Topics: Named buses where nodes can exchange messages. The default transport method for sending
and receiving messages is TCP/IP.

The most basic unit of the ROS framework is a ROS package, a functional module which can include
nodes, additional libraries, configuration files and datasets. A variety of packages for various applications
are publicly available online. Extensive information and tutorials on ROS can be found on the ROS Wiki3

and ROS Answers4.

2.4. Sensors

2.4.1. Vicon Motion Capture

Motion capture systems are capable of recording position and orientation of moving objects over time.
These systems are used in order to animate human models in computer animation, but are also applied
in various other fields, e.g. medical applications such as human gait analysis or validation in computer
vision and robotics. Motion capture systems can be divided into marker-based and markerless systems.

The Vicon Motion Capture System5 is a marker-based system which uses multiple high definition
cameras to record trajectories of reflective markers attached to the test subject (or object). To obtain the
3D position of each marker, light is emitted from the Vicon cameras and reflected back from the markers.
In contrast, marker-less systems such as the Microsoft Kinect sensor employ infrared or time-of-flight
sensors to track motions without the need of markers.

Marker-based systems have been proven to be fairly accurate [34, 84] and are widely used to obtain
validation data on motion.
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Thumb Roll Sensor
Palm Arch Sensor

Wrist Flexion Sensor

Wrist Abduction Sensor

Finger Bend Sensors
Abduction Sensors

Figure 2.7.: CyberGlove sensor layout.
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Figure 2.8.: Transformations of fingertip coordinate
systems, illustrated for the pinky finger.

2.4.2. CyberGlove

Data gloves typically record hand posture by measuring the joint angles of the human hand. The data
glove used in this work is a CyberGlove6 which estimates hand posture using 22 resistive bend sensors
with a resolution below 1 degree [28]. The sensor layout on the glove is shown in Figure 2.7. CyberGlove
Systems provides a graphical user interface (the Device Configuration Utility) to manage and calibrate
connected CyberGloves. The Virtual Hand Software Development Kit (SDK) includes a kinematic hand
model and a set of C++ libraries to aid the integration of hand posture measurement into an application.
The glove can be registered to the kinematic hand model, and the homogeneous transformations corre-
sponding to the hand joints can be retrieved. With the CyberGlove SDK, the hand pose is obtained in
the form of transformations relative to a global coordinate system O. To obtain fingertip poses invariant
to wrist position and orientation, the palm base coordinate system is used as reference. The fingertip
coordinate frames pT j for each fingertip j = {1, . . . ,5} relative to the coordinate frame at the base of the
palm p are obtained by inverting the transformation matrices of the palm base OTp given in the global
coordinate system O:

pT j =
p TO

OT j

= (OTp)
−1 OT j

(2.4)

The transformations for the fingertip of the pinky are shown in Figure 2.8. Dots represent the 3d position
of the hand joints, obtained with the CyberGlove. Green dots mark the positions of the fingertips.

2.5. Finite Element Simulation

The Finite Element Method (FEM) is a numerical approach to approximate behavior of continuous struc-
tures by minimizing an energy functional. FEM can be used to predict physical properties for a variety

2https://www.willowgarage.com/
3https://wiki.ros.org/
4https://answers.ros.org/
5https://www.vicon.com/
6http://www.cyberglovesystems.com/

https://www.willowgarage.com/
https://wiki.ros.org/
https://answers.ros.org/
https://www.vicon.com/
http://www.cyberglovesystems.com/
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of problems, ranging from displacements of mechanical structures to velocities of flows or temperature
in heat conduction problems. A detailed description of general principles of FEM exceeds the scope of
this work and can be found in literature [89].

According to Reddy [89], basic ideas of the FEM can be divided into the following steps:

1. Finite element discretization: The domain is divided into a finite number of elements, and these
elements are connected with each other at nodes, forming a finite element mesh. The mesh resolu-
tion represent a trade-off between accuracy and computation time.

2. Element equations: The elements are considered isolated, and element equations approximating
the desired properties are derived.

3. Formulation of system of equations: Element equations are assembled into overall system equa-
tions.

4. Solution of the assembled problem: The system equations are solved considering boundary con-
ditions.

5. Postprocessing of results: Data of interest is extracted from the solution and can be visualized
and further processed.

In this work, the FEM approach by Bern et al. [5], which uses FEM to predict deformation of plush
toys, was drawn upon as foundation for the developed soft foam robot design and control tools. A more
detailed description of how FEM is applied to predict deformations of soft foam bodies can be found in
Section 6.1.

2.6. Machine Learning

Machine learning refers to the automated detection of patterns in data [102]. Over the last decades,
technology has advanced rapidly, leading to an increasing availability of massive computing and storage
resources. Machine learning has become a common tool in almost any domain where the extraction
of information from data sets is required. A variety of toolboxes and tutorials on machine learning are
available online, such as scikit-learn7, an extensive Python module for machine learning. This section
will explain basic concepts of machine learning techniques and algorithms that are used in this work.
More detailed explanations can be found in literature [102, 9].

2.6.1. Supervised Learning

A supervised learning problem is characterized by the availability of training data consisting of a set of
input values or vectors and the corresponding output values. In many applications, the goal is general-
ization, which can be explained as the ability to make a prediction about the output values for some new
values of the input variables.

In contrast, if no corresponding output data is available for a set of input vectors in the training data,
the learning problem is labeled unsupervised.

Supervised learning problems can further be categorized with respect to the nature of the output vari-
able: If the output variable is described by set of discrete categories or labels, the term classification is
used. Regression refers to a task with one or several continuous output variables.

7scikit-learn.org

scikit-learn.org
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Regression

Given a training data set consisting of N observations of the input variable x, where x=
(
x1 x2 . . . xp

)
and corresponding observations of the target variable t. In linear regression the relationship between in-
put and target variable is modeled as a linear combination of the p components of the input variable:

y(x,w) = w0 +w1x1 + · · ·+wpxp (2.5)

This model is fit to the training data set. A widely used approach is ordinary least squares, in which the
sum of the squares of the error between prediction yi for each data point xi and the corresponding target
value ti is minimized:

min
w

E = min
w

N

∑
i=0

(y(xi,w)− ti)2 (2.6)

The term multiple regression generally describes models where multiple input variables and one output
variable are available for each observation. Apart from linear regression, a further special case of multiple
regression is polynomial regression, where the response variable is assumed to be a polynomial of the
input features x.

If a model has only "memorized" the training data and fails to generalize well for additional input data,
it is called overfitted. A common approach to control and prevent overfitting is regularization, in which
a penalty term is added to the error function E used in Equation (2.6). This penalty term discourages the
coefficients in w from reaching large values:

min
w

N

∑
i=0

(y(xi,w)− ti)2 +α‖w‖2
2 (2.7)

In this case a quadratic regularizer is used (using the L2 norm), this is termed ridge regression [44]. The
parameter α controls the relative importance of the regularization term compared to the sum-of-squares
error term.

The kernel method is a method in which input data x is mapped into a feature space F prior to applying
a learning or regression algorithm [103]:

φ : x ∈ Rn→ φ(x) ∈ F ⊆ Rn (2.8)

The idea behind the kernel method is that nonlinear relationships can be mapped to a new feature space
in which they are of linear nature and can therefore be captured by a linear regression model.

Neural Networks

An artificial neural network is a computation model inspired by the structure of the human brain, where
a number of basic units, neurons, are connected with each other, forming a complex communication
network.

A neuron is characterized by its activation function, a simple scalar function which is applied to the
weighted sum of the neuron’s inputs. One examples of an activation function is a rectified linear unit
(ReLU) [79], which outputs the positive part of its argument, f (x) = max(0,x).

Neural networks are usually described by a graph where nodes are the neurons and (directed) edges
link the output of a neuron to the input of another neuron. Feedforward networks are structures wherein
no cycles are contained in the underlying graph. Typically the network is organized in layers, where a
number of layers, termed hidden layers can be placed between the input layer and the final layer of the
network, the output layer. Networks with more than two layers are termed deep networks.

The goal of training a network is to find weights w, so that the network predicts the output values
for a given input data set. The error can be calculated as the difference between predicted output and
actual output, and the function to compute this error is termed loss function. During training, the error is
minimized by propagating the error backwards, starting at the output layer, to a previous layer, to modify
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weights and bias. This is called backpropagation, and usually gradient descent is applied to modify the
weights.

Recent studies have demonstrated that artificial neural networks can achieve cutting-edge performance
on many learning tasks [102].

2.6.2. Reinforcement Learning

The term reinforcement learning [111, 110] refers to learning a mapping between situations and actions
- which action to execute in a situation - in order to maximize a numerical reward. An major challenge
in reinforcement learning is to find a balance between exploration of new actions, and exploitation of
previous successful actions. As a complete description of methods, structures and algorithms used for
reinforcement learning exceeds the scope of this work, for more information see Sutton and Barto [110],
who give an extensive introduction to the topic.
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3. Related Works

Over the years, soft robot hands and grippers have been designed from a wide range of materials and
actuators. The following sections detail recent developments in the field, in particular in design and
fabrication, and in modeling and control of soft robotic grippers and manipulators.

3.1. Robotic Hands

Inspired by the effortless human manipulation capabilities the robotics research community has always
been interested in the development of multifingered robotic end effectors. In the late 1970s Okada [82]
developed a tendon-driven three fingered hand which was capable of performing a nut-opening task.
A pioneering design featuring an underactuation mechanism between the fingers is the Belgrade/USC
hand [88, 4]. In the 1980s, two hand models developed by Stanford/Jet Propulsion Laboratory (JPL)[95]
and the University of Utah/Massachusetts Institute of Technology (MIT) [51] both represented major
breakthroughs in terms of hand designs [75].

a) Okada hand1 b) USC/Belgrade hand2 c) Stanford/JPL hand3 d) Utah/MIT hand4

Figure 3.1.: Multifingered robotic hands.

Following these advances, numerous multifingered robotic manipulators have been developed by re-
searcher centers all over the world, among them the Deutsches Zentrum für Luft- und Raumfahrt (DLR)
hand(s) [14, 41], the NASA Robonaut Hand [69], the Karlsruhe hand [31], the Gifu Hand [59], the
Barrett Hand [116], the Shadow Dexterous Hand [62] and many others.

Schulz et al. [100, 99] developed a hydraulically driven multifunctional prosthetic hand that can close
approximate the human grasping abilities. This hand is driven by small sized flexible fluidic actuators
[98] and has 15 degreed of freedom. Due to the small size and low weight of the actuators, they are
integrated in the fingers of the hand, making the hand lightweight and compact. The fingers are self
adapting, enabling robust grasping and more natural looking motions than conventional prosthesis.

Osswald et al. [83] explore an approach to integrate a hydraulically actuated hand into a humanoid
robot, and present a high-level controller to connect low-level control of the hand with the rest of a

1Retrieved from http://okada.eng.niigata-u.ac.jp/3finpict.jpg
2Retrieved from https://www.wired.com/images_blogs/photos/uncategorized/2008/09/26/usc_
belgrade_hand.jpg

3Retrieved from https://www.cc.gatech.edu/gvu/people/faculty/nancy.pollard/grasp.html
4Retrieved from http://www.computerhistory.org/collections/catalog/102693567

http://okada.eng.niigata-u.ac.jp/3finpict.jpg
https://www.wired.com/images_blogs/photos/uncategorized/2008/09/26/usc_belgrade_hand.jpg
https://www.wired.com/images_blogs/photos/uncategorized/2008/09/26/usc_belgrade_hand.jpg
https://www.cc.gatech.edu/gvu/people/faculty/nancy.pollard/grasp.html
http://www.computerhistory.org/collections/catalog/102693567


Section 3.2: Design and Fabrication of Soft Robots 19

humanoid robot.
Utilizing an underactuation mechanism, the TUAT/Karlsruhe Humanoid Hand [37, 38], automatically

adjusts grasp shape and force without the need for sensors or feedback.
The hands of the humanoid robot ARMAR-III [2] are actuated with flexible fluidic actuators and

equipped with position sensors on the joints to improve performance in exploration tasks and feedback
[39]. This hand represents a hybrid between a five fingered anthropomorphic hand and a three fingered
gripper.

a) Prosthetic hand. From
[100].

b) TUAT/Karlsruhe Hu-
manoid Hand. From [38].

c) FRH-4 Hand of ARMAR5

Figure 3.2.: Multifingered hands. Hydraulically driven prosthetic hand, underactuated hand, fluidic actu-
ated ARMAR hand.

In applications where delicate handling of objects and safe interaction with humans is crucial, the
use of compliant materials presents a promising approach, and a variety of research projects has been
dedicated towards the design and control of soft robotic hands.

3.2. Design and Fabrication of Soft Robots

3.2.1. Materials and Actuation

In general, the rigidity of materials can be described using Young’s Modulus. While rigid robots are
usually composed of materials with moduli in the range of 109−1012 pascals, the rigidity of biological
systems (e.g. skin, muscle tissue) is significantly lower (104−109) [94]. Rus and Tolley [94] define soft
robots to be "(...) primarily composed of materials with moduli in the range of that of soft biological
materials". In this work, the term soft robots strictly refers to robots that are build of soft materials

Recently, Shintake et al. [106] have reviewed existing soft robotic grasping technologies extensively.
Their work divides gripping technologies into three main categories:

• Gripping by Actuation relies on gripper fingers or elements which bend around the object and
are either actively controlled or exploit passive adaption to object shapes. Since the gripping
mechanism in this thesis is actuation based, the following review will focus mainly on this category.

• Gripping by Controlled Stiffness uses large changes in material rigidity to grasp and hold objects.
Materials used in these types of soft grippers are granular materials such as coffee grounds [11],
which are embedded in an elastic bag. The stiffness of the gripper is varied using vacuum pressure
control enabling the gripper to grasp and hold a variety of objects.

• Gripping by Controlled Adhesion is implemented by regulating the interface attraction between
gripper and object surface.

5Retrieved from http://grasp.xief.net/data/images/armarhand.jpg

http://grasp.xief.net/data/images/armarhand.jpg
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The most widely used materials for soft robots and particularly soft robotic grippers are elastomers
[106, 115, 67, 21, 104] such as silicone rubber. They are easy to fabricate and biocompatible [61], a
property allowing their use in direct contact with humans, such as in medical applications.

a) b) c)

d) e) f)

Figure 3.3.: Soft hands. Tendon-driven: a) 3D printed finger [78], b) biomimetic anthropomorphic
hand [119], c) plush 2D gripper [6].
Fluidic actuated: d) starfish gripper [49], e) quadrupedal robot [104], f) RBO 2 Hand [29].

Actuation of gripper or hand segments can be implemented using a variety of different approaches.

Tendons

In tendon-driven hands, the segments are passive structures, which are controlled by variable length
tendons driven by external motors [94]. While conventional tendon-driven systems are build from rigid
links and joints, a promising approach is to replace some or all of the rigid structures in these systems
with soft materials. Mutlu et al. [78] for example present a monolithic 3D printed finger composed of
thermoplastic elastomer which is actuated by tendons routed through internal channels and demonstrates
full compliance and adaptivity to object shapes.

Xu and Todorov [119] have developed an anthropomorphic hand design which is tendon-actuated and
closely mimics human bone geometry and tendon and muscle placement. They are able to demonstrate
most of the grasp types defined by the Cutkosky taxonomy (Section 2.2.3). Since it contains rigid struc-
tures this hand can however not be considered entirely soft. Furthermore, it is a highly complex system,
making fabrication and control of the hand hardly accessible for non-experts. Bern et al. [6] present
a class of tendon-driven plush robots. The bodies of these robots are build from a textile skin filled
with standard polyester fiber filling and tendons are sewn through the skin and driven by servo motors.
However, these robots are intended as toys for children, and are not suitable for dexterous manipulation.
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Fluidic Elastomer Actuators

A further method to achieve desired deformations of gripper segments is to inflate or pressurize channels
embedded into the soft structure. Despite being among the oldest technologies, it is until today the
most widespread technology to achieve soft robotic actuation. Pneumatic Artificial Muscles (PAMs, also
termed McKibben actuators) are elastomer tubes in fiber sleeves [20] and have been used as muscle-like
linear actuators, often in an antagonistic setup.

Fluidic Elastomer Actuators (FEA) are actuators composed of elastomer chambers which expand when
pressure is exerted by a fluid [106]. FEAs are operated pneumatically or hydraulically and are controlled
by relatively low pressure. Ilievski and his colleagues [49] use embedded pneumatic networks (PneuNets)
of channels in elastomers to build a starfish-like gripper, achieving complex motions with only a single
pressure source. PneuNets are also used in a quadrupedal robot capable of locomotion [104].

The anthropomorphic RBO Hand 2 developed by Deimel and Brock [29] is made of silicone rubber
and uses FEAs enforced with polyester fibers. Their PneuFlex actuators can be manufactured rapidly and
uses cheap and non-toxic materials. The RBO 2 Hand can robustly grasp objects of various shapes, its
performance is evaluated using the GRASP taxonomy [36]. Further designs actuated with FEAs include
silicone polymers and elastomers combined with different materials such as paper or cloth [94].

FEAs are easy to fabricate, robust and use low-cost elastomers. However, the need for a compressor
and pressure-regulating components as well as the risk of failure of the overall system resulting from
leakage limit their scope of application.

Apart from pneumatic and hydraulic actuation, electrically activated actuators composed of electroac-
tive polymers (EAPs) have been used to build robotic grippers, but exhibit a relatively slow actuator
response and produce low stresses [106]. A further actuation approach is shape memory materials: They
incorporate polymers or alloys which after being deformed return to their initial shape in response to a
(usually thermal) stimulus. The application of these systems is restricted by shape recovery speed and
hysteresis effects.

3.2.2. Design and Fabrication

Soft robotic systems are usually created using conventional 3D computer aided design (CAD) software
[94]. These tools are however in general not intended or easy to use for the design of free-form shapes
and complex non-homogeneous systems. As a result, researchers use either 2.5D layered designs, or
develop their own custom design and fabrication tools.

A variety of designs are created either based on human intuition, drawing inspiration from biology
or by evaluation of anthropomorphic anatomical data. Following a different approach, a number of au-
tomated design processes that optimize designs of soft robots have been proposed. Hiller and Lipson
[43] developed a custom finite element analysis (VoxCAD), which is used to generate and optimize the
design of a soft locomotion robot using an evolutionary algorithm. Evolutionary algorithms are also used
by Rieffel et al. [90] to find optimal designs and locomotive gaits for a soft robot. Deimel et al. [30]
optimize morphology and control signals simultaneously for a soft hand, but limit the problem setting to
a simple grasping scenario and a fixed general morphology with variable segment lengths. Inouye and
Valero-Cuevas [50] evaluate the grasp quality of a precision grasp using an anthropomorphic kinematic
layout. This hand is not soft, but their work demonstrates the great potential of optimized hand designs.
They show that optimization techniques are capable of significantly increasing grasp quality of hand de-
signs, even exceeding human performance.

A powerful fabrication method widely used for rapid prototyping and custom shapes is 3D printing.
To fabricate soft robots, 3D printing is used to create negative or positive molds for casting processes
[67] or robot parts, soft or rigid, are printed directly from digital designs [78]. A further efficient and
easy technique to create 3D shapes is casting molds from materials such as silicone rubber [104, 115, 67]
or flexible foam. Shape deposition manufacturing (SDM) applies alternating cycles of material deposi-
tion and shaping and can be used to create shapes and plant structures inside them. Cham et al. [16] use
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SDM to create hexapedal robots and embed servos and wiring inside the robot’s body. To fabricate fluidic
actuators, in addition to SDM, soft lithography [118] represents a method to create internal channels and
chambers for actuation. Using this technique complex patterns on polymer materials can be achieved.

3.3. Modeling and Control Strategies for Soft Robots

Unlike rigid robots, the movements of soft bodies cannot be described by six degrees of freedom. Elastic
materials show effects such as buckling, twisting, stretching, compression and wrinkles. Their motion
can be viewed as having an infinite number of degrees of freedom. Furthermore soft robots are fabricated
from a variety of different materials and actuators. The high compliance and the wide range of design
and actuation techniques makes modeling and controlling soft robots a difficult task, and requires new
strategies for modeling, control, dynamics and high-level planning [94].

3.3.1. Modeling

A common approach to model the kinematics of soft robots is to use a simplified model which assumes
piecewise constant curvature (PCC) [94]. This model has been implemented using different techniques
(e.g. Euler-Bernoulli beam mechanics) [117, 54]. As they integrate robot morphology and actuation
characteristics, these models are highly specific to each robot. Once the model is established, it provides
a mapping from the actuation space to the configuration space and represents a simulation model that
predicts solutions to the forward kinematics problem (Section 2.1.2). The constant curvature model has
been shown to be a good approximation for uniformly shaped manipulators with symmetric actuation
design with minimal torsional and external loading effects [114].

A further modeling approach for more complex shapes is to create a discretized model of the soft
robot and use the finite element method (FEM) to predict deformations resulting from actuation [78,
43, 49]. The SOFA framework6 is dedicated to the development of physics-based simulations. A soft
robots plugin for this framework has been developed by Coevoet et al. [24] dedicated to the modeling,
simulation and control of soft robots. For a cable-driven trunk-like robot fabricated from silicone, they
compare trajectories of the real robot with their simulation models, with an average error of 4.72 mm.
The current implementation assumes linear elasticity which restricts deformations of the material to be
small, therefore large deformations cannot be handled.

The finite element modeling approach used to simulate plush robot behavior [6, 5] is drawn upon in
the soft foam robot modeling software developed in this thesis. A more detailed explanation of the FEM
approach used to model foam robots can be found in Chapter 6.

3.3.2. Control

Similarly to materials and actuators, researchers have often drawn inspiration from biological systems to
derive control strategies for soft robotic systems. As an example, the gait patterns of caterpillars have
been used as an ideal model to control soft robotic locomotion [67], and the precise movements of the
octopus have been adapted to control an octopus arm robot [73].

Thuruthel et al. [114] have recently reviewed control strategies for soft robots and identify three cate-
gories of controllers: Model-based, model-free and hybrid controllers (a combination of both). Previous
works have particularly studied the problem of inverse kinematics (IK) which is concerned with finding
a mapping between actuation and desired configuration.

Model-Based Controllers for Inverse Kinematics

The most widely used and studied approach for soft robots are model-based controllers. One of the
most reliable methods is the use of the constant curvature (CC) assumption and model, and the inversion
of this model to predict actuations. Compared to more complex models, the CC approximation allows

6www.sofa-framework.org

www.sofa-framework.org
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relatively fast computation and is not design specific. Since more complex methodologies are compu-
tationally expensive and require the estimation of many parameters, they have not achieved exceptional
improvements in performance [114]. As an example of model-based control, Saunders et al. [97] model
caterpillar-like soft robots as a series of extensible linkages. For tentacle-shaped soft robots Marchese et
al. [72, 71] and Chen et al. [19] use PCC models to approximate the robot. For soft robots with arbitrary
shapes work by Duriez [32] presents a real-time solution using a finite element method (FEM).

Recent advances in computation and storage capacities promote data-driven controllers as an alterna-
tive approach to solve the inverse kinematics problem.

Model-Free Controllers for Inverse Kinematics

Model-free approaches require the collection of data samples of actuations and corresponding robot con-
figurations, which then serve as training data for a learning method. These data samples are obtained
either using a simulation framework, where given an actuation pattern the corresponding robot config-
uration can be predicted, or are collected through sensor measurements. Both approaches suffer from
inaccuracies. Simulated samples underly uncertainties due to incomplete or incorrect modeling of the
robot system while sensor-based sampling is affected by sensory noise and measurement uncertainty.

Neural networks have successfully been used to learn inverse kinematics on a cable driven soft tentacle
manipulator with 2 degrees of freedom [40]. Rolf and Steil [92] have proposed an efficient exploration
algorithm for creating task space samples for IK learning.

Since they enable the control of soft robots with arbitrary complex kinematics and circumvent the
need to create exact analytical models of the robot, model-free approaches represent a promising method
for highly nonlinear, non-uniform systems, which can be influenced by gravity and/or act in uncertain
environments [114].

Teleoperation

Teleoperation generally refers to robotic systems with a human operator in control, or human-in-the-loop
[107]. First developed for safe handling of radioactive material and space operations, teleoperation is
nowadays used in a variety of applications. An example for a successful medical application is the da
Vinci telesurgical system [42].

Teleoperation of robotic hands is usually achieved by recording the hand configuration of a human
operator, and a mapping process which determines the necessary hand actuation to reproduce the desired
configuration with the robotic manipulator. For grasping or manipulation tasks the human operator can
visually guide the robotic hand motion and represents a high-level controller. Xu and Todorov [119]
for example use a custom data glove to record human hand configurations and operate a biomimetic
anthropomorphic robotic hand.

For soft manipulators, specifically non-anthropomorphic designs, teleoperation is a non-trivial task.
This is due to significant differences between the human and robot hand with respect to geometry, as
well as deformation behavior. In order to teleoperate soft and non-anthropomorphic manipluators, it
is therefore necessary to learn a mapping from user gestures or poses to motor actuations that deform
the robot in the desired manner. Inspiration can be drawn from research on puppeteering in computer
graphics. For example, Seol and colleagues [101] present a method that allows the user to specify how
they wish to move in order to create certain character motions. As an example, they might choose to
swing their arm to move an elephant’s trunk. In the case of [101], an approach based on feature mapping
is used to convert from user motion to character control parameters.

3.4. Challenges and Contributions

Although a large body of research works has been dedicated to developing soft robotic hands, there is
still no system available that allows easy and straightforward design, accessible fabrication and intuitive
control. To create new models of soft manipulators, specialized design tools to create task-specific hands
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are hardly available and require expertise (e.g. to design shapes and layout of fluidic actuators). Using
optimization techniques to automatically derive designs has been investigated for locomotion [43, 90] and
grasping [30, 50]. However, these approaches do not capture the fully unbounded and complex nature
of grasping and manipulation, but optimize grasping within a constrained design domain (e.g. restricted
shapes, planar scenarios). Once a digital model of the design is created, fabrication and assembly of soft
manipulators are often tied to complicated or expensive manufacturing techniques.

Successful grasping and manipulation requires dealing with uncertainty and cluttered environments.
To achieve this goal, a variety of control strategies for robotic hands have been explored in simulation, but
are yet to be transferred to physical systems. Especially traditional robotic manipulators have difficulty
to interact with uncertain environments due to their rigid links and joints.

In contrast, humans exploit the compliance of their hands to perform daily tasks. Entirely soft robots
are therefore a promising approach to achieve robust grasping, and they may even make precise low-
level control strategies unnecessary as they can instead rely on their structural compliance. Still, intuitive
control methods are necessary to successfully perform grasps in real-world scenarios.

Many research groups focus on improving specific abilities of highly complex systems, while eas-
ily fabricated and yet dexterous soft manipulators remain largely out of reach. As long as soft robots
are not inexpensive and available to the novice user their acceptance will not increase, preventing their
widespread use in our daily lives.

To help democratize the process of creating and controlling truly soft and dexterous manipulators, this
thesis makes the following contributions:

• Overall system: The overall system of tendon-driven soft foam robot hands is created, consisting
of various tools and methods to easily and rapidly create and operate such hands.

• Fabrication: A set of methods and procedures to fabricate foam hands, which can be extended to
a variety of shapes.

• Interactive Design and Simulation Tools: A simulation framework which enables users to rapidly
prototype foam robots of arbitrary shape and intuitively test motion capabilities.

• ROS-based Control Framework: A modular software package to control foam robots.

• Learning IK on Physical Robot: A learning-based approach to solve the inverse kinematics of a
foam hand, which uses data samples obtained from a physical foam hand robot.

• Teleoperation: An intuitive approach to control foam hands using a CyberGlove.
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4. Soft Foam Robot Hands

Tendon-driven soft foam robot hands are built of a foam core, covered by a textile skin. They are actuated
by servo motors which pull on tendons that are sewn through the textile skin.

The development of these robot hands is motivated by the need for a lightweight and low cost soft
robotic hand, which is easily built and controlled. A major goal for these robots is therefore that their
design, fabrication and control should be accessible in terms of complexity, cost efficiency and intuitive
operation. To promote this accessibility, users have to be provided with easy and straightforward tools to
create and control task-specific robot hands.

In summary, the goal of this work is to consider the domains of fabrication, design and operation, and
to develop, test and evaluate the necessary software, methods and processes to easily and rapidly create
and operate this new type of soft foam robot hands.

Fabrication

The original fabrication process (described in Section 5.1) to create foam hands is a manual procedure,
requiring a multitude of different casting steps and limiting hand designs to foam recreations of physical
objects. In Section 5.2, this fabrication process is extended and improved to enable the fabrication of
arbitrarily shaped hands and facilitate the procedure.

Design

Before a foam hand is fabricated, a user must decide on the design of the manipulator. The design of a
hand is determined by the hand morphology, which is characterized by the number and shape (length,
thickness) of the fingers, and the shape of the palm. A further aspect is the rest pose of a foam hand:
This is the pose the urethane foam compound is cast into (e.g. a flat, stretched-out pose, or a pose where
the thumb is opposing the fingers). A foam hand design is additionally specified by the tendon routing,
which determines the number of tendons that are used and their placement on the hand.

Traditionally, robotic hands are manually designed from scratch by experts. However, since foam hands
are composed of entirely soft materials, it is not easy and intuitive to predict the deformation of a hand
resulting from tendon actuation. Achievable poses and motions depend on the hand design (morphology,
rest pose, tendon routing). It is therefore desirable to have tools to investigate and analyze a hand design
before the physical prototype is built, and thereby create designs tailored to the desired task.

To explore motion capabilities of a hand design and shorten design iteration cycles, an interactive
simulation framework is developed, validated and applied in Chapter 6.

Operation

To be able to grasp and manipulate objects with a foam robot hand, appropriate control mechanisms are
necessary. Apart from being efficient in terms of speed, accuracy and computational resources, a hand
control method should additionally be intuitive, so a user can easily operate the hand. In Chapter 7, a
modular control framework based on ROS is developed and an intuitive teleoperation method based on
fingertip positions is explored. Different learning based techniques to solve the inverse kinematics of
foam hands are furthermore tested and compared in simulation.



26 Chapter 5. Fabrication of Soft Foam Robot Hands

5. Fabrication of Soft Foam Robot Hands

This chapter presents a set of fabrication techniques and mechanisms to create a soft foam robot hand,
which can be adapted for the creation of a wide variety of foam robots. Section 5.1 describes the manual
fabrication process, which was established previous to this work. A set of methods and procedures are
proposed to improve and extend this fabrication process (Section 5.2), and effects of different tendon
routings and rest poses of a foam hand are explained (Section 5.3)

5.1. Manufacturing Foam Robot Hands

Figure 5.1.: Fabrication Process: 1) Cast of human hand in alginate, 2) Remove hand from alginate mold,
3) Pour plaster of paris into alginate mold 4) Carefully remove plaster of paris cast from alginate mold,
5) Cover one half of plaster model with clay and cast the other half from silicone, 6) Remove clay and
fill second half with silicone, 7) Remove plaster model from two-part silicone mold and clean mold, 8)
Cast foam hands using the master two-part silicone mold, 9) Final result. Image by Jonathan King.

The original fabrication process shown in Figure 5.1 was already established by the beginning of this
thesis work, and a first prototype shown in Figure 5.2 was already built. This thesis work addresses
several limitations of the first prototype, Section 5.2 details the extensions and improvements that were
applied to the fabrication process and the physical robot.

The general goal of this type of robots is to achieve ’true’ softness, while maintaining the ability to
perform a diverse set of tasks. A foam robot dexterous manipulator which is capable of performing
complex poses and actions is therefore an ideal candidate to demonstrate the potential of this class of
foam robot systems. To be ‘truly’ soft, the robot is constructed of only soft materials: foams, knitted
textile skins, fibrous tendons, and flexible PTFE tubes for cable routing. Rigid mechanical components
are housed away from the hand, and future systems could embed these structures inside the foam to a
degree that their hardness is not noticeable. A further approach is to even replace all rigid structures by
soft actuators (e.g. cost effective artificial muscles [81]).

Apart from building soft hands, the primary goal of this work is to develop a fabrication methodology
which is easily accessible to non-experts. This requires the fabrication methodology to be low-cost, and
to rely on easy to follow casting techniques for which step by step instructions can readily be found in



Section 5.1: Manufacturing Foam Robot Hands 27

online video tutorials. The mechanical parts used for the robot are off-the-shelf components, 3D-printed
parts, and laser cut acrylic, and are therefore accessible to the novice user.

Creating the Mold

An initial hand pose, referred to as hand rest pose is determined by user intuition. To cast an anthropo-
morphic hand model, the mold is created using well-known silicone “life-casting” techniques for which
the process is shown in Figure 5.1:

1.-2. A negative of the hand model is created by keeping the user’s hand in a bath of alginate. Alginate
sets in less than 5 minutes, minimizing the time the user has to hold still, and is safe for continuous
exposure on human skin.

3.-4. Plaster of paris is poured into the alginate mold to create a positive hand model.

5. Once the plaster model is removed from the mold, clay is manually applied to the plaster model,
in order to cover one half of the model in clay to create a two-part silicone mold. Depending on
the hand shape, this process can take several hours and requires careful design of the parting line
of the two-part mold, in order to guarantee that positive hand models can later be easily removed
from the mold. Silicone is poured onto the model to create the first piece of the two-piece mold.

6.-7. Once the silicone has set, the previously applied clay is removed, and the second piece of the
silicone mold can be cast. This is the final mold creation step, and the two-piece silicone mold can
now be used to cast foam hands in it.

8.-9. The foam core in the shape of a hand is cast using the master two-part silicone mold.

Casting Foam Hands

Figure 5.2.: Annotated assembly of
the first foam robot prototype. Image
by Jonathan King.

After applying a mold-release agent to the mold, the final foam
hand is cast using a two-part urethane foam compound1. A two-
part silicone mold and the foam hand cast in it are shown in Fig-
ure 5.1 9. Urethane foam is available in a variety of densities to
choose from depending on the user’s application. For the foam
hands in this work, FlexFoam-iT! X was used as it represents a
good trade-off between strength and compliance. A close exam-
ination of the foam hands produced by this process showed that
the deformation behavior of the foam is not always intuitive. As
an example, slightly thicker sections of the palm are much stiffer,
while slightly thinner sections of the fingers are much softer. To
achieve very consistent results from cast to cast, a laboratory mix-
ing machine is helpful, but not absolutely necessary.

Once the foam hand is fabricated, a simulation model of the
physical hand can be obtained by 3D reconstruction using Au-
todesk ReMake2 to generate a surface mesh from approximately
50 images of the hand taken with a smartphone.

The described casting process enables the creation of foam
hands from a human hand in a chosen rest pose, while the cost
of the mold is approximately $50, and only a few dollars for each
foam cast afterwards. However, many tedious and time consum-
ing casting steps are required, and the described method can only
recreate positive models of hands. A time and cost efficient fab-
rication process is an important motivation for more researchers

1Smooth-On FlexFoam-iT! Series
2https://www.autodesk.com/products/remake/overview

https://www.autodesk.com/products/remake/overview
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to further experiment with this type of robots. Additionally, it is not intuitive to predict deformation
behavior of a foam hand. To avoid unwanted behavior, the desired hand geometry should be carefully
considered.

Gloves and Sewing Tendons

After the foam core is cast, a textile glove is fit and laminated onto it using spray-on upholstery adhesive.
Tendons for actuation can then be sewn into the glove in arbitrary patterns. For anthropomorphic hand
shapes, off-the-shelf gloves can be used, and for general soft robots, sewn skins from cut felt can be
utilized. As a further alternative, textile skins can be custom knit by automatic processes [74]. This work
enables custom gloves to be knit in under an hour and lets the user choose from various materials. PTFE
coated braided fishing line serves as tendons, and the tendons are sewn into the glove with a typical
sewing needle, and fixed at the ends with finishing knots.

Robot Chassis

The gloved hand is attached to a laser-cut acrylic base using hot-melt glue. To minimize friction, the
tendons are routed through PTFE tubes and connected to servo driven winches. The PTFE tubes can be
fixed with cable ties at additional mounting points on the acrylic base. The assembled robot is shown in
Figure 5.2.

Since the hand is glued to the platform, this design does not allow to switch between hand prototypes
without ripping the hand off the acrylic plate and thereby damaging or destroying the foam core. A
further limitation is caused by the routing of tendons from the hand to the motors: The motors are placed
in a perpendicular plane with respect to the hand, leading to a significant redirection of tendon forces, in
this case from a vertical to a horizontal direction. This causes detachment of the glued glove from the
foam body and of the foam body from the acrylic plate.

5.2. Extension and Improvements

While the first foam robot hand prototype was already capable of complex posing and actions (shown in
Figure 7.7 left and Figure 7.8 top), several issues had to be addressed to improve its performance. The
following sections each first describe a limitation of the original design and then explain the measures
that were implemented to resolve the issues.

Figure 5.3.: Foam manipulator rest poses. a (first prototype) and b (flat hand) are fabricated by taking
casts of human hands, while c (four fingered hand) and d (mold and foam cast of planar gripper) are
non-anthropomorphic designs fabricated from digital 3D models.

Mold Fabrication

The fabrication process described in the previous section requires a physical hand model (a human hand),
and involves several casting steps (alginate - plaster - silicone).
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To fabricate foam bodies of arbitrary shapes, a 3D model of the desired geometry is required. This
model can be obtained by either 3D scanning the desired physical model, or using software to create 3D
models.

Since conventional CAD software does not provide easy and intuitive design tools of freeform shapes,
SculptGL3, a free online sculpting tool, is used to create a 3D model of a non-anthropomorphic four-
fingered gripper, which is utilized to create the foam hand shown in Figure 5.3 c.

To reduce the necessary fabrication steps, either CAD software or automatic mold generation methods
[120, 66] can be used to directly create mold models that can be machined or 3D-printed, using filament-
based printers or stereolithography. This technique is applied to create the mold depicted in Figure 5.3
d, which is used to cast a planar gripper.

For general foam robots, if a digital 3D model is available, re-usable 3D-printed molds represent a rapid
and cost-effective fabrication method to create the foam body.

Platform Design

The design of the acrylic platform, shown
in Figure 5.2 promotes a detachment of
the glued glove from the foam hand, and
of the foam hand from the platform. This
is caused by the perpendicular placement
of the motors, which leads to the tendons
being pulled more towards the side than
in a straight direction.

Therefore a new platform is designed
using CAD software. Similar to the pre-
vious design, the platform components
are off-the-shelf parts (screws, bolts and
nuts) and laser-cut acrylic. Tendons are
routed straight from the hand through
routing points in the platform to prevent
the detachment of glued parts resulting
from actuating tendons in a perpendicular
direction. The new platform is shown
in Figure 5.4, with the sewn part of an
exemplary tendon actuating the thumb
marked with a dashed blue line. The
tendon is routed through a PTFE tube,
highlighted in orange, and interfaces with
a winch, which is attached to a servo
motor. In this new design, the top plate
can easily be removed and replaced.
This allows to switch quickly between
different foam hands to test different
prototypes, as shown in Figure 5.5. The
new platform design further allows for
arbitrary tendon connection points and
therefore enables more complex routings.

Figure 5.4.: Annotated assembly of a foam hand. A single
tendon is highlighted in blue, a dash line represents the por-
tion sewn into the glove. The corresponding PTFE tube is
highlighted in orange.

3https://stephaneginier.com/sculptgl/

https://stephaneginier.com/sculptgl/
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Interactive and Iterative Design in Simulation

A digital representation of the hand model, which is required to explore tendon routings in simulation,
is only available from 3D scanning the physical, fabricated hand. Additionally, no easy and intuitive
software is available to create and test tendon routings for a hand model rapidly and predict deformations
and motion capabilities of a hand model.

In order to enable rapid design cycles, software was developed to explore hand deformations and tendon
routings in simulation, without the need to first build a physical prototype. The developed simulation
modules are described in Section 6.2.

Figure 5.5.: Due to the modular design of the robot platform, foam gripper prototypes can easily be
switched to allow rapid testing of prototypes. An anthropomorphic design is removed from the platform
(left) and replaced by a four-fingered gripper (right).

5.3. Effects of Different Tendon Routings and Rest Pose

Design 1 Design 2

Figure 5.6.: The tendon configuration impacts
the realizable poses of the foam robot hand.
Left: Initial design, flexor and extensor. Right:
Revised tendon routing, improving thumb mo-
bility.

Since foam robots consist of a continuous structure in-
stead of the links and joints of traditional robots, the
variety and complexity of achievable poses largely de-
pends on the tendon routing and the rest pose. Differ-
ent rest poses and the effects of different routings can
be explored in simulation (Chapter 6), before they are
applied to a physical hand.

Tendon Routing

A major weakness of the design of the initial proto-
type (Figure 5.3 a) in terms of motion capability is
the inability of the thumb to abduct and oppose the
palm. This is primarily caused by an inefficient ten-
don routing with two antagonistic tendons as shown in
Figure 5.6 on the left.
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For a second prototype, the routing was changed according to the right column of Figure 5.6, which in-
creased the complexity of feasible motions of the thumb significantly. With the revised routing, different
tendon activations enable either lateral or opposing grasps as shown in Figure 5.6.

Rest Pose

The shape of a foam robot hand is determined by the hand morphology and the rest pose. A hand
morphology is composed of the number of fingers, lengths of individual fingers, thickness of fingers
and the shape and thickness of the palm. It is important to consider the aspects of this morphology:
Relatively thick palms and fingers may lead to (possibly undesired) localized stiffening. Undesired
features of a hand morphology can be mitigated by iteratively changing the hand designs and testing
them in simulation, which reduces the need for iteration of the physical prototypes.

Once the morphology is determined for a foam robot, a further design aspect is the rest pose the foam
is cast into, e.g. a cupped rest pose where the fingers are slightly curled, or a flat hand rest pose where the
fingers are stretched out. Designs with different morphologies and rest poses are shown in Figure 5.3.

Observing the physical hand moving and posing, it becomes apparent that additional to hand mor-
phology, the rest pose of the hand design clearly pre-defines the range of motion independently of the
tendon arrangement. As an example, for a flat hand pose it is difficult to achieve poses where the fingers
oppose the palm, whereas a cupped rest pose is already close to the desired pose and requires only small
tendon contractions to achieve such a pose. On the other hand, for a cupped rest pose it is not possible
to fully stretch out fingers into a flat hand, because independent of the tendon routing, fingers cannot be
lengthened by contracting tendons.

Unlike the tendons, the hand rest pose is fixed and cannot be changed after fabrication, it is therefore
important to evaluate rest pose geometries in simulation before fabricating the actual foam model.

Once a hand morphology is chosen for a hand, it depends on the underlying task which rest pose is
suitable. This particularly applies to anthropomorphic hand geometries. From the fabricated prototypes,
one observation is that human-like hands with flat rest poses have a problem grasping large objects such
as a tennis ball. The fingers are not able to curl around the object and oppose the palm. However an
advantage of flat rest poses over curled rest poses is that they do not require extensor tendons running on
the back of the hand. Instead, due to the geometry and the elasticity of the material itself, once tension
is released from a flexor tendon, the compliant material restores the hand’s original pose. Without the
need of extensor tendons, more tendons can be added to the front of the hand to enable more complex
motions.
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6. Interactive Design and Simulation
Framework

Large elastic deformations and infinite number of possible tendon routings make it difficult to predict the
behavior of designs without the support of design tools. Approaches that can automatically create effi-
cient designs based on functional goals are still a long way from being able to address to full complexity
of all design domains [3]. Therefore the following section describes methods and tools that support the
manual design of soft foam hands.

6.1. Modeling Hand Deformation

To predict deformations of foam hands resulting from tendon contraction, an existing simulation frame-
work which implements a finite element model was extended to interactively simulate foam hands. This
framework is based on the work of Bern et al. [5], who animate and design tendon-actuated plushies.
Adapting their work, the contractile elements are modeled as unilateral stiff springs, and the deformed,
statically stable (minimum energy state) configuration of the model is referred to as x. In x, the 3D co-
ordinates of all nodes in the simulation mesh are stored. X describes the undeformed configuration, also
termed rest configuration. The total deformation energy of the system is described by

E = E f oam +Econtractile +Epins (6.1)

with E f oam denoting the energy resulting from the deformation of the simulation mesh, Econtractile is the
strain energy of contractile elements, and Epins models the behavior of stiff springs, by which a small
number of simulation nodes are connected to world anchors in order to eliminate rigid body modes.

The forces acting on each node in the simulation mesh are given by the gradient of this energy with
respect to the nodal degrees of freedom

F =−∂E
∂x

(6.2)

and the force Jacobian is described by the Hessian of this energy

∂F
∂x

=−∂ 2E
∂ 2x

(6.3)

Similar to the system deformation energy, the forces acting on each node can be divided into forces
generated by mesh deformation, contractile elements and pins.

F = F f oam +Fcontractile +Fpins (6.4)

Foam Simulation Model

The elastic behavior of the foam is modeled using linear finite elements with a compressible Neo-
Hookean material model. The deformation gradient of each element e in the simulation mesh is described
by F = ∂xe

∂Xe = dD−1. Columns in d store edge vectors: de
i = xe

i − xe
0, where xe

j describes the position
of the j-th node of element e in world coordinates. D defines a matrix containing rest configuration
quantities.
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For each element, the energy density is then given by

Ψ(x,X) =
µ

2
tr(FTF − I)−µ lnJ+

κ

2
(lnJ)2 (6.5)

with the identity matrix I, material parameters µ and κ found in Table 6.1, and J = detF . Integrating
Section 6.1 over its domain yields the elastic energy stored by an element, and the elastic energy of foam
E f oam is computed by summing up element energy contributions of all elements in the simulation mesh.

Table 6.1.: Material properties used in foam simulation model.

ρ [kg/m3] µ [Pa] λ [Pa]
160 1.2e6 2e6

Pins

A surface mesh of a simulated foam model typically consists of 1000 - 2000 nodes, depending on the
model geometry. To anchor the simulated foam model in space, pins (zero-length springs) are attached to
a small number of nodes, defined by the user. In the physical system, these pins correspond to a physical
fixation of the foam, e.g. the attachment at the bottom of a foam hand to the base.

Tendons

Figure 6.1.: Following the approach of Bern et al.
[6], a finite element simulation is used for foam
robot hands, where tendon contractions result in
contraction of the mesh along the tendon routing.
Equilibrium poses before and after contraction are
shown. Building on this previous research, simula-
tion parameters are identified and evaluated to match
manufactured foam hands (Section 6.3).

Tendons are modeled as contractile elements
which implement the contraction of a tendon by
changing the rest length of the underlying uni-
lateral spring model. A contractile element is
defined as a piecewise linear curve with two
endpoints (xs,xt) and n intermediate vertices
(x1, . . . ,xn). All points of contractile elements are
assumed to be bound to nodes of the simulation
mesh.

The initial rest length l0 of a tendon is defined
by the sum of distances between the vertices as

l0 = ‖xs−x1‖+
n−1

∑
i=1
‖xi−xi+1‖+‖xn−xt‖ (6.6)

The contraction level ac ∈ [0,1] of each tendon
describes the contracted length as lc = l0 ·(1−ac).
In the following, the word routing refers to the
choice of endpoints and intermediate vertices of
each tendon.

Unilateral strain energy of a tendon is modeled as a piece-wise C2 polynomial, U(Γ) as a function of
the deformation Γ. This function is zero below a negative threshold, quadratic above a positive threshold,
and cubic in between. More details of this modeling approach are found in [5].

The resulting deformation for a tendon routing with the contractions ac is calculated by minimizing the
total energy of the system using a direct sparse LDLT Cholesky solver from the Eigen library. Figure 6.1
shows a four-fingered hand mesh in equilibrium before and after contracting a tendon.

In order to provide the user with an interactive and intuitive simulation tool to explore the capabilities
of foam hands, several simulation modules were developed and are described in Section 6.2.
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To identify simulation parameters and justify the usage of this simulation model, a motion capture
experiment was conducted (Section 6.3), where simulated hand poses are compared to physical hand
poses.

6.2. Simulation Modules

To provide the user with an interactive and intuitive simulation tool to explore the capabilities of foam
hands, several simulation modules were developed and are described in this section. The framework is
programmed in C++, graphical renderings and user interfaces use OpenGL1 and nanogui2

6.2.1. Interactive Creation of Tendon Routings

Once a triangulated mesh3 is loaded into the simulation, tendon routings can be intuitively created by
selecting nodes on the mesh. Startpoint, intermediate points and endpoint nodes are fed to an A* path
planner (Appendix A.2), which returns the shortest path along mesh edges on the mesh surface as tendon.
After creation, tendon routings consisting of one or several tendons can be saved an reloaded into a
simulation sessions.

a b

e

c

fd

Figure 6.2.: Nodes of the simulation mesh are selected (a-c), and a tendon is automatically routed through
the selected points (d). The tendon can be actuated interactively by dragging a slider (e-f).

When a tendon is created, the user is provided with a simple slider to control tendon actuation, rang-
ing from 0% (no contraction) to 100% (tendon fully contracted). At this point it should be noted that
contracting a tendon by 100% is not possible for a physical robot as it would imply a tendon length of
zero. In simulation however, the contraction level imposes a constraint for the energy minimization, for
which the solver attempts to find a stable minimum energy state, resulting in a non-zero tendon length.

Tendons can be contracted using the sliders, and the resulting deformation is rendered within the
graphical user interface, shown in Figure 6.2 e-f. While this enables the user to explore the motion
capabilities of a hand design, desired tendon configurations and actuations can also be stored as motion
keyframes. By looping through interpolated tendon activations, motion sequences are rendered on the

1OpenGL, https://www.opengl.org/
2nanogui, https://nanogui.readthedocs.io/en/latest/index.html
3TetGen, http://wias-berlin.de/software/tetgen

https://www.opengl.org/
https://nanogui.readthedocs.io/en/latest/index.html
 http://wias-berlin.de/software/tetgen
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screen. This provides the user with the ability to create, save and reload complex hand posing and
motions.

6.2.2. Interaction with Physical Robot Hand

A foam robot hand can be operated by sending tendon contractions from the simulation framework to the
corresponding servo motors. The communication between simulation and motors is implemented using
the modular ROS software stack described in Section 7.1. Tendons are actuated within the Windows-
based simulation and the activation levels are sent as a serialized message to the ROS network via TCP/IP.

6.2.3. Fingertip Control and Pose Generation using a Cyberglove

To deform a hand mesh and create meaningful poses in simulation (e.g. grasps), an intuitive approach
is to map a user’s hand configuration to the simulated hand mesh. For this purpose, a user poses the
hand in the desired configuration, and this configuration is recorded with a CyberGlove4 featuring 22
resistive bend sensors. Since the simulation model does not contain joints or links, only the 3D position
and surface normal of the fingertips is used to map between physical hand an simulation model. For this
purpose, on each fingertip that the user wishes to control, one surface triangle (3 nodes) is selected. The
centroid of this surface triangle represents the position of a simulated fingertip and the surface normal
gives its orientation. Positions and orientations use the coordinate system at the base of the palm as
reference, therefore the mapping is invariant to the wrist pose.

x

y

zx

y

z

Figure 6.3.: Mapping between positions and surface normals of the human fingertips (right) to triangles
on a three-fingered mesh (left). Three surface triangles were selected on the mesh and are controlled
using the thumb, index and middle finger. The fingertips of the ring and pinky (green) are not used, but
can be included to control a fourth and fifth finger. The coordinate systems of simulated and physical
hand are shown at the base of the palm.

The current positions of the operator’s fingertips and the corresponding surface normals are extracted
using the CyberGlove SDK, and sent via TCP/IP to the simulation framework. In simulation, the user can
select the number of fingertips he wishes to control (using one glove, up to 5 fingertips can be mapped),
and selects the corresponding triangles on the simulation mesh. The selected triangle nodes are then

4http://www.cyberglovesystems.com/

http://www.cyberglovesystems.com/
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moved and pinned to the corresponding 3D position in simulation, dragging the finger into the desired
configuration.

Figure 6.3 depicts the mapping between the human fingertips (right) to triangles on a three-fingered
mesh (left). Three triangles were selected on the mesh and are controlled using the thumb, index and
middle finger. This mapping technique can be used to move arbitrarily shaped meshes into a desired
configuration.

A posing sequence using this process is shown in Figure 6.4. For this sequence, the fingertips of the
thumb, index and middle finger were used to manipulate a three-fingered mesh.

Figure 6.4.: Teleoperated posing of a three-fingered simulation mesh using a CyberGlove. The fingertips
of the thumb, index and middle finger are mapped to selected surface triangles on the mesh.

6.3. Validation using Vicon Motion Capture

In this section the accuracy of the simulation framework is quantified by comparing fingertip trajectories
of a simulated and a physical foam robot hand. The deformations of the foam are tracked using a
Vicon Motion Capture system. Predicted deformations from simulation, are then compared with the
corresponding actual deformations on the physical robot.

Four-Fingered Foam Hand

The physical foam robot hand used in this experiment is a non-anthropomorphic hand with four fingers
and 10 tendons. Each finger is controlled by a pair of antagonistically routed tendons acting as flexor
and extensor. In order to introduce abduction and adduction motions, two additional tendons were placed
on the left and right side of one finger. As reference in simulation, the same geometry was used, with a
slightly coarser mesh (980 nodes) compared to the mesh that was used to print the mold of the physical
foam hand. This mesh size was chosen to allow interactive simulation in our user interface.

Motion Capture Experiment

Fingertip trajectories of the four-fingered foam hand are recorded using a Vicon motion capture system
with 12 cameras. To get a robust estimate of the position and to prevent occlusions, four markers are
placed around each fingertip as shown in Figure 6.5. For registration purposes we additionally place
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Figure 6.5.: Left) Four finger hand with markers. Right) Simulation mesh of the same hand model. The
simulation mesh is anchored in the world coordinate system by pins on the bottom nodes of the mesh.

markers on the platform on which the hand is mounted and alongside each finger. After the experiment
the recorded markers are registered on the 3D mesh. This is done using a standard ICP algorithm5

that minimizes the distance of points from the mesh and the markers with respect to each other. Since
the markers themselves are not exactly aligned with the surface of the foam, it is difficult to infer the
exact position of the fingertip using only the position of the markers. Therefore each fingertip position
~p j with j = {1, . . . ,4} is defined as the mean of the corresponding markers k with k = {1, . . . ,4}, with a
distal offset of 5mm normal to the plane spanned by the four markers:

~p j =
1
4
·

4

∑
k=1

~p jk +0.005 · ~n j (6.7)

The RMS error describing the euclidean distance between the aligned point clouds of our ICP registration
was 4.05mm.

Table 6.2.: Material properties used in FEM Simulation

ρ [kg/m3] E [Pa] ν

160 3e6 0.25

In terms of material parameters for the FEM simulation (mass density ρ , Young’s modulus E, Pois-
son’s ratio ν) the applied values can be found in Table 6.2.

The goal of this experiment is to give an estimate of how well the simulation can match reality. 5 trials
were run in which each tendon is repeatedly contracted from 0% to 50% of its rest length in steps of
10%. The tendon rest length is distinct for each tendon and is computed in simulation.

5MATLAB, MATLAB Toolbox For C3Dserver https://www.c3d.org/appmatlab.html

https://www.c3d.org/appmatlab.html
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Results and Discussion

A motion sequence of a contracting extensor ten-
don moving the simulated hand through the way-
points at 10%, 20%, 30%, 40%, and 50% contrac-
tion is shown in Figure 6.6. The motion is dis-
played from three different camera views. The fin-
gertip trajectories recorded by the Vicon system are
marked as dotted lines, with larger green points at
the fingertip positions recorded at the tendon con-
traction waypoints (10%, 20%, 30%, 40%, 50%).
In each frame, fingertips of the simulated hand are
marked as red circles. From this sequence it can
be observed that trajectories of the simulated and
physical fingertips largely coincide.
The resulting error between fingertip positions cap-
tured with the Vicon system and from simulation
is depicted in Figure 6.7. The mean position er-
ror for all fingers including all activation levels is
0.626cm. For each individual finger median error
and the quartile deviations are similar at all con-
traction levels. This suggests that even large defor-
mations do not significantly decrease the accuracy
of the simulation.
In general we identify the following sources of po-
sition errors:

• small deviations between tendon routings in
simulation and reality

• tendon slack

• registration errors in motion capture system

• friction between tendon and glove

• slight relative movements of foam core and
glove during actuation.

Figure 6.6.: Simulated hand and motion cap-
ture trajectories for an extensor tendon moving
from 10%(top) to 50%(bottom) tendon contraction,
viewed from three different camera perspectives.
Fingertip positions recorded by the Vicon system
at each contraction level are averaged over all five
trials and marked as green dots, fingertip positions
of the simulation model are marked as red dots.

The significant difference in position error between finger 1 and the remaining fingers (Figure 6.7) sug-
gests that the physical routing of at least one tendon on finger 1 differed significantly from the simulated
routing.

Most of the described errors can be mitigated during fabrication of the hand, for example by using
teflon-coated tendons or different gluing techniques. The accuracy of the manual sewing procedure to
realize the tendon routings on the physical robot could be enhanced by embedding 3D-knitted tendon
waypoints in the glove using automated knitting processes [74]. A further approach could embed routing
points in the form of flexible hooks directly in the foam, e.g. by designing cavities in the 3D printed
mold, and placing hooks in these cavities before casting the foam.

The results of this evaluation suggest that the model predicts foam deformations sufficiently well and
can be applied to explore tendon routings and create desired target poses (Section 6.4). The results
additionally encourage the application of simulation based learning of mapping from desired pose to
tendon actuation (Section 7.5).
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Figure 6.7.: Position Error between simulated and captured fingertip positions of finger 1-4 at respective
contraction levels.

6.4. Application: Human Subject Study on Tendon Routing
Design Ability

Using the developed simulation framework, a user study was conducted to determine the quality of manu-
ally designed tendon routings for foam hands. The ability to easily create foam hands and tendon routings
that can achieve desired poses is an important aspect to make soft foam hands accessible to everyone,
which is a major goal of this work. Additionally, this study serves as a benchmark for the automated
design of foam hands [3]. In this work, the study results are compared to automatically generated tendon
routings in order to evaluate the quality of the automated design process. The following sections describe
the questions and purpose of the study and the experiments that were conducted. Furthermore, the results
are presented and discussed.

6.4.1. Questions

The goal of this study is to quantitatively measure human ability to manually create tendon routings for
a desired hand pose of a foam hand.

The central questions explored in this study are:

• How good is the quality of human designed tendon routings?
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• Can anyone design tendon routings?

• How do manual tendon routings compare to automatically generated designs?

6.4.2. Experiments

Figure 6.8.: Screencast of a user creating an exemplary tendon routing. The user’s task is to place and
contract tendons to match the target hand pose (depicted in darker colors). The current pose of the
simulation mesh is shown in bright colors. Within the sequence, the user places four tendons on the
mesh and select contraction levels using the slider toolbar on the top right.

10 participants were asked to create tendon routings and corresponding actuations to move a simulated
hand into desired configurations. The test subjects were asked to confirm that they are not and have
not been working/researching in the field of soft robotic hands before participating in the study. For the
simulated hand mesh, a cupped rest pose shown in Figure 6.9 was chosen to serve as initial mesh. This
mesh was created using the automatic hand mesh creation process described in Bauer [3].

Figure 6.9.: Cupped rest pose of a five fingered simulation mesh. This rest pose was used in the user
study.

14 Target grasps from the cumulative taxonomy (Section 2.2.4) were recorded using a CyberGlove
and the mapping process which is described in Section 6.2.3. The recorded grasps are transferred to
the simulation poses shown in Figure 6.10. For each grasp, the left image shows the target grasp with
a CyberGlove, and on the right, the configuration of the deformed simulation mesh is shown. The
configuration of each finger is characterized by the 3D position of the fingertip and the surface normal
of the fingertip, depicted as a black arrow. Positions and normals for each pose are computed using the
virtual human hand model provided by the CyberGlove SDK. From the 14 recorded grasps, 3 grasps
were selected as target poses for the study (the number in parentheses refers to the number of the grasp
in Figure 6.10):

1. Lateral Tripod (3.2)

2. Medium Wrap a (1.1a)

3. Prismatic 3-finger (6.3)
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The participants were asked to create a tendon routing within 10 minutes per pose, and they could use
up to 10 tendons per pose. The graphical user interface is shown in Figure 6.8, where a user is recreating
an exemplary target pose by adding and contracting tendons. The target pose is depicted in gray, and the
current pose of the hand mesh is shown in bright colors.

6.4.3. Results and Discussion

To quantify the quality of a tendon routing, for each finger the euclidean distance between desired and
current fingertip is computed. This position is given by the position of the centroid of the selected surface
triangle on each fingertip. Additionally, the fingertip surface normals of the target pose and the current
pose are compared by calculating the angle between the two normals. A complete list of the study results
(images of poses, distance error and angle between normals) can be found in Appendix A.3.

Over all poses and for all test subjects, the average distance error between the created and the target
fingertip was 1.378 cm, and the average angle between normals was 64.6 degrees.

The high deviation between surface normals of fingertips can be attributed to the computation method:
Since only the surface normal of one triangle is considered, the result can be heavily influenced if a
tendon is anchored close to the triangle. If a tendon is routed nearby this triangle, a contraction of the
tendon will significantly change the orientation of local triangles. This could be mitigated by instead us-
ing the average orientation of surface normals of several triangles on the fingertip of the mesh. A further
approach would be to compare contact points and contact forces of the hand mesh with a (simulated)
grasped object. However, this requires the implementation of a contact simulation to model the interac-
tion between soft foam hands and rigid or deformable objects. Such a simulation is not available at this
time.

Figure 6.11.: Mean position error of tendon rout-
ings designed by human test subjects. For each tar-
get pose, the distance between the fingertips of the
target pose and the pose created by each test sub-
ject is computed. For each test subject, the mean
error of each fingertip is computed over all 3 target
poses.

Figure 6.12.: Mean orientation error between tar-
get and achieved surface normals on fingertips. For
each target pose, the angle between the surface nor-
mal of fingertips of the target pose and the pose cre-
ated by each test subject is calculated. For each test
subject, the mean angle of each fingertip is com-
puted over all 3 target poses.
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Figure 6.13.: Target pose and two examples of poses created by test subjects for target pose 1 (Lateral
Tripod).

The distribution of position errors for the five fingers of the hand (1 - thumb, 2 - index, 3 - middle, 4 -
ring, 5 - pinky) are depicted in Figure 6.11, the distribution of orientation error is shown in Figure 6.12.

Taking into account the finger lengths of the simulated hand (10-12cm), the achieved mean position
error of 1.379cm accounts for 11% - 14% of finger length. It is therefore relatively low, and from the
images in Appendix A.3 it can be observed that the poses created by the study participants qualitatively
match the target hand poses closely. These results suggest that with the provided simulation tools, users
can intuitively and quickly create tendon routings and actuation levels that lead to a qualitatively good
match with a desired target pose. It can further be noted that some test subjects seem to have a better
intuition than others about the mesh deformations that they are creating when placing and contracting
a tendon. Figure 6.13 shows two examples of poses created by test subjects for target pose 1 (Lateral
Tripod). While the design by test subject 4 (highlighted in red) matches the target pose very closely, the
pose created by test subject 5 (highlighted in yellow) deviates noticeably from the target. Especially in
thumb and middle finger configurations this divergence is evident.

6.4.4. Limitations and Outlook

In order to further evaluate the study results regarding success/failure of grasps, the designed routings
have to be transferred to a physical foam hand system. The following characteristics are identified as
requirements for this transfer:

• Tendon Routing must be realizable: As an example, a simulated tendon can end at the middle of
the palm, while in the physical system, tendons have to be connected to motors which are housed
away from the hand. The tendon has to be routed to the bottom of the hand, causing different and
additional deformation compared to the simulated routing.

• Grasp must not fail: Although a pose is matched in terms of fingertip position and orientation,
the grasp might still fail. Matching the fingertips might not be a sufficient measure to create a
successful grasp, especially if the grasp involves contact points or areas at different areas of the
hand (e.g. the palm). Solving for matching contact points and forces may be a solution to this
problem. However, this requires a realistic contact simulation to model the interactions between
soft foam hands and objects.
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Power grasps using the palmar gutter

1.1a Medium Wrap a 1.1b Medium Wrap b 1.2 Ventral

Power grasps using other parts of the palm

2.1 Palmar 2.2 Small Diameter

Power grasps with lateral stabilization

3.1 Sphere 3.2 Lateral Tripod 3.3 Lateral

Precision gasps with lateral stabilization

4.1 Writing Tripod

Power grasps with pad opposition

5.1 Large Diameter 5.2 Power Sphere

Precision grasps with pad opposition

6.1 Palmar Pinch 6.2 Tripod 6.3 Prismatic 3-finger

Figure 6.10.: 14 Target grasps recorded with a CyberGlove, transferred to simulation poses. For each
grasp, the left image shows the target grasp, and on the right, the configuration of the deformed simulation
mesh is shown, including surface normals (black arrows) of fingertips. Image by Dominik Bauer.
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7. Operation of Tendon-Driven Soft Foam
Robot Hands

In this chapter, drivers and control mechanisms are presented which are applied to operate foam robot
hands. First, the modular ROS control software is described. This software is then used to conduct
a series of experiments to explore the capabilities of foam hands, such as repeatability, strength and
grasping and in-hand manipulation capabilities. An intuitive approach to teleoperate the robot using a
CyberGlove is applied to an anthropomorphic hand. In the final section, learning-based methods to solve
the inverse kinematics problem are tested and compared in simulation.

7.1. Modular ROS Control Framework

To operate foam robot hands, a modular control framework based on ROS was developed. The main
goal of this software is to provide a practical and modular structure to enable rapid testing of new mod-
ules and switching between operation modes (e.g. create keyframe poses for grasp sequences, play back
demonstration showcases, teleoperation via a CyberGlove). Figure 7.1 shows the relations and interac-
tions between the software components.
The following modules were created:

• Motor Communication: This node implements a position controller for multiple motors based
on the Dynamixel SDK. A subscriber is set up to track messages that are published to the ’/map-
ping/desired_state’ topic. If a message is received from this topic, the command is sent to the
motors.

The motor communication node additionally publishes the current state of the motors to ’/mo-
tor_com/dynamixel_state’. Alternatively, for debugging purposes, a full diagnostic message is
sent to ’/motor_com/dynamixel_full_state’.

• Mapping: Tendon actuations αai with i ∈ {1, . . . ,ntendons}, coded as contraction lengths in m, are
converted to motor positions αmi ∈ [min_position, . . . ,max_position]. This conversion depends on
pulley diameter and position unit of the motors. For Dynamixel AX-12A motors, the motor can be
moved within a range of 300 degrees, and the corresponding position values range from 0 to 1023,
hence the unit is 0.29◦.

– Teleoperation via CyberGlove: In this mode, the mapping node subscribes to the topic
’/sensor_msgs/cyberglove’. A pre-trained regression model (Section 7.4) takes joint angles
measured by the CyberGlove as an input and predicts the corresponding motor positions,
which are then published to ’/mapping/desired_state’.

– Teleoperation via Simulation: The mapping node receives tendon actuations on the topic
’/ext/python_socket_out’, converts them into motor positions and publishes motor positions
to ’/mapping/desired_state’.

• Read CyberGlove: The CyberGlove is connected through a serial port and the joint angle values
measured by the glove are published to ’/sensor_msgs/cyberglove’.

• Python Server Socket: Since the FEM simulation framework (Chapter 6) is built in Microsoft
Visual Studio and runs on Windows, no straightforward approach to communicate via ROS is
available. Instead, the communication between simulation framework and the ROS network is



Section 7.1: Modular ROS Control Framework 45

implemented via sockets (TCP/IP): The user actuates tendons in simulation to achieve the desired
pose. The activation levels are then sent from the client socket (Windows socket, C++) to the
server socket (linux python socket), which is part of the Python Server Socket ROS node. This
node then publishes the received actuations to ’/ext/python_socket_out’.

Figure 7.1.: Modular ROS robot control framework. Nodes publish messages to topics (’out’) and sub-
scribe to topics (’in’) to receive messages.

• Utilities: This package includes functions to record poses from the physical robot and write the
corresponding motor actuations to a file. Saved keyframe poses can be played back to create
motion sequences.

Defined keyframe poses, provided by the user as a .txt file, can be loaded and sent to the motor
controller. This enables the user to create desired poses, interpolate between them and have the
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robot loop through the poses. Additionally, a timed camera capture can be triggered synchronously
to the motor commands, to record images of the robot in its configured poses.

• Sensor Feedback: This module enables the inte-
gration of sensor feedback.

As an example, 10 flexible resistive bend sen-
sors1were placed in pockets which were custom
sewn2on an off-the-shelf glove fitted on the foam
hand (Figure 7.2). Analog sensor values were
recorded using an Arduino Mega 2560 and the Ar-
duino IDE. This approach was not further inves-
tigated due to very low sensor readings resulting
from non-optimal sensors placement on the hand:
The sensor pockets were placed at locations on
the foam hand which correspond to human hand
joints. The elastic foam hand however exhibits
deformations fundamentally different from the hu-
man hand since deformations are not strictly lim-
ited to joints, but occur over large areas. This
causes relatively small bending angles of the sen-
sors and hence very low sensor readings.

Figure 7.2.: Custom sensor glove on a foam
robot hand.

• Control: This module has not yet been implemented, but can be used in future works. It is
intended to provide the infrastructure to compare the current pose (e.g. using optical sensors, or
using more/differently placed bend sensors attached to the glove) with the target configuration.
Different control schemes can be tested and implemented in future projects.

7.2. Experiments: Repeatability, Strength, Grasping and In-hand
Manipulation

Repeatability

Using the ROS control pipeline described Section 7.1, a repeatability experiment was conducted with a
planar gripper robot. This is joint work with Jonathan King and Yuzuko Nakamura, who were responsible
for gripper fabrication and hardware assembly, the creation of grasp poses and data analysis.

To investigate repeatability of foam robots, a planar gripper was fitted with 2 flexor and 2 extensor
tendons. 7 black target points with a diameter of 6mm were adhered to the textile skin of the gripper to
track motions. 6 different grasps were created by moving the robot into the desired configuration and
extracting the associated tendon actuation levels. The corresponding tendon actuation levels were then
repeatedly applied, and a synchronous image capture was triggered to obtain images of the gripper using
a webcam3. Images of 800 trials of each grasp were collected and analyzed4.

Assuming a ‘break-in’ period, the first 50 trials were discarded. 50 random trials for each of the 6
grasp were selected for analysis from the remaining 750 trials. This was due to limited video process-
ing power and time constraints. The markers on the textile skin were tracked by applying a Grayscale
Conversion, Gaussian Blur, Prewitt Edge Filter, and Hough Circle Transform, in sequence to each frame
using MATLAB. The circles were then sorted using Nearest Neighbors.

1https://www.robotshop.com/en/2-unidirectional-flexible-bend-sensor.html
2Textile patches were sewn onto the glove by Kai-Hung Chang
3Logitech 1080p Webcam
4Repeatability analysis and figures by Jonathan King

https://www.robotshop.com/en/2-unidirectional-flexible-bend-sensor.html
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Figure 7.3.: Histogram of fingertip repeatability
over 600 trials.4

Figure 7.4.: Drift of the fingertip position over 800
trials, from blue to yellow.4

Figure 7.5 shows three of the grasp poses superimposed for all 50 trials and at 6 different steps along
the trajectory. Splines were fitted to the markers for each image.

Repeatability analysis was conducted considering only the fingertip markers at the final stage of each
grasp, since they are subject to the most significant displacement. For each grasp g ∈ {1, . . . ,6} and
each trial t ∈ {1, . . . ,50} the error was computed as the deviation egt = ‖pgt − pg‖2 from the mean
pg =

1
50 ∑i∈t pgt over the trials. A histogram of the errors for all 600 data points (300 trials, 2 fingertips)

is shown in Figure 7.3. Several outliers in the data are suspected to be caused by rare instances of faulty
serial communication via serial port. The servo motors do not receive a motor command and therefore
remain in their previous position. For future experiments, a solution to this problem is to include a simple
switch to check if the motor command was received and executed, and if it was not, resend the command.
Table 7.1 shows the distribution metrics considering all trials and considering only inlier data, computed
with a conservative µ±3σ filter. Since many measurements were sub-pixel in length, future experiments
should use a higher resolution camera or high resolution motion capture.

The fingertip positions are plotted in order in Figure 7.4, revealing a drift over time across the 800
trials. A possible reason for this drift is yield (stretch) in the textile components, which could be reduced
by the usage of stronger yarn in the knitted gloves of future designs.

Figure 7.5.: Three different grasps, 6 steps along the trajectory superimposed for each grasp. Splines are
fitted to the markers for each image of 50 trials.4
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Table 7.1.: Repeatability statistics for planar gripper.4

Values in [mm] µ σ median max

All Trials 0.1738 0.2293 0.1307 3.6360

Inlier Trials 0.1576 0.1210 0.1296 0.8160

Figure 7.6.: The strength of caging grasps was
measured by pulling on a grasped tennis ball until
failure. Top: Anthropomorphic hand, 3.2N. Bot-
tom: Four-fingered gripper, 5.8N.

Figure 7.7.: Demonstration of static grasping with
a glue bottle (left), a screwdriver (middle) and a
box cutter (right).

Figure 7.8.: Three distinct robot hands performing
precision in-hand manipulation (twisting a ball).
Smooth motions are created by interpolating be-
tween motor actuation keyframes.

Strength

Grasp strength was evaluated for caging grasps of a tennis ball with two different hand designs: The
first prototype (an anthropomorphic hand design) and a four fingered gripper. The test setup is shown
in Figure 7.6. The measured pullout force was 3.2N for the anthropomorphic hand (top), and 5.8N for
the four fingered hand (bottom). Since the main difference between the two designs is their geometry,
this suggests that a more opposable thumb is important to achieve stronger power grasps with foam hands.

Several of the grippers presented in this work have been in use for over one year and thousands of tri-
als. They have additionally been transported transcontinentally in checked luggage and exposed to harsh
weather conditions, all without a noticeable lack in performance. The grippers demonstrate therefore
good longevity and ruggedness overall.
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Grasping and Manipulation

The developed prototypes are able to perform a variety of grasps and in-hand manipulations. Exemplary
static grasps are depicted in Figure 7.7, they are created by playing back a previously created tendon
contraction configuration. Several in-hand manipulations are shown in Figure 7.8 and Figure 7.10 on
the right. These motions are created by linear interpolation of motor actuations between keyframes,
generating smooth transitions between grasps.

7.3. Weaknesses and Current Limitations

The low stiffness of the foam limits the grasping force that can be applied by a foam hand. Especially for
’pushing’ and ’pressing’ tasks, or when a heavier object is to be grasped, this problem is apparent. Future
work could address this issue by embedding structures in the foam core during the casting process. A
rigid skeleton could increase grasp strength significantly, but defies the principle of an entirely soft hand.
A further approach is to embed compartments filled with granular material and leverage the granular
jamming technique to achieve variable stiffness. A downside to this method is the need for pressure
generating equipment, valves and tubing.

A further limitation to the current foam hand design is the tendon routing method. This method effects
the performance of the hands in two aspects. 1) Geometrically: Tendons are restricted to run on the
surface of the hand, limiting the poses and motions that can be achieved. If instead they were allowed
to be routed through the foam body, the achievable workspace of the hand could be extended and higher
forces could be applied by the hands. Past attempts to route tendons through the foam led to tearing of
the foam core. This could be avoided by improved manufacturing techniques in future work, for example
by embedding tubing into the cast foam. 2) Mechanically: By pulling on the glove, the tendons strain the
adhesive between glove and foam core, limiting the force that can be applied to a tendon without failure.
If no adhesive is used, gloves tend to slip on the foam core. Future work could explore different materials
such as high performance textiles and adhesives to increase performance and durability of foam hands.

7.4. Teleoperation

In the most basic scenario, only the robot itself is available, with a given arrangement of tendons and
motors, and a device with which the user wishes to control the robot. With this equipment, a mapping
must be learned from user gestures or poses to motor actuations that deform the robot in the desired
manner. A straightforward mapping is explored, where the user wears a CyberGlove and controls an
anthropomorphic hand that is similar to their own. However, flexibility is desired, when the geometries
of the human and robot hands may differ significantly.
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Figure 7.9.: Top) Input poses from user wearing a CyberGlove. Bottom) Output poses from the learned
mapping. Left) Poses taken from the training set. Right) Poses not included in the training set.
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For the mapping process, inspiration can be drawn from research on puppeteering in computer graph-
ics. For example, Seol and colleagues [101] present a method that allows the user to specify how they
wish to move in order to create certain character motions. As an example, they might choose to swing
their arm to move an elephant’s trunk. In the case of [101], an approach based on feature mapping is used
to convert from user motion to character control parameters. For foam robot hands, linear regression is
used to create a map from CyberGlove sensors to tendon activations for the hand.

This approach works as follows. First, a sampling of tendon activations is used to execute various
poses of the foam hand. An operator imitates those poses while wearing the calibrated CyberGlove, and
the corresponding joint angles of the human hand pose are recorded. Both random tendon activations and
tendon activations corresponding to finger-thumb oppositions and grasping postures were used to build
this training set. For generalization purposes each pose was recorded 5 times.

A regression model, which takes the 22 joint angles from the CyberGlove as input and predicts the
corresponding tendon activation levels was trained. The model uses Kernel Ridge Regression with a
linear kernel. The average RMS error achieved by the model between the measured and the predicted
normalized tendon actuations was 0.0026, with normalized tendon actuation ranging from zero to one.

Even with a small training set (120 recordings), the learned model was able to reproduce a variety
of poses with high accuracy.Figure 7.9 shows a comparison of poses supplied by an operator and the
poses realized by the foam hand. Both poses taken from the training set and new poses are included.

Figure 7.10.: Left) Telemanipulation sequence of a
small cuboid executed by a human operator using
the CyberGlove and the trained regression model.
Right) Open-loop controlled manipulation sequence
created by interpolating between tendon actuation
keyframes.

One observation from the proposed teleoperation
method is that in order to achieve such results,
the careful selection of training poses is crucial.
While a first approach was to sample poses with
only one finger contracted at a time, the insight
was gained that especially for coupled motions
such a model does not generalize well. In terms
of posing this means that fingertips of oppos-
ing fingers do not touch or align for example.
Adding specific poses that include coupled ten-
don contractions, as shown in the trained poses
of Figure 7.9 can significantly increase general-
ization. This suggests that it is necessary to use
poses that are related to the task that needs to
be executed. Using just three additional task-
specific poses (shown in Figure 7.9 on the left) the
learned mapping was also precise enough to per-
form telemanipulation tasks, including grasping
objects and inhand manipulations. Demonstra-
tions are shown in Figure 7.10 (Left). Since the
described sampling process relies exclusively on
the person wearing the CyberGlove to match the
robot poses with their hand, this approach may be
influenced by subjective impression of how well
poses match. A strong advantage of this tech-
nique however is the possibility to easily create
mappings between the human hand and different
hand morphologies. Given that the human opera-
tor can create a corresponding hand pose for each
robot hand pose, this technique can even be ap-
plied to non-anthropomorphic foam hands.
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7.5. Learning in Simulation: Inverse Kinematics

In this section, different learning-based approaches to learn a mapping between fingertip position and
tendon activations are tested and evaluated in simulation. This is joint work with Kai-Hung Chang5.

Learning on the physical robot is a straightforward and successful approach. However, the amount of
test data that can be collected is limited and similarity in poses is only qualitative and depends on the
patience, care, and point of view of the user. If a mapping from poses to actuations can be learned in
simulation, the comparison between test poses and learned poses can be much more exact, and it can be
explored how additional data may improve the results. However, for this approach to be effective, the
simulation must be a good match to the actual robot hand. The accuracy of our FEM simulation for foam
hands is therefore evaluated in Section 6.3.

Collecting data in simulation is faster and easier than collecting data on the physical robot. Making
use of the accessibility of large amount of data from the simulation, we are able to apply learning-based
methods with complex models. These methods take the concatenated fingertip positions as the input and
output the tendon activation that is expected to pose the hand correspondingly. Four different methods
are applied and compared:

1. Nearest neighbor

2. Linear ridge regression

3. Neural network using supervised learning

4. Deep reinforcement learning

7.5.1. Learning-based methods

The Nearest neighbor method serves as a straw-man approach. It takes the tendon activation of the pose
that is nearest to the desired pose in the pose space based on Euclidean distance and simply returns that
tendon activation as the result. Linear ridge regression is supplied for comparison with the experiments
on the real robot. It is perhaps the second simplest sensible approach beyond Nearest Neighbor. We
use a linear model with additional L2 ridge regularizer. A neural network using supervised learning
adds additional degrees of freedom and nonlinearity. We include this model to determine whether the
additional complexity can improve fit to the data. Our Neural Network model is constructed with four
intermediate layers, each of which has 30 units and ReLU non-linear activations. The activation of the
output layer is tanh(x) to match a linear-normalized range [-1,1] of the output activation. The training
process runs 300 epochs with batch size 20 and Adam optimizer. Deep reinforcement learning can be
considered as an alternative approach to learning a nonlinear model. Based on the success of learning
IK on both rigid robot arms and hands [85], deep reinforcement learning is expected to transfer to soft
robots. In particular, we apply deep deterministic policy gradient [65] algorithm combined with hindsight
experience replay [1]. The shaped reward function is the negative of the average distance error over all
fingers. Hindsight experience replay can be considered as a way to include additional targeted results, as
”failed” solutions are reinterpreted during learning as successful solutions to a different problem.

7.5.2. Experiments

A simulation model of the physical anthropomorphic foam hand shown in Figure 5.3 a is obtained by
using Autodesk ReMake6 to generate a surface mesh from approximately 50 images of the hand taken
with a smartphone. We then run TetGen7 to build a 3D finite element mesh of the hand. To compare the
sample efficiency of all four methods, we use the same datasets for both training and testing. The training
dataset collects 100,000 poses while the testing dataset contains 100 poses, all of which are pre-generated
in the simulation by drawing randomly from possible tendon activations.

5Experiments and evaluation by Kai-Hung Chang.
6Autodesk remake, https://www.autodesk.com/products/remake/overview
7Tetgen, http://wias-berlin.de/software/tetgen/

https://www.autodesk.com/products/remake/overview
 http://wias-berlin.de/software/tetgen/
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7.5.3. Results and Discussion

Figure 7.11.: Performance of four different methods
to learn IK in simulation.5

We plot the performance (average distance error
in centimeter) with respect to the amount of data
used in training. The comparison plot is shown in
Figure 7.11. When training with less than 100,000
samples, the training data is extracted in sequence
from the large 100,000 dataset. The plot shows
that linear ridge regression is outperformed by all
other approaches especially for large datasets, im-
plying that additional model complexity is useful
for this test dataset. Overall, and to our surprise,
the nearest neighbor method shows the best per-
formance and the best sample efficiency. How-
ever, results from nearest neighbor approaches are
typically not smooth for datasets that do not com-
prehensively cover the space of tendon actuations.
Lastly, deep reinforcement learning outperforms
supervised learning. The main difference between
these two approaches is the existence of a loss
function. While in supervised learning, the network is trained to fit the tendon activations from the
training data, the objective in reinforcement learning is to maximize rewards based on the calculated
average distance error, which may be physically more reasonable. Another possible cause is that the
reinforcement learning algorithm, DDPG, has an actor-critic mechanism which might help the learning.
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8. Conclusion

8.1. Summary of Results

This work presented, evaluated and compared methods for creating and operating tendon-driven soft
foam robot hands. Herein, the overall system has been considered, including fabrication, design and op-
eration. Methods and techniques for each domain were extended, newly developed, tested and evaluated.

An improved and extended fabrication process using 3D sculpting tools and stereolithography 3D print-
ing was proposed and several foam hands have been fabricated. Apart from a flat human hand model,
non-anthropomorphic grippers were shown to be easily fabricated such as a four fingered hand and a two
fingered gripper.

A modular platform was designed that contains all rigid parts such as the servo motors, and allows
rapid switching between hand designs by simply detaching tendons, and reattaching and reconnecting
tendons of a different hand or gripper. Effects of tendon routing, hand morphology and rest pose on
achievable motions were presented and discussed. Since all three aspects influence the motion capabili-
ties of a hand, they must be carefully selected.

An intuitive tool to explore hand motions before fabrication is the proposed simulation framework, which
allows a user to load simulation meshes, create and modify tendon routings and thereby explore the hand
workspace. This simulation was evaluated in terms of accuracy of predicted poses. A motion capture
experiment using Vicon cameras and a four fingered gripper was conducted to obtain trajectories of fin-
gertips while tendons were contracted. The collected position data of fingertips was compared to the
positions predicted by the simulation, and an average error of 0.626cm was achieved. Possible reasons
for the position error, such as friction between components of the physical system and inaccuracies be-
tween virtual and physical tendon routings were presented and discussed. The developed simulation
framework was applied to conduct a user study on human ability to design tendon routings to achieve
desired hand poses.

Once a foam robot hand is designed and fabricated, suitable control approaches are necessary to op-
erate the hand. For this purpose, a modular ROS control software was created, which can be used to
control a foam hand from the simulation framework or by using a CyberGlove. In operation, the foam
hands demonstrates sub-millimeter repeatability and grasp strength comparable to state of the art soft
robotic hands. An intuitive control approach using the CyberGlove and a regression model were shown
to achieve versatile posing and manipulation with an anthropomorphic foam hand. Due to the training
routine, this approach can potentially be used with arbitrarily shaped hands. Lastly, different data-driven
methods to learn the inverse kinematics of a foam hand in simulation were compared.

Overall, using the developed system, tendon-driven soft foam robot hands are easily fabricated, cus-
tom designed and intuitively controlled. Their accessibility, combined with the demonstrated grasping
and manipulation abilities shows that this new type of robot has great potential for robust usage in a
variety of applications.
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8.2. Future Work

8.2.1. Materials and Fabrication

The materials currently used for the hand prototypes are extremely flexible and enable robust grasping of
objects, as shown in many demonstrations. The fabrication process could be further simplified by using
3D printed foams, where also tendon routing waypoints could be embedded to tranfer virtual tendon
routings more accurately from simulation to the physical system. To increase grasp strength and thus
enable pressing or pushing tasks, future work could explore embedded structures such as skeletons or
variable stiffness compartments.

8.2.2. Sensors

Sensors could be used to close the control loop, as an example camera based feedback could estimate
the hand pose from e.g. stereo camera images. A further alternative is installing bend sensors on the
hand. This is especially interesting for using the hand in teleoperation tasks: Two identical sensorized
gloves could be used to compare current hand pose of a human hand and the foam hand. However, this is
only applicable in the case of an anthropomorphic foam hand, and the different morphology and different
deformation behavior have to be considered. For instance, human fingers bend at defined points (joints),
while foam fingers represent a continuous structure, and ’curl’ up when actuated.

8.2.3. Closed-loop Control

A major motivation for the usage of soft robotic hands is that due to the high compliance of the struc-
ture itself, no low level controller is necessary to perform grasping and manipulations. The robot must
however be controlled on a high level, which requires some form of feedback about the current state of
the hand or grasped object. The modular ROS software developed in this work can easily be extended
by such a controller module, and future work can test and evaluate the performance of different control
approaches.

8.2.4. Contact Simulation

Simulating the interaction of a hand with objects requires the modeling of contacts. An attempt to im-
plement a contact model was started in this work. Herein, collisions are detected using shape primitives
(e.g. a sphere, capsule, cuboid). The objects are modeled as rigid objects using an already implemented
class, where the state of an object is described by the center of mass position (3D vector), orientation
(quaternion), velocity (3D vector) and angular velocity (3D vector).

A contact between a hand mesh and a rigid body is detected in the following way: For a given hand
and object pose, the simulation mesh deformation and the rigid body pose are propagated into the next
time step by solving the corresponding equations of motion.

If the resulting 3D position of a node of the simulation mesh is located inside the shape primitive, the
closest point to this node on the boundary of the shape primitive is found. The node is then pinned to this
point, and a force normal to the shape primitive surface in the contact point is attached to both the object
and the node. To include a friction term, the velocity of the boundary point on the collision primitive
is computed. If the velocity has a tangential component, a dynamic friction force proportional to the
tangential velocity and a friction constant µ is added to both the object and the node.

An exemplary sequence of images of a three fingered hand manipulating a ball is shown in Figure 8.1.
Implementing a contact simulation represents a difficult challenge and various problems must be ad-
dressed:

• It requires solving dynamic equations, which makes the simulation very slow.

• The current solver does not include a damping term (only numerical damping occurs), causing the
mesh to oscillate after a change of state e.g. a tendon is contracted.
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Figure 8.1.: Contact simulation. From top left to bottom right: A simulated three fingered hand manipu-
lates a ball.

• In terms of tendon contraction, the maximum contraction speed (contraction change per simulation
time step) must be limited to a realistic value.

In the attempted contact model, setting the simulation time step to a value where real-time interaction
with tendons is still possible led to instabilities. In particular, larger time steps lead to collisions being
detected late such that large contact forces are generated, leading to unrealistic accelerations of the object
which then starts to move or spin uncontrollably. Solving these problems and implementing a realistic
soft contact model is a difficult problem to be addressed in future works.

8.2.5. Learning Manipulations

If a realistic contact simulation model is implemented, learning techniques such as deep reinforcement
learning could be applied and explored to learn object manipulations in simulation. Since reinforcement
learning requires large amounts of data samples, it is very difficult to use this technique directly on the
physical robot, as it would require a lot of time and lead to robot deterioration or failure from wear.
Instead, the training can be executed in simulation, if a sufficient contact model is available.
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A. Appendix

A.1. Principal Component Analysis

Principal component analysis (PCA) is a common statistical technique to detect patterns in high-dimensional
data. This technique can be applied to select, transform and extract features of a dataset in order to re-
duce data dimensionality while minimizing information loss [76]. Dimension reduction is very helpful
for problems where storage and computing resources are limited and features are redundant. Addition-
ally, reducing the dimensions of a dataset to 2D or 3D enables visualization of the data.
PCA can be divided into the following steps:

1. A (N×s) data set X with N: number of data samples, s: number of features is obtained.

2. For each dimension of the data, the mean is calculated and subtracted. This yields a centered
matrix.

3. The covariance matrix ΣΣΣ is computed.

4. (Normalized) eigenvectors vi and eigenvalues λi of the covariance matrix ΣΣΣ are calculated. The
eigenvector corresponding to the highest eigenvalue is called principal component. Eigenvectors
are concatenated to build a matrix A.

5. Eigenvectors in A are rearranged with respect to corresponding eigenvalues, in a descending se-
quence. Higher eigenvalues represent a stronger contribution, or higher importance, to the prob-
lem. To reduce data dimensionality, only a subset of eigenvectors is selected. The resulting matrix
represents a set of orthonormal directions that point in directions of decreasing variance.

6. The data set is projected into a new (lower dimensional) feature space: X∗ = XA

For a more detailed and practical tutorial on PCA, see [108].

A.2. A* Path Planning

The A* path planning algorithm is one of the most widely used approaches to find the shortest path
through a network of nodes, from an initial node to a destination node. It is an iterative search algorithm
which minimizes the cost

f (x) = g(x)+h(x) (A.1)

where x is the current node on the path, g(x) the cost of the path from the start node to the current node x,
and h(x) a heuristic function estimating the minimal cost from the current node to the goal node. Usually
h(x) is the euclidean distance between the current node and the goal. A* terminates if the path from start
to goal is found or if no paths are left to be extended. The process is best described by the pseudo-code
found in Algorithm 1.
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Algorithm 1 A* Path Planning

1: function RECONSTRUCT_PATH(cameFrom, current)
2: totalpath := current
3: while current in cameFrom.Keys do
4: current := cameFrom[current]
5: totalpath.append(current)
6: return totalpath
7: function A_STAR(start, goal)
8: closedSet := {}
9: openSet := {start}

10: cameFrom := empty map
11: gScore := map with default value of Infinity
12: gScore[start] := 0
13: fScore := map with default value of Infinity
14: fScore[start] := heuristic_cost_estimate(start, goal)
15: while openSet 6= /0 do
16: current := node in openSet with the lowest fScore[] value
17: if current = goal then
18: return reconstruct_path(cameFrom, current)
19: openSet.Remove(current)
20: closedSet.Add(current)
21: for each neighbor of current do
22: if neighbor in closedSet then
23: continue . neighbor is already evaluated
24: temp_gScore := gScore[current] + distance(current, neighbor) . distance from the start
25: if neighbor not in openSet then
26: openSet.Add(neighbor)
27: else if temp_gScore >= gScore[neighbor] then
28: continue . not a better path
29: cameFrom[neighbor] := current
30: gScore[neighbor] := temp_gScore
31: fScore[neighbor] := gScore[neighbor] + heuristic_cost_estimate(neighbor, goal)
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A.3. User Study

A.3.1. Lateral Tripod

1

2

3

4

5

6

7

8

9

10

Figure A.1.: Tendon routings created for a lateral tripod grasp by 10 users in the study. Top: Target pose.
Middle: Poses created by test subjects. Bottom: Position and Orientation error for each fingertip.
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A.3.2. Medium Wrap a
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Figure A.2.: Tendon routings created for a medium wrap grasp by 10 users in the study. Top: Target
pose. Middle: Poses created by test subjects. Bottom: Position and Orientation error for each fingertip.
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A.3.3. Prismatic 3-finger
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Figure A.3.: Tendon routings created for a prismatic 3-finger grasp by 10 users in the study. Top: Target
pose. Middle: Poses created by test subjects. Bottom: Position and Orientation error for each fingertip.
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A.3.4. Average error over all grasps

Table A.1.: Error statistics for user study. Average and maximum error over all grasps and all fingers.

Values in [cm] and [deg] Lateral Tripod Medium Wrap Prismatic 3-finger

Mean distance error 1.271 1.693 1.171

Max distance error 5.538 3.773 3.225

Mean orientation error 73.723 66.297 53.918

Max orientation error 118.97 113.46 131.55
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