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Abstract

Multi-fingered soft robot hands promise safe and robust grasping even in unstructured
environments. This has fueled the interest in soft robotics and led to the development
of a large variety of new designs. However, materials that can undergo large elas-
tic deformations require the rethinking of conventional hand morphologies, actuation
and control strategies. Therefore, this thesis presents an approach towards a more auto-
mated design process, specifically dedicated to the class of soft foam hands. To leverage
the full potential of such tendon-driven robots, an end-to-end process that supports the
creation of hands that achieve specific grasps and manipulations is proposed. Further
contributions include the creation of hand morphologies with varying rest poses and the
development of a Monte-Carlo-Markov-Chain optimization approach for finding effi-
cient tendon-routings and contraction levels. It is demonstrated that this approach is
able to scale to the high-dimensional design domain of soft foam hands and can even
produce routings that outperform designs created by humans. The results achieved in
this work promise that automated design methods can indeed improve the development
of purposeful soft hands in the future.





Kurzzusammenfassung

Roboterhände aus weichen und nachgiebigen Materialien sind vielversprechend hin-
sichtlich eines sicheren und robusten Greifverhaltens, auch in komplexen ungeordneten
Umgebungen. Dieser Sachverhalt hat in den letzen Jahren das allgemeine Interesse am
Gebiet der Soft Robotik vergrößert und zu einer Vielzahl von neuentwickelten Designs
geführt. Mit der Verwendung von Materialien, die extrem große elastische Deforma-
tionen durchführen können, gehen aber auch neue Herausauforderungen bezüglich der
verwendeten Handmorphologie, Aktuierung und Regelung einher.

Der in dieser Masterarbeit vorgestellte Ansatz zielt auf einen automatisierten De-
signprozess von nachgiebigen Roboterhänden, speziell von weichen, schaumstoffge-
fütterten, sehnengetriebenen Händen ab. Um den sehr komplexen Parameterraum die-
ser Hände zu untersuchen und deren volles Potential auszuschöpfen, wird im folgen-
den ein vollumfänglicher Designprozess vorgeschlagen, welcher die Konstruktion von
Händen ermöglicht, die spezifische Griffarten und Manipulationssequenzen durchfüh-
ren können. Dieser Ansatz umfasst die Erstellung von neuen Handmorphologien mit
unterschiedlichen Initialposen und der Entwicklung einer Markov-Chain-Monte-Carlo
Optimierung, die Lösungen für effiziente Sehnenverläufe zur Aktuierung der Hände
findet. Es wird gezeigt, dass diese Vorhergehensweise gut auf die hohe Dimensionalität
des Problems skaliert und in der Folge sogar Lösungen gefunden werden, die von Men-
schen konstruierte Hände hinsichtlich Präzision bei der Griffausführung übertreffen.
Die präsentierten Ergebnisse sind vielversprechend und zeigen, dass vollautomatisierte
Konstruktionsprozesse in Zukunft zu einem gezielteren Entwicklungprozess von nach-
giebigen Roboterhänden beitragen können.
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1. Introduction

Aging populations, demands for higher production flexibility and an increasing world population have
led to a growing interest in intelligent autonomous systems that can support humans in their daily life
at work and at home. The list of applications for such systems is long and ranges from human assistive
systems for elderly care, to supporting workers with handling heavy objects in manufacturing and main-
tenance. Other applications include medical tasks such as surgery, search and rescue tasks or harvesting
crops. In industrial applications, robotic systems have long been successfully applied for tasks such as
loading of machines or spot welding. Reasons for this are that such tasks are highly repeatable and are
usually executed within separate workspaces for humans and machines to avoid injuries. In contrast,
future robotic systems will need to operate safely, robustly and adaptively also in complex unstructured
environments to be applied more widespread. However, safe interaction with humans is difficult for
traditional robots as they consist of hard and rigid links and joints.

An emerging class of robots that circumvent this problem are referred to as soft robots which are being
made from intrinsically soft materials. Apart from being safe, the softness and compliance achieved
by these robots can be exploited to reduce the complexity of interactions with the environment. For
example most methods for in-hand manipulation rely on exact models of the hand and the manipulated
objects. To manipulate unknown objects as well, robotic hands need to reactively adapt to the object.
In the case of soft robots this adaptation is achieved by the material itself without the need of complex
low-level control. Such an exploitation of compliance can be observed in many biological organisms
and is therefore a promising characteristic especially with respect to solving dexterous grasping and
manipulation. However the use of soft compliant materials introduces a number of intricate problems
that need to be addressed in order to create robots that achieve their full potential. The key challenge
hereby lies in developing controllable robots within the vast design domain that besides a large selection
of materials poses virtually no restrictions on the robot’s shape, actuation and control. To complicate
this even further, the design of each sub-domain itself (material, shape, actuation, control) is predicated
upon existing sub-solutions with all design parameters being highly interdependent. In addition to the
lack of geometric constraints traditional computer-aided design (CAD) methods are generally unsuited
to manually explore unconventional shapes and deformations. Even for experts, this largely inhibits the
exploration of the design space and thus the development of purposeful soft robots that can achieve a
desired behavior.

This necessitates the development of automated design algorithms that can fully explore and support
the creation of soft robots. For the specific class of tendon-driven soft foam robotic hands, this poses the
challenge of creating functional goals, defining a foam morphology and rest shape, and finding a suitable
tendon placement for actuation.

In an ideal case this would lead to a design process in which a user simply specifies a functional task for
which an optimal design would be determined computationally. However, even optimization of one sub-
domain, e.g. actuation is computationally very expensive. Therefore current computational resources are
not able to optimize the complete and unconstrained design domain of soft robots. Instead optimization
algorithms commonly support the design of either one or two sub-domains under the constraint of the
remaining domains which are specified by human input. The goal of this thesis to provide an automated
design process for soft robots, specifically for soft foam hands. This novel class of tendon-actuated soft
robots consists of a foam core and is introduced in detail in Chapter 3. Overall, this thesis presents a
complete approach for automating soft foam robot hands and is organized as follows:

Chapter 1 gives an introduction to the problem, presents related work in soft robotics focusing on
design and optimization and motivates the purpose of this work. Chapter 2 provides a review of funda-
mentals relevant for grasping and manipulation and presents different optimization techniques available.
Chapter 3 describes the manual design and fabrication process of soft foam hands. The main contribu-
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tions of this thesis are presented in Chapter 4 which details the entire optimization approach from task to
design. A verification of the algorithm and experiments and results are discussed in Chapter 5. Chapter 6
summarizes the results and concludes this thesis with an outlook on future work.

1.1. Related Works

Over the years, the field of soft robotics has gained a lot of attention. Their soft structure makes them
inherently safe and their compliant nature promises flexible motions with high adaptability. A variety of
soft robots can be found in literature that rely on different materials, actuation and modeling strategies.
This chapter introduces available concepts and focuses on how optimization of soft robots has been
applied in related works.

1.1.1. Soft Robots

As they are inherently safe, soft robotic devices are predestined for physical interaction with humans.
A variety of materials has been investigated and used in medical applications for rehabilitation [96],
wearables [92, 95] or exoskeletons [80], toys [7, 6] but also for gripping and manipulation of objects.

The intended task and environment influence the choice of materials. Oftentimes the selection is
based on the desired level of elastic deformation and stiffness. In terms of tensile strength (Young’s
modulus), materials used in soft robots are comparable to soft biological materials such as muscles, skin
or cartilage [103]. Apart from using silicone elastomers, rubber or alginate to imitate the properties of
biological materials, significant effort has been put into creating flexible sensors [55, 2] and artificial skin
[91, 68].

Fluidic elastomer actuators (FEA) comprise the most commonly used actuation mechanism in soft
robotics. A large body of research is dedicated to creating pneumatic FEAs [81, 129, 40] or artificial
muscles [125, 88] for a variety of applications. Besides fluidic actuation, elastomers also come to use as
active components in the form of electroactive polymers [93, 111].

Soft Robotic Manipulators

This section specifically reviews materials and actuation mechanism used in soft robotic grippers and
manipulators. Many of these mechanisms can and have also been successfully used for locomotion, but
are not included in this section. Shintake et al. [114] distinguish between mechanisms used for gripping
by:

Actuation: A widely used mechanism for grasping that among others includes tendon-driven actuation,
fluidic elastomer actuators and electroactive polymers. As this comprises the most relevant class
of soft robotic manipulators for this thesis, more details are given below.

Controlled Stiffness: This mechanism is based on controlling the stiffness of grippers between a "soft"
and a "stiff" configuration. First, while still soft, the gripper approaches the object and envelopes
it. Then, its structure is stiffened resulting in a tight grip. Many variations of controlled stiffness
grippers ranging from low-melting point alloys and shape memory materials to granular jamming
[8] exist. A representative example of the granular jamming effect can be found in coffee grounds,
which when loosely filled into a rubber bladder are free to move and can be put into any shape.
However, evacuating air from the bladder will result in compression of the granular material form-
ing a solid object that is preserving its shape.

Controlled Adhesion: These soft grippers take advantage of adhesion, which is the interface attraction
of two surfaces. They can hold objects by generating large shear forces on the surface. Commonly
known mechanisms for controlled adhesion either rely on dry adhesion [21], suction cups 1 or
electroadhesion [113].

1Festo Co.Ltd. Octopus Gripper
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A number of fluidic elastomer actuators have successfully been used in anthropomorphic hands and
grippers. Deimel and Brock [22] developed a hand from reinforced silicone that is pneumatically ac-
tuated and capable of grasping. Their more recently developed hand [23] is even capable of dexterous
grasping which they evaluate using the GRASP taxonomy from Feix et al. [31]. Marchese et al. [75] and
Katzschmann et al. [60] present a soft planar manipulator that is able to grasp objects under uncertainty
in terms of position and shape of the grasped object. By reducing the amount of gas needed for inflation
Mosadegh et al. [81] developed a soft robot that is able to achieve high rates of actuation. Examples of
further pneumatically actuated grippers are octopus-inspired and rely on tentacles that are able to hold a
flower Martinez et al. [76].

Most tendon-driven soft robots available combine rigid links with elastics hinges that replace the
mechanical springs found in traditional tendon-driven robots[34, 87, 73]. While this leads to a simpler
system they cannot be considered truly soft due to the presence rigid materials.

Thus, more related to the work in this thesis are systems in which any rigid structure has been replaced
with soft materials. Mutlu et al. [83] developed a soft monolithic finger that can be fabricated using
additive manufacturing. Another tendon-driven approach inspired by octopus are the soft tentacle arms
developed by Calisti et al. [11] which later served as basis for their soft-eight-arm OCTOPUS robot that
is capable of grasping and locomotion under-water [17]. Some more unconventional materials have been
used by Jeong and Lee [53] who developed an origami robot made from paper. Most closely related
to the research on foam hands is the work by Bern et al. [7] who developed tendon-driven plush robots
using textiles.

a) b) c)

d) e) f)

Figure 1.1.: Soft hands. Tendon-driven: a) 3D printed finger [83], b) biomimetic anthropomorphic
hand [128], c) plush 2D gripper [7].
Fluidic actuated: d) starfish gripper [50], e) quadrupedal robot [112], f) RBO 2 Hand [23]. From [108].
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The design of soft robotic grippers and manipulators is subject to a trade-off between properties such
as cost, weight and dexterity. The large variety of technologies and materials found in literature attests
to this difficulty of designing soft hands that excel in all features. Currently available systems provide
solutions to specific problems focusing only to improve properties at the cost of others. With respect to
building dexterous hands Xu and Todorov [128] built an biomimetic anthropomorphic hand that closely
mimics the mechanics of a human hand. While this design is highly dexterous and can reproduce a large
number of grasps from the Cutkosky taxonomy its complex design makes it inaccessible for non-experts.
This is also the case with other highly dexterous designs [23]. In terms of weight, tendon-actuated
elastomer grippers have the disadvantage of having a relatively high density making them heavy and
dull. This problem is often circumvented by using FEAs which are lightweight, low-cost and can even be
dexterous. However, a major drawback of FEAs, which is easily overlooked is the required compressor
which takes up space, weight, and produces heat and vibrations. Additionally, leaking or damaged tubes
and airchambers can easily result in a failure of the system. Apart from their lack of dexterity, this is also
critical with grippers that rely on granular jamming.

Modeling and Control of Soft Robots

The benefits that arise from their continuously deformable nature come at the cost of soft robots being
incredible hard to model and control. Solving kinematics is already a complex and difficult problem.
Their ability to accomplish motions such as buckling, contraction, extension or bending, results in soft
robots having virtually infinite degrees of freedom. Additionally, non-linear material effects such as com-
pliance and hysteresis account for the non-trivial nature of this problem [36]. The wide range of design
and actuation techniques found in literature further complicates this circumstance as it is impossible to
distill a universal model for all robots. Previous works have particularly studied the problem of inverse
kinematics (IK) [101, 120, 54]. Existing control approaches can be classified into three main categories:
model-based controllers, model-free controllers and a combination of both.

Model-based controllers rely on the establishment of a kinematic model from which the actuation can
be directly inferred for the desired configuration. Saunders et al. [106] model caterpillar-like soft robots
as a series of extensible linkages. For tentacle-shaped soft robots Marchese et al. [75], Marchese and Rus
[74] and Chen et al. [15] use piecewise constant-curvature models to model the robot. For soft robots
with arbitrary shapes work by Duriez [25] presents a real-time solution using a finite element method
(FEM).

Model-free approaches offer a wide variety of data driven techniques to control soft robots. Neural
networks have successfully been used learn inverse kinematics on a cable-driven soft tentacle manipulator
with 2 degrees of freedom [38]. Rolf et al. have proposed an exploration algorithm for creating task space
samples for IK learning [101].

1.1.2. Design and Optimization of Morphology, Materials and Control

This section highlights related works which successfully utilized optimization techniques to improve the
performance of robots with a special focus on soft materials and designs.

Although optimization has already been applied to improve traditional robot designs, the uncon-
strained, interdependent design space of soft robots raises additional questions about morphology, materi-
als and controlling motions that can best be answered by the application of automated design techniques.

Deimel et al. [24] propose a co-design method that simultaneously optimizes morphology and control
of a pneumatically actuated soft hand. In order to find morphologies that complement the control pa-
rameters and vice versa they use a particle filter optimization method which searches both domains for a
set of optimized hand and control parameters. Sampled particle solutions are evaluated in a simulator by
rolling out a grasp sequence and judging whether it was successful or not. They specifically show that
their optimization approach scales well to high-dimensional parameter spaces, but limit the domain to a
relatively simple grasping scenario.

In order to evolve soft robots Rieffel et al. [99] explore three different strategies of finding interde-
pendent solutions in terms of morphology, material and control parameters. Their strategies follow the



Section 1.1: Related Works 7

general approach of holding one property constant while co-evolving the other two. The first strategy is
considered with placing actuators for locomotion on a caterpillar robot with ten arbitrarily placed tendons
while optimizing for the respective control patterns. They encode each solution as a genom consisting
of the attachment points of each tendon and the respective activation steps. A genetic algorithm then
progressively optimizes the gait for a number of generations before fixing the best found activation pat-
tern and evolving the attachment points of the tendons. Their second strategy investigates the interplay
of control and material properties for a fixed morphology using a similar encoding. In their last ap-
proach Rieffel et. al. use a generative encoding [45] to explicitly generate body shapes while implicitly
determining material properties as well as muscle placement [99].

Other research concerned with optimizing material parameters has been introduced by Hiller and Lip-
son [44], who obtain locomotion of their designs by finding heterogeneous material distributions with
the help of evolutionary algorithms.

Finding inspiration in animals for designing soft robots is an approach that does not rely on complex
algorithms. Many bioinspired worm or caterpillar-like robots can be found in [62].

Inouye and Valero-Cuevas [51] optimize anthropomorphic tendon-driven robotic hands focusing on
improving the grasp quality of the designs and show that robotic hands can even exceed human grasping.
They evaluate the performance of a design in terms of the achieved grasp quality for a precision grasp. In
order to optimize tendon-routings they use an MCMC approach that accepts new tendon layouts based on
whether a grasp can be maintained against an external force or not. Their work specifically emphasizes
how optimization of robotic hands produces designs that significantly outperform non-optimized designs.

1.1.3. Challenges and Contributions

Many interesting studies explore new materials, geometries, fabrication techniques and actuation mech-
anisms exist. However a safe, widely-accessible soft hand that is capable of dexterous manipulation is
not available. This emphasizes the demand for low-cost and customizable hands as opposed to more
general-purpose designs already available. Soft foam hands, explained in detail in Chapter 3, are a new
class of soft robots that significantly differ from previous systems and offers an unbounded multi-fold
design space:

• Tendons can be placed anywhere on the foam to achieve task specific actuation.

• There are no restrictions in terms of possible foam shapes and morphologies. Grippers, anthro-
pomorphic hands and even multi-fingered non-anthropomorphic hands can be designed and fabri-
cated.

• All materials used are readily available and accessible for non-experts.

The nature of this design space raises several questions that need to be addressed in order to provide
potential users with an end-to-end pipeline that describes design, fabrication and control.

A new methodology for fabricating foam robots has been developed and described in [108]. In terms
of modeling and control, FEM simulations and data-driven model-free approaches have previously been
applied to model soft robots. However not just one soft foam robot with a predefined morphology needs
to be controlled, but potentially infinite amounts of possible tendon routings. This requires a mapping
from pose to actuation with emphasis on data efficiency, models that scale well to new geometries or
tendon routings and an intuitive direct control. Possible strategies have been investigated and compared
in [109].

With respect to the design of foam robots, questions about shape, actuation and controls need to be an-
swered. Related works have highlighted the effectiveness of optimization for this purpose. Nevertheless,
existing approaches in literature either limit the design domain to 2 dimensions [51] and simple grasping
scenarios [24] or provide optimization for rather simple caterpillar-like robots [99] that do not compare
to the complexity of hands and grasping. This suggests that a general optimization approach that captures
the true complexity of grasping and manipulation for any object shape and property remains largely out
of reach.
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To address this, two concurrent approaches are being followed. Ideally, designing foam hands should
be an fully automated process. However, in traditional design processes users need to explicitly design
hand shapes and routings based on intuition in order to create hands that can achieve specific grasps.
Unfortunately, even with todays computational power it is incredibly difficult to create algorithms that
can optimize all properties at once for such largely unconstrained domains. This constitutes the lack of
automated design tools available and motivates the first approach that is pursued. Instead of automating
the process the goal is to provide users with tools to support their intuition, specifically enabling them
to quickly explore different effects of shape and actuation in simulation. This approach is described in
detail in [108]. The long term strategy presented in this thesis envisions a more functional approach,
where users merely specify goal grasps or motions and an optimal design in terms of morphology and
control is automatically generated. This works makes the following contributions towards this goal:

• Provide a universal shape-independent methodology to specify goal grasps and motions

• Establish an approach that generates foam hand morphologies with different rest poses that are
within kinematic constraints of the problem

• Develop an algorithm that optimizes tendon routings and activations for a fixed morphology and
rest pose

• Provide a proof of concept that dexterous grasping and manipulation can be optimized for

• Demonstrate that optimized tendon-routings can achieve precise posing that even outperforms hu-
man designed routings
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2. Fundamentals

2.1. Grasping

Despite decades of research dedicated to improving performance and dexterity, robotic hands still fall
short of the human hand. Especially in unstructured and cluttered environments robots are not able to
sufficiently interact with objects, tools and humans due to their inability to grasp and manipulate. Reasons
for this are manifold and include the lack of robust hardware, sensors and a limited understanding of how
to control hands in the wild. In order to achieve similar levels of dexterity and flexibility the human
hand has been subject to extensive studies and often serves as inspiration for robotic hands. This section
summarizes the most relevant fundamentals on human and robotic hands.

2.1.1. Human Hand Anatomy

Intermediate phalanges

Proximal phalanges

Distal phalanges

Metacarpals

Carpals

Distal interphalangeal (DIP)

Proximal interphalangeal (PIP)

Carpometacarpal (CM)

Metacarpophalangeal (MP)

Figure 2.1.: Bones (left) and joints (right) of the human hand.

The Human hands consists of a wrist, a palm and fingers. It has 27 degrees of freedom (DOF) and
27 bones which can be organized into five different groups shown in Figure 2.1 on the left. The wrist
contains eight carpal bones which connect the hand to the lower part of the forearm. The five metacarpal
bones that extend from the wrist to the base of the fingers form the palm of the hand. The remaining 14
bones are called phalanges and form the four fingers and the thumb. Each finger consists of a proximal
phalanx, intermediate phalanx and a distal phalanx. The thumb only consists of a proximal and interme-
diate phalanx. In order to describe movements and motions this work uses the anatomical terms flexion,
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extension, abduction and adduction which are defined as follows:

• Flexion: a bending movement around a joint that decreases the angle between the links at the joint

• Extension: an unbending movement around a joint that increases the angle between the links at
the joint

• Abduction: a motion that moves fingers away from the hand’s mid-line

• Adduction: a motion that moves fingers toward the hand’s mid-line

Depending on the application there is a large variety of human hand models available that use different
kinematic models or have more or less degrees of freedom [41, 94, 19].

2.1.2. Grasp Taxonomies

Figure 2.2.: Left: Power grasp of a ball. Right: Pre-
cision grasp of a small sphere. From [31].

In order to understand grasping many attempts
have been made to classify different types of grasps
and incorporate them into a single distinct tax-
onomy. From a neuroscience perspective grasp
taxonomies are helpful for understanding human
grasping, in terms of robotics they can serve as in-
spiration for robot hand design, benchmarking de-
signs and grasp recognition [28]. One of the first
attempts to characterize human grasping was done
by Napier [85] who introduced the distinction be-
tween power grasps and precision grasps (see Fig-
ure 2.2). This classification can be found in many
taxonomies and refers to the idea that the "nature
of the intended activity finally influences the pat-
tern of the grip" [85]. In the case of power grasps the relation between object and hand is rigid and
the combined fingers form a clamp against the palm. Precision grasps are characterized by one or more
finger tips being in contact with the object. This configuration allows for intrinsic movements of the
object.

Based on the broad classification done by Napier, various taxonomies that further subdivide grasps
have been developed. One of the most cited taxonomies is that of Cutkosky [20] who observed machinists
during their work and divided the grasps into a hierarchical tree of 16 types. This subdivision is based
on the constellation of fingers that exert force on the object and on contact points with the object. As
depicted in Figure 2.5 object size and power of grasp decreases from left to right. Kamakura et al. [57]
classify static prehensile patterns in terms of purpose of grasp, hand shape and contact areas with the
object.

Considering grasps from previous taxonomies and from different domains, Feix et al. [31] rearrange a
wide set of grasps and organize them into 33 grasp types. They arrange them in their GRASP taxonomy
using the following four criteria:

• Opposition type:

1. Pad opposition as depicted in Figure 2.3 a), contact occurs between hand surfaces generally
parallel to the palm along the x-axis in Figure 2.3 d).

2. Palm opposition as in Figure 2.3 b) occurs between hand surfaces generally perpendicular
to the palm along the z-axis in Figure 2.3 d).

3. Side opposition as shown in Figure 2.3 c) occurs between hand surfaces generally transverse
to the palm along the y-axis in Figure 2.3 d).
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Figure 2.3.: Opposition types and virtual fingers (VF) for different grasps. Figures from [31]

• Power, Intermediate, Precision Grasps: The idea of power and precision was adopted from
Napier [85] and Landsmeer [66]. For finer differentiation between power and precision, interme-
diate grasps were later added by Kamakura et al. [57] and Skerik et al. [117].

• Virtual finger assignment: The concept of virtual fingers refers to the fact that in many tasks
several fingers form a functional unit and apply forces in similar directions. To simplify grasps
one or more fingers and even parts of the hand can be assigned to a virtual finger. In Figure 2.3 b)
the palm serves as virtual finger (VF) 1 while the opposing fingers are assigned to VF 2.[49, 31]

• Position of the thumb: A new feature introduced in their taxonomy. In this thesis the position
of the thumb played an important role for designing new foam hands and especially for selecting
suitable restposes. In the GRASP taxonomy it is distingushed between abducted and adducted
thumb CMC Joint.

Nancy Pollard1 regroups the grasps from the GRASP taxonomy into the following six categories:

• Power grasps using the palmar gutter

• Power grasps using other parts of the palm

• Power grasps with lateral stabilization

• Precision grasps with lateral stabilization

• Power grasps with pad opposition

• Precision grasps with pad opposition

This approach considers grasp type (power/precision) and which parts of the hand are used to hold the
object. The six groups and the respective grasps are shown in Figure 2.4, which also includes the number
each grasp is assigned to in the GRASP taxonomy by Feix et al. [31].

1http://graphics.cs.cmu.edu/nsp/index.html

http://graphics.cs.cmu.edu/nsp/index.html
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Power grasps using the palmar gutter

3. Medium
Wrap [27]

4. Adducted
Thumb [58]

17. Index Finger
Extension [27]

18. Extension
Type [56]

19. Distal
Type [27]

29. Stick [102] 32. Ventral
[58]

Power grasps using other parts of the palm

2. Small
Diameter [100]

5. Light Tool
[58]

10. Power Disk [27] 15. Fixed
Hook [56]

30. Palmar
[102]

Power grasps with lateral stabilization

16. Lateral [14] 25. Lateral
Tripod [59]

26. Sphere
4-finger [59]

28. Sphere
3-finger [59]

Precision grasps with lateral stabilization

20. Writing Tripod [30] 21. Tripod [56] 23. Adduction
Grip [59]

Power grasps with pad opposition

1. Large
Diameter [27]

11. Power
Sphere [27]

22. Parallel
Extension [56]

Precision grasps with pad opposition

6. Prismatic
4-finger [30]

7. Prismatic
3-finger [56]

8. Prismatic
2-finger [30]

9. Palmar
Pinch [27]

13. Precision
Sphere [56]

27. Quadpod
[59]

14. Tripod
[27]

31. Ring [27]

Figure 2.4.: Cumulative taxonomy. Grasps are divided into six groups considering power/precision type
and used hand parts.
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Figure 2.5.: Cutkosky taxonomy. Grasps are divided into a hierarchical tree, where from left to right, ob-
ject size and power of grasp decreases. Retrieved from https://hackaday.io/project/9890/
logs.

2.2. Manipulation

The ultimate goal for robotic hand research is to build dexterous humanoid hands that can successfully
interact with cluttered and unstructured environments. One prerequisite for that is that robot hands can
perform stable and reliable grasps. In real scenarios this seldom is enough. Humans and primates use
different non-prehensile strategies like pushing, rotating, sliding or bending objects to achieve their goals.
For robot hands this means that in addition to performing various types of grasps, they need to be able
to manipulate objects in order to be successful. This unfortunately is a sophisticated task for robots, as
apart from unknown object properties (geometry, mass, surface roughness, compliance, etc.) the robot
also requires a continuous state estimation of the manipulated object. In addition to the robot’s own
state estimation this makes manipulation a very hard problem. Therefore, current robot interaction with
objects is mostly limited to locating an object, grasping it and placing it somewhere else (pick-and-
place). In order to capture and identify possible manipulation actions there have been many attempts in
the literature to define a taxonomy. Focusing on pre-grasp interactions with objects, Chang and Pollard

https://hackaday.io/project/9890/logs
https://hackaday.io/project/9890/logs
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[12] classify object adjustments into rigid transformations and non-rigid reconfigurations. They define
rigid transformations for example as rotating a cup by its handle before grasping it. An example for non-
rigid object reconfiguration is curling a piece of paper to achieve a pinch grasp. Elliott and Connolly [29]
group manipulations into three classes of intrinsic movements, distinguishing between simple synergies
such as squeezing, reciprocal synergies such as rolling and sequenced patterns of movements which are
used to change contact points of fingers on the object. In order to define a taxonomy that applies to any
hand and focuses on what the hand is doing during execution of manipulation tasks, Bullock et al. [9]
choose a hand-centric view on the problem. Their proposed taxonomy consists of small sets of yes/no
criteria which define for example whether the hand is in contact, the task is prehensile or not, or if
there are relative motions between hand and object at contact. Recent work by Nakamura et al. [84]
analyzes several high-speed captures of motion sequenzes and uses different manipulation taxonomies
to classify their observations. The motions were classified using the static grasp pose taxonomy by Feix
et al. [31], the intrinsic manipulations by Elliott and Connolly [29] and the more high-level taxonomy
by Bullock et al. [9]. Additionally they also focused on errors, recoveries and on the importance of
contacts. Even with their very broad approach of classifying manipulation sequences, Nakamura and her
colleagues [84] find "that the process of grasping is complex [...] particularly in situations with clutter
and environmental constraints." This suggests that additional research is required to fully understand
human grasping strategies in the wild. More general taxonomies that capture the full array of human
manipulation are much needed to help and guide implementation of new control strategies for robots.

2.3. Kinematics

Kinematics studies the motion of bodies without considering masses or forces that act on it. Robot links
can be modeled as rigid bodies that are connected by joints and form a kinematic chain, which constrains
the possible degrees of freedom. In robotics, kinematic models are generally used to describe the relation
between joint angle configuration and position of the robot end-effector (also known as tool center point
- TCP). This yields two problem formulations depending on whether the goal is to determine the end-
effector position given the configuration of the joints (forward kinematics) or whether the goal is to find
a configuration of joint angles for a given TCP pose (inverse kinematics). For rigid-body robots both
problems are well studied and thus will not be further explained in this thesis. Detailed fundamentals
on kinematics can be found in [82]. Looking at the typical grasp synthesis with known object geometry
and location it is obvious that from a kinematics perspective grasping an object is a matter of finding
the correct joint angles that lead to the desired TCP position. As discussed above, for rigid-bodies this
problem can be easily solved. For soft robots however, this problem becomes significantly harder. This
is due to their compliant structure which cannot be modeled as a linked chain of rigid bodies or because
they do not even have joints which is the case for soft foam robots used in this thesis. Section 1.1.1
gives a more detailed look on how soft robotic hands are designed and modeled and discusses different
approaches found in literature to solve the IK problem.

2.4. Finite Element Simulation

In general, the finite element method can be used to approximate desired quantities of continuous struc-
tures by discretization of the structure into basic geometries. Depending on the application FEM can
be used to model a large variety of physical properties, e.g. the displacement of mechanical structures,
the velocity of flows, the temperature in heat conduction problems or the electric potential in electrostat-
ics. In this thesis FEM is used to model the continuously deformable nature of soft robots which is a
a popular approach [26, 67]. The general procedure for applying FEM is the same independent of the
modeled properties. This section focuses on approximating the displacement of mechanical structures as
this forms the theoretical basis on which the simulation framework for soft foam robots is based on. The
basic idea of FEM is built around minimizing an energy functional. This energy functional E combines
all energies that can be associated with the finite element system. In the case of foam robots the total
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energy consists of the deformation energy in the foam and the strain energy stored in the tendons. In
order to find the minimum of the energy functional the derivative of the functional with respect to the
deformation needs to be set equal to zero : ∂E

∂u = 0. Although each problem is different and requires
the selection of appropriate material models and boundary conditions, the general process of applying a
finite element analysis is the same. According to [98] it involves the following steps:

1. Mesh generation/Discretization: This step is characterized by approximating the continuous do-
main by discretizing it into a collection of predefined elements. There is always a tradeoff between
finer meshes that yield better approximations and coarser meshes which are computationally faster.

2. Derive element equations for all elements: Obtain element equations in the form of [Ke]~ue = ~Fe.
and derive element interpolation functions.

3. Assemble element equations to obtain overall system equation: From the sum of all element
equations, the overall system equation can be derived as [K]~x = ~F with [K] = ∑

n
1[Ke].

4. Identify boundary conditions of the problem: The global primary and secondary degrees of
freedom need to be identified.

5. Solve the assembled problem

6. Postprocess the results

The fundamentals of finite element simulation will not be discussed further in this work as this is a
well-studied problem, a detailed introduction can be found in [98]. In the special case of modeling soft
foam robots with FEM, large deformations and non-linear material behavior have to be considered. The
exact approach of how soft foam robots are modeled in this thesis builds on work from Bern et al. [6]
and is explained in detail in Section 3.1.2.

2.5. Robotic Hands

Ever since the word robot has first been introduced in 1920 by Czech playbook writer Karel Capek there
existed a great inspiration of building machines that can execute tasks in a human-like fashion. Aside
from the development of rather functional grippers that found application in industrial manufacturing a
large number of multi-fingered hands has been developed in the last 45 years. Such hands have especially
been aiming at achieving similar human levels of dexterity and manipulation capabilities. One of the
early tendon-driven designs featuring 3 fingers, able to perform tasks such as attaching a nut to bolt
was developed by Okada [89]. Two major multi-fingered hands that have been developed in the 1980s
are the Salisbury Hand [105] and the Utah/MIT hand [52]. Moving away from tendon-driven concepts
a number of hands have been developed around the year 2000 that use mechanical linkages instead of
cables for actuation (DLR Hand [10], GIFU Hand [61], Robonaut Hand [72]). More recent robotic hand
developments such as the Universal-Hand [47], the Shadow Dexterous Hand2 or the DLR/HIT [71] are
lightweight five-finger designs of human hand size.

2https://www.shadowrobot.com/products/dexterous-hand/

https://www.shadowrobot.com/products/dexterous-hand/
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a) Salisbury hand. From [82] b) Utah/MIT hand. From
[82]

c) DLR hand 3

Figure 2.6.: Early designs of multi-fingered robotic hands.

Apart from tendon-driven and direct actuation mechanisms, hands such as the TUAT/Karlsruhe Hu-
manoid Hand [32, 33] utilize smart under-actuation mechanisms that allow the hand to automatically
adapt to different grasp shapes and forces without having to rely on sensory feedback. In terms of pros-
thetic hands Schulz et al. [110] developed a hand that closely approximates the grasping abilities of the
human hand. Their five-finger hand has 15 degrees of freedom and is driven by flexible fluidic actua-
tors which enables reliable grasping of a large variety of objects. Another example of a hand actuated
by flexible fluidic actuators is the FRH-4 hand [35] developed for the humanoid robot ARMAR-III by
Asfour et al. [4].

a)TUAT/Karlsruhe humanoid hand. From
[33]

b) Karlsruhe prosthetic hand.
From [110]

c) FRH-4 hand. From
[35]

Figure 2.7.: Different multi-fingered robotic hand designs developed at Karlsruhe Institute of Technology

2.6. Optimization

Optimization can be described as the process of finding maxima or minima of a given function. Since
many problems in engineering, computer science and even economics can be formulated as optimiza-
tion problems, a large area of research across all domains is dedicated to developing new methods and
algorithms. This section first gives a broad overview of the field of optimization, introduces the most

1https://www.dlr.de/rm/en/Portaldata/52/Resources/Roboter_und_Systeme/Hand/Hand_I/
hand_I.jpg

https://www.dlr.de/rm/en/Portaldata/52/Resources/Roboter_und_Systeme/Hand/Hand_I/hand_I.jpg
https://www.dlr.de/rm/en/Portaldata/52/Resources/Roboter_und_Systeme/Hand/Hand_I/hand_I.jpg
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important fundamentals and then focuses on a more detailed explanation of methods that are applied in
this thesis to optimize soft foam robots.

2.6.1. Local Optimization

One of the classical optimization techniques dates back to Lagrange [64], who developed the method
of Lagrange multipliers which can be used to find local maxima or minima of a function f (x,y, ...)
subject to the constraint of g(x,y, ...) = c. In contrast to Lagrange’s calculus-based approach, Newton for
example developed an iterative method know today as Newton’s Method. Most traditional engineering
problems are concerned with solving a linear equation system of the form Ax = b. The classical solution
method for such problems is commonly known as Gaussian Elimination and can be implemented as
LU −Factorization (LU referring to the decomposition of A into a lower and upper triangular matrix).
Another popular method to decompose matrix A is known as the Cholesky-Factorization which is a
computationally more efficient factorization but has the limitation that it only works for positive-definite
matrices A. Forward substitution and back substitution of the decomposed system of linear equations
leads to the direct solution of the problem. Therefore solvers using such techniques are commonly
known as direct solvers.

Today, due to the advances in computational resources and their efficiency in terms of memory, iter-
ative methods are especially popular for solving large linear equation system. As for direct solvers, the
performance and choice of method hereby largely depends on the problem and resulting properties of ma-
trix A. Most standard discretizations of partial differential equations (PDE’s) for example result in sparse
matrices where the term sparse refers to the few non-zero elements present [104]. In case the non-zero
elements follow a structure the advantages in terms of storage capacity can be significant because only
nonzero elements need to be stored. This property is commonly exploited when solving the assembled
problem equations of finite element systems. Most popular iterative methods are the conjugate gradient
or the bi-conjugate gradient methods [118].

While for convex problems finding the minimum (or maximum) is simply a matter of finding the lowest
possible function value, this is not true for non-convex problems. Unfortunately, modeling accurate
real-world problems oftentimes requires the introduction of non-convex objectives or constraints. For
objectives with many local minima, local search methods cannot guarantee the optimality of the current
solution because they only test for optimality within a local region. This means that local search methods
can terminate in different local minima depending on the initial starting point of their search. This is not
helpful in most cases, where a deterministic behavior that yields the same solution independent of the
initial starting point is desired. Methods that can satisfy such requirements are called global optimization
methods and are introduced in the following sections.

2.6.2. Fundamentals of Optimization and Mathematical Programming

It is assumed that most of the terms and definitions described in this section are known and are only
mentioned here for the sake of completeness. An exhaustive work on global optimization can be found
in Horst and Pardalos [46]. In terms of mathematical programming Sauppe [107] provides a maintained
glossary which contains all terms related to this field.

Since max( f (x)) = −min(− f (x)) the problem of finding a maximum can always be transferred into
finding a minimum. Therefore, the terms maximum and minimum are used interchangeably throughout
this thesis. What makes solving such optimization problems so hard is that oftentimes there is no clear
representation of the objective function f . So, when it comes to solving a difficult optimization problem,
the true optimal solution is rarely found within acceptable time or memory. A good indicator on how
difficult a problem is to solve with a certain algorithm is the time and memory complexity. With an
increasing number of input variables the computational complexity increases. In computer science this
relation is expressed in the Big-O notation (also known as Bachmann-Landau-Notation [5, 65]) which
provides a bound on the maximum growth rate of functions depending on their input size. This de-
pendency can be used to divide problems into complexity classes. While a large amount of research is
considered with computational complexity and an incredibly large number of classes exists [1], only the
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two most important ones, P and NP problems are introduced here. P-Problems can be solved within
polynomial time by a deterministic Turing machine. According to Cobham’s thesis this means that P-
problems are the only class of problems that can efficiently be solved computationally [63]. In contrast to
that NP-Problems are problems that are solvable in polynomial time only by a non-deterministic Turing
machine (NTM) [90]. In theory an NTM is a machine that can select subsequent states from a set of
multiples for any given state. Furthermore, it is not possible to infer the next state of the machine based
on the input and its current state, which gives it the name non-deterministic. The class of NP−complete
is a subset of NP and contains problems for which there has not been found an algorithm that is able to
solve it in polynomial time on a deterministic machine. Whether an algorithm exists such that P = NP
is one of the big questions in computer science. A selection of NP− complete problems can be found
in Section 2.6.3. In order to approximate a quasi-optimal solution for such problems in an acceptable
amount of time, stochastic optimization techniques (see Section 2.6.4) become essential.

The challenges with NP−complete problems are manifold. Oftentimes the objective function of such
problems is not continuous, not differentiable and is highly multimodal (multiple maxima or minima).
In addition, many real-world problems are subject to multiple objectives. Frequently, these objectives
are contradictory meaning that it is impossible to find a single optimal solution (set of parameters) that
maximizes all objectives at once [124].

Figure 2.8.: Depiction of the Pareto Front for an op-
timization problem with two objective functions. In
terms of robots f1(x) could hereby refer to the time
required to execute a trajectory while f2(x) could
stand for the required energy to execute the trajec-
tory. From [48]

Instead, a solution candidate is considered to be
Pareto-optimal if there exists no other feasible so-
lution which would improve one parameter while
not simultaneously causing a worsening of an-
other parameter. Hence, for multi-objective prob-
lems it is desired to find the set of Pareto-optimal
solutions also known as Pareto-Front. Unlike in
Figure 2.8 which depcits a convex Pareto-Front,
many of the difficult features found in single-
objective functions, such as multi-modality or
discontinuity are also present in multi-objective
problems.

There are many other problems associated with
applying optimization algorithms which have not
been discussed. One problem that often occurs
with highly multi-modal objective functions is
premature convergence. This term refers to al-
gorithms terminating early because they become
stuck in local minima from which they cannot re-
cover. Further problems arise with dynamically
changing objective functions since the fitness of
solutions depends on the timestep t. Solutions that
are optimal in step t might not be optimal in t +1,
which means that algorithms need to be adapted
to be able to tackle such problems. As always when dealing with optimization algorithms that involve
the evaluation of objective function values with the help of training data samples one can observe the
phenomena of overfitting and underfitting.

To conclude, there are many difficulties associated with optimization and there is no algorithm that
can find an optimum to all problems. Instead there are algorithms that perform reasonably on a number
of problems or specialized algorithms that perform excellent on a single problem. This circumstance has
been expressed by [127, 126] in what is commonly know as the No-free-lunch-theorem.

2.6.3. Problem Classes

Challenges that arise when solving difficult problems have been introduced above. This section intro-
duces some typical NP− complete problems that require the application of global optimization [86]:
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Packing Problems

Packing problems involve packing a number of known k-dimensional objects into larger regions of the
known k-dimensional space so that there is no overlap between objects and an additional cost critera
(e.g. weight) is minimized. Many packing problems occur in real-life scenarios. A famous example
is the knapsack problem where given a number of N items with weights and values, one has to place a
maximum number of items into a container whilst maximizing the value.

Routing Problems

This class is concerned with finding an efficient path along a complex graph. Nodes represent locations
and edges connecting the nodes have weights that represent the cost affiliated with traveling along the
edge. There are two main types of routing problems depending on whether the goal is to visit a set of
nodes or a set of edges. The most famous routing problem in computer science is the traveling salesman
problem (TSP).

Figure 2.9.: Example of a graph consisting of nodes
(A,B,C,D) and costs(e.g. distance) along edges con-
necting two nodes.

The name of this problem refers back to a time
where salesmen had to travel from door-to-door
to sell their goods. Given a set of locations (e.g.
cities or addresses) the salesman’s goal was to
find the shortest route that visits all locations. For
larger problem sizes this task is incredibly hard to
solve as the number of permutations for n loca-
tions is n!. This means that for as little as 20 lo-
cations an exhaustive search of all possible paths
is impossible. TSP problems can be modeled as
graph with vertices {A,B,C,D, ...} representing
the locations to visit and weighted edges contain-
ing the distance as depicted in Figure 2.9. In addi-
tion to the traditional TSP a variety of more gen-
eral problems with asymmetric costs along edges
exist. Solving TSPs is often used to benchmark
the performance of new optimization algorithms.
TSPs are an extensively studied class of problems offering various heuristics to approximate solutions.
However, no solver can provide optimal solutions for all problem sizes and variations.

Scheduling Problems

The goal of scheduling problems is to match or assign a group of agents to a set of tasks so that the overall
cost is minimized. Each worker is assigned with a fixed cost for the respective task. In the most basic
case, called the linear assignment problem, the number of agents is equal to the tasks and the total cost
of the assignment for all tasks is equal to the sum of the cost for each agent. To give a real-life example,
the assignment problem is common in ride-sharing services. There are a number of drivers and a number
of customers that need to be picked up and dropped-off somewhere. Since ride-sharing services want
to minimize pickup times for customers and limit the time where cars are driving without a customer,
they need to find the most efficient way to assign drivers to pickup customers. This can get increasingly
complex considering that cars are differently sized and can transport 4 or more people and that maybe
groups of people want to be dropped off or picked up along the route.

To provided some additional examples from the field of robotics [86]:

Trajectory Planning: Finding collision and obstacle-free trajectories along the robots workspace.

Control: PID-controllers are very popular in robotics. Although their structure is simple and they pro-
vide excellent closed-loop response characteristics it can be very challenging to tune PID param-
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eters. Therefore various methods exist to tune these parameters using global optimization tech-
niques [16, 13].

Design: Due to the amount of available parameters robot design is a complex problem. Topics that can
be addressed span from defining appropriate link lengths for a specified workspace to assigning
basic mechanical patterns like joint type and amount of joints.

2.6.4. Global Optimization

The problems presented in Section 2.6.3 are exemplary to a large number of other real-life problems
for which it is interesting to find the global optimum. Due to the wide range of applications in engi-
neering, science and economics a vast amount of methods exists today. In a broad sense the field of
global optimization can be further divided into two subfields: deterministic optimization and stochastic
optimization. While deterministic approaches such as Branch and Bound have been proven to be very
effective in finding exact solutions, they are not able to scale effectively to large problems. Therefore
deterministic approaches will not be further discussed here, more details can be found in [69]. This
thesis will focus on the class of stochastic optimization, which does not guarantee optimal solutions but
approximates the optimum in a reasonable amount of time. Especially popular with stochastic optimiza-
tion techniques is the class of metaheuristics. Some key ideas and algorithms are introduced in the next
section.

Stochastic Optimization and Meta-Heuristics

In general, randomness can be introduced into optimization in two different ways. Whenever mea-
surements are involved, the input data of algorithms is subject to some level of random noise. This
is especially relevant in real-time state estimation and control problems where noisy measurements are
used to approximate the steady state of the system. Opposed to that randomness can also be injected into
the search itself. Algorithms that rely on random sampling of data are known as Monte-Carlo Methods.
Hartke [42] defines following aspects for global stochastic optimization methods in which they need to
excel in order to be successful:

• Quickly find the local minimum for any initial starting point

• Escape the local minimum again

• Focus on the overall structure of the objective and do not get lost in irrelevant details

• Find a balance between exhaustively searching all minima and randomly exploring unknown re-
gions (exploitation vs. exploration). Information collected in previous steps should be used to
guide the search.

Stochastic optimization methods that are specifically designed to fulfill these requirements are called
meta-heuristics. Today, a wide variety of meta-heuristics can be found in literature and new algo-
rithms are still being proposed. There are many ways to classify meta-heuristics, e.g. single-solution
vs. population-based, or nature-inspired vs. non nature-inspired approaches. A popular single-solution
approach is Simulated Annealing, which improves and modifies only one single solution at a time. In
contrast, population-based approaches such as evolutionary algorithms or particle swarm optimization
use populations to guide the search. As suggested already by their names, many meta-heuristics are in-
spired by processes that can be observed in nature and try to imitate such processes to guide the search.
While only the most relevant meta-heuristics for this thesis are introduced in the following an exhaustive
database of currently existing meta-heuristics can be found in [39].
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Markov-Chain-Monte-Carlo

As discussed in Section 2.6.3 typical objective functions of real-life problems oftentimes depend on a
large number of parameters and can be discontinuous and unbounded. This makes calculating approxi-
mate gradients very expensive or even impossible. Whenever the set of feasible solutions in optimization
is too large to exhaustively compare all solutions, Markov-Chain-Monte-Carlo (MCMC) approaches can
be applied to sample candidate solutions efficiently [3]. The key ideas of MCMC methods are, as their
name suggests, based on Markov chains and Monte Carlo methods. A Markov chain X can be formulated
as a sequence of states Xn for which the probability of moving to the next state Xn+1 only depends on the
current state and not the previous states X0,X1, . . . ,Xn−1. Mathematically, this can be expressed as

P(Xn+1 = x|X0 = x0,X1 = x1, . . . ,Xn = xn) = P(Xn+1 = x|Xn = xn)

where P(.|.) denotes a conditional probability [37, 3]. The original idea behind Monte-Carlo approaches
was to use randomly generated samples to compute integrals. Given an integral of the form∫ b

a
h(x)dx (2.1)

h(x) can be decomposed into the product of a function f (x) and a probability density function p(x). This
means that the integral can be expressed as the expectation E of f (x) over the density p(x) as:∫ b

a
h(x)dx =

∫ b

a
f (x)g(x)dx = Ep(x)[ f (x)] (2.2)

[37]. Considering the strong law of large numbers, drawing a large number of samples from p(x) yields∫ b

a
h(x)dx = Ep(x)[ f (x)]≈

1
n

n

∑
i=1

f (xi). (2.3)

This process is called Monte-Carlo integration. In terms of optimization the generated samples can
directly be used to approximate the maximum of the objective function f (x) after

x̂ = argmaxxi,i=1...n f (xi) (2.4)

The first approach which served as the basis of modern Monte-Carlo sampling techniques was proposed
by Metropolis and Ulam [78] and Metropolis et al. [79]. While Monte Carlo methods were often more
efficient than conventional numerical methods, they required sampling from high dimensional probabil-
ity distributions which was still difficult and expensive in terms of computation time. Therefore Hastings
[43] generalized the metropolis algorithm, by proposing asymmetric proposal distributions which in-
creased the efficiency of the algorithm especially for bad initial states. Today this algorithm is known as
Metropolis-Hastings algorithm and is one of the most significant MCMC methods and meta-heuristics.
This is because all MCMC methods in use today are to some extend extensions or special applications of
the Metropolis-Hastings algorithm [3].

Instead of purely randomized generation of samples the main strategy of MCMC methods is to explore
important regions of the finite state space. This is realized by simulating a Markov Chain that samples
new candidate states X ′ from a proposal distribution q(X ′|Xi) that is based on the current state Xi. Gen-
erated candidates X ′ are then either accepted or rejected as new states Xn+1 based on the acceptance
probability

α = min
[

1,
p(x′)q(xi|x′)
p(xi)q(x′|xi)

]
It has been proven that the Metropolis-Hastings algorithm asymptotically reaches a stationary distribution
that is equal to p(x) independent of the initial starting point of the chain [121]. For multimodal target
distributions the choice of initial starting values becomes more important as the Markov Chain gets easily
stuck in local modes. The most straightforward solution to overcome this problem is to initialize multiple
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Markov Chains with different initial states.

Simulated Annealing

With respect to global optimization, instead of approximating some distribution p(x), one is interested
in finding the global optimum of p(x). Hence, this requires formulating the problem as shown in Equa-
tion (2.4). A very popular MCMC-based approach in global optimization is Simulated Annealing. It
adopts the idea of annealing in metallurgy, in which the crystal grain size is adjusted by heating material
above its recrystallization temperature and subsequently cooling it at a certain rate. Computationally,
the concept of temperature can be implemented as the probability of accepting uphill moves (transitions
to states that are worse than the current). At the beginning of the algorithm the temperature is high,
which results in a higher probability of moving towards a worse solution. This is important as it allows
a sufficient exploration of the solution space and prevents the algorithm from becoming stuck in local
minima. As the search continues, the temperature progressively decreases, resulting in less overall move-
ment. The major difference between Simulated Annealing and the Metropolis-Hastings algorithm is the
formulation of the acceptance probability, which is given by

αSA = min

[
1,
(

p(x′)
p(xi)

)T (t)
]

(2.5)

where T (t) denotes the cooling schedule [123]. Although the idea of Simulated Annealing is quite
simple, Press et al. [97] point out that an effective implementation of the algorithm requires specifying a
number of problem-dependent elements:

• Description of possible system configurations

• Generation of random changes in configurations

• Specification of an objective function that needs to be minimized

• A cooling schedule that encodes how the temperature T is lowered with respect to the iterations
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3. Soft Foam Hands - Design and Fabrication

This chapter introduces the novel class of soft foam robots and specifically soft foam hands. The mo-
tivation for using foam as core material is founded in its lightweight nature and the large reversible
deformations it can undergo. Additionally foam is low-cost, fast and easy to fabricate and available in
various stiffnesses and densities. First experiments with using foam as a core for soft manipulators have
been conducted prior to this work. While the initial prototype was designed as an anthropomorphic hand,
the concept of using foam structures is generalized to several other non-anthropomorphic designs in joint
work with Cornelia Schlagenhauf [108]. The long-term goal of this project is to provide others with the
tools to design, fabricate and control these highly-customizable, dexterous and inherently safe class of
robot hands. To achieve this goal, various research has been and is still concerned (see Chapter 6) with
topics such as control, modeling and design. This thesis in particular focuses on the automated design of
soft foam hands. In this chapter the current state of the art of foam hands is described. First, the design
space is defined, followed by a brief introduction of how foam hands can be modeled and concluded by
instructions and details on the fabrication process.

3.1. Hand Design

Traditional rigid-body robot hands display impressive capabilities. Newer models are highly dexterous,
capable of a large number of grasps or manipulations and come with a large array of sensors (force,
tactile, etc.). Still, such highly-developed robot hands can rarely be seen outside of research labs. Is-
sues such as the uncertainty and complexity of real-world environments or the lack of robust grasping
certainly explain these circumstances. However, it is mostly the cost of such hands and the complex-
ity requiring expert knowledge to operate them, which prevents dexterous robot hands from becoming
more widespread in use. Another key problem with traditional robotic hands is that they are not easily
customizable for a desired task.

Therefore the primary motivation behind soft foam hands is to create a class of robots that circumvents
the shortcomings of traditional rigid-body hands by being inexpensive, customizable and inherently safe.
To ensure accessibility for non-experts, these hands rely on off-the-shelf materials in terms of support
and actuation and can easily be fabricated. The design space of foam hands spans across several different
domains. When designing a new hand the most important parts to consider are the actuation, hand
morphology and rest pose. Up to this point three foam hands have been designed which are shown in
Figure 3.1, with the initial design on the left and two designs developed during this thesis in joint work
with Schlagenhauf [108] in the center and right image of Figure 3.1.

3.1.1. Actuation and Morphology

Since soft robots do not have any joints, the variety and complexity of achievable poses largely depends
on the actuation which is defined by the tendon routing. A major weakness of the initial design shown
in Figure 3.1 left is the inability of the thumb to abduct and oppose the palm. This is mainly caused by
an inefficient tendon routing with two antagonistic tendons, as shown in the left column of Figure 3.2.
Changing the routing increases the complexity of feasible motions of the thumb significantly, enabling
either lateral or opposing grasps. This is visualized in Figure 3.2 right. Besides the actuation, experiments
have shown that the rest pose of the hand design predefines the range of motion independently of the
tendon arrangement. Since the shape of the foam is fixed and cannot be changed (unlike the tendons),
being able to model and evaluate the deformation of the foam in simulation prior to fabricating the actual
foam model is therefore crucial. Depending on the underlying task, certain poses are identified to be
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Figure 3.1.: Soft foam hand robot prototypes. Left: Initial prototype, anthropomorphic hand in a ’cupped’
rest pose. Middle: Anthropomorphic hand in a stretched out rest pose. Tendons only run on the inner
side of the hand. Right: Non-anthropomorphic four fingered gripper.

more suitable than others. This especially applies to human-like hand geometries. Hands with such flat
rest poses have a problem when grasping large objects such as a tennis ball. This is due to the inability of
the fingers to curl around the object and oppose the palm. However, an advantage of flat rest poses over
curled rest poses is that they don’t need tendons that run on the back of the hand, because the geometry
and the compliance of the foam itself restores the hand to it’s original shape. This makes it possible to
add more tendons to the front of the fingers increasing the overall dexterity of the design. A design with
a flat rest pose is shown in Figure 3.1 center.

Depending on the task, robot hands are required to achieve certain types of grasps and motions. While
the morphology and the rest pose of the hand kinematically constraint the workspace of the hand, the
motions within the workspace are most importantly determined by the tendon arrangement. This high-
lights an important advantage of the tendon driven approach, compared to e.g. pneumatically actuated
designs, because of the ability to easily change the kinematics any time by switching to another differ-
ently routed glove. Overall, the design process of soft hands is subject to a multitude of contradictory
parameters. Without experience and several design iterations it is difficult and tedious to achieve useful
designs. Hence, modeling and providing appropriate simulation tools for soft hands is very important
and are addressed in the work of Schlagenhauf [108].

3.1.2. Modeling

Section 1.1.1 discussed some approaches to model soft or continuous robots. In order to model the defor-
mation of foam under the contraction of tendons this work follows the existing approach of Bern et al. [6]
who use a finite element model (as described in Section 2.4) to capture the deformation behavior of soft
plush toys. Their representation of soft plushies has been adopted and further refined by Schlagenhauf
[108] to model soft robot hands. The resulting simulation framework was used in this thesis to predict
hand deformations.

Since the model representation of hands provides the means for evaluating the design and dictates how
the optimization problem is formulated, the following paragraphs will detail the modeling approach. For
further details see Bern et al. [6] and Schlagenhauf [108].

Each foam hand is modeled as a discrete set of nodes denoted as X for the undeformed robot and x as
the statically stable deformed pose. The total deformation energy of the system is defined as:

E = E f oam +Etendons +Epins (3.1)

where E f oam is the energy due to deformations of the simulation mesh, Etendons is the strain energy stored
by the contractile elements, and Epins models the behavior of stiff springs that connect a small number
of simulation nodes to world anchors in order to eliminate rigid body modes. The forces acting on each
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Design 1 Design 2

Figure 3.2.: Different tendon routings effect feasibility of motions. The antagonistic tendon routing on
the initial prototype on the left enabled only a very limited range of motion. On the right, a changed
tendon routing increases complexity of feasible motions, enabling opposing and lateral grasps. From
[108].

node is given by the gradient of the energy functional with respect to the nodal degrees of freedom

F =−∂E
∂x

. (3.2)

The force Jacobian can be obtained through the Hessian of the energy

∂F
∂x

=−∂ 2E
∂ 2x

. (3.3)

Differentiation of the individual terms of Equation (3.1) thus yields the separated contribution of the
deformation and the contraction to the total forces present :

F = FFoam +Fcontractile +Fpins (3.4)

Foam

The elastic behavior of the foam is modeled using linear finite elements with a compressible Neo-
Hookean material model. In order to derive element equations as described in step 2 of Section 2.4
the deformation gradient F is computed according to

F =
∂xe

∂Xe (3.5)
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with e denoting the e-th element. Based on the compressible Neo-Hookean material model the energy
density of each element is then given by

Ψ(x,X) =
µ

2
tr
(
FTF − I

)
−µ lnJ+

κ

2
(lnJ)2 (3.6)

with µ and κ being material constants, I the identity matrix and J = det(F). The total deformation
energy E f oam is calculated by integrating Equation (3.6) over its constant domain and summing up the
contribution of all elements together.

Tendons

Figure 3.3.: Four fingered simulation mesh with
three tendons routed on the fingers. Tendons run on
the surface mesh and are highlighted in white color.

Tendons are modeled as contractile elements that
abstract the contraction of a tendon as chang-
ing the rest length of the underlying unilateral
spring model. A contractile element is defined
as a piecewise linear curve with two endpoints
(xs,xt ) and n intermediate vertices (x1, . . . ,xn). An
exemplary depiction of tendons routed along the
mesh can be found in Figure 3.3. For the sake of
simplicity it is assumed that all points of contrac-
tile elements are bound to nodes of the simulation
mesh. The initial rest length l0 of a tendon is de-
fined by the sum of distances between the vertices
as

l0 = ||xs−x1||+
n−1

∑
i=1
||xi−xi+1||+ ||xn−xt || (3.7)

The contraction level αc of each tendon describes
the contracted length as

lc = l0 · (1−αc) (3.8)

The unilateral strain energy U of each tendon is modeled as a piecewise C2 polynomial U(Γ) which
models the strain with respect to the deformation Γ. More details on how the unilateral strain energy is
modeled can be found in Section 4.3 of [6].

Pins

The pins restraint the foam in space. A pin is modeled as stiff zero-length spring. Any node in the
simulated mesh can be specified as a pin by the user. With respect to the physical version of the foam
robot they correspond to the fixation of the hand on the platform.

In the following chapters, the word routing refers to the choice of endpoints and intermediate vertices
of each tendon. After the total energy equation of the system has been obtained the resulting deformation
for a tendon routing with the contractions αc can be calculated. This is done by using an direct sparse
LDLT Cholesky solver to obtain the mininmum total energy state of the system.

Freeform simulation meshes can be created using SculptGL1, a free online sculpting tool, and refined
or remeshed with MeshLab2.

1https://stephaneginier.com/sculptgl/
2http://www.meshlab.net/

https://stephaneginier.com/sculptgl/
http://www.meshlab.net/
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3.2. Fabrication

After initial hand geometries, rest poses and tendon routings have been sufficiently explored in simulation
and a purposeful design has been defined, the physical hand can be fabricated. The emphasis of the
fabrication process is to ensure the use of low cost, readily available materials and keeping the overall
process simple and quick. Depending on the individual experience and skills of the user fabricating a
new foam hand from scratch is a matter of 1-3 days. While even most of the time is taken up by the
curing process of the mold and the foam.

3.2.1. Creating the Mold

Depending on the hand design two options for creating a mold have been established. In case a human
hand serves as model for the foam, alginate is used to get a negative of the hand which is then filled
with plaster to create a replica of the hand. This process is depicted in Figure 3.4 (1) to (4). One
side of the plaster hand is then covered with clay while the other side is covered with silicone (5).
After curing, the clay is removed, mold release is applied and the remaining side of the hand is covered
with silicone (6). Then the plaster is removed and the silicone mold is cleaned from residue (7).

Figure 3.4.: Fabrication Process: 1) Cast of human hand in alginate, 2) Remove hand from alginate mold,
3) Pour plaster of paris into alginate mold and allow to cure, 4) Carefully remove plaster of paris cast
from alginate mold, 5) Cover one half of plaster of paris hand with clay and the other half with silicone,
6) Remove clay, apply mold release agent to silcone and fill second half with silicone, 7) Remove the
plaster of paris hand from two part silicone mold and clean the mold, 8) Use the master two-part silicone
mold to cast foam hands, 9) Final result. Image by J.King

Figure 3.5.: 3D printed mold and foam
cast for a 2D planar gripper foam robot.

Another option for creating molds is to directly print a
mold using standard resin or filament-based 3D print-
ers [108]. Whenever non-anthropomorphic hands serve
as basis for the mold, the hand geometry can either be
turned directly into a mold manually using CAD-Software
or using automatic mold-generation methods [130, 70].
An example for a 3D-printed mold is shown in Fig-
ure 3.5
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3.2.2. Casting Foam Hands

For casting hands a two-component polyurethane foam compound 3 is used. There a various types of
foam densities available depending on the application. In terms of soft hands FlexFoam-iT! X performed
best as it provided the best overall balance between stiffness and compliance. Examples of casted foam
structure are shown in Figure 3.4 and Figure 3.5. A great advantage of this technique is, that the ap-
proximate cost for creating a 3d-printed reusable mold are around 50$ which enables the production of
each further foam hand for a fraction of the cost. The ability to make a large supply of foam hands in a
time and cost efficient manner is very important for lowering the entry barrier for researchers desiring to
experiment with soft robots.

3.2.3. Gloves and Sewing Tendons

In order to place tendons on the foam a textile skin, e.g. a glove, serves as the connection between the
foam core and the actuation. This can either be an off-the-shelf glove in the case of anthropomorphic
hands or sewn skins for general robots. In the case of non-anthropomorphic designs a custom knit glove
was used. These custom gloves were knit using the automated knitting process developed by [77].

Tendons are directly sewn into the textile skin using a needle and are fixed with a finishing knot. As
material PTFE coated braided fishing line is used. To prevent the glove from slipping on the foam, a
spray-on adhesive 4 is used to tightly bound both components together.

3.2.4. Robot Platform

 

Tendon (x10) 

Servo (x10) 

PTFE Tube (x10) 

Acrylic 

Base 

Winches (x10) 

Figure 3.6.: Assembled platform of an anthropomor-
phic prototype with 10 Dynamixel motors mounted
on acrylic plates. Tendons run through PTFE tubes
and are connected to winches mounted on the mo-
tors.

Generally, soft foam hands could be mounted
on any existing robot platform, either humanoid
robot or robot arm. For first experiments and de-
sign validation a simple platform focusing on the
hand itself was designed by Schlagenhauf [108].
This platform is easily manufactured and relies on
standard do-it-yourself supplies as well as laser-
cut and 3D-printed parts. The motors 5 and the
hand are mounted onto a stack of lasercut acrylic
plates. Tendons are routed through PTFE tubes
from the hand to the pulleys that connect to the
motors. The foam hand is fixed on the top acrylic
plate using hot-melt glue. This top plate can be
easily switched out emphasizing a modular design
that allows quick testing of different hand designs.
The full setup including an exemplary anthropo-
morphic foam hand can be found in Section 3.2.4.

3Smooth-On FlexFoam-iT! Series
43M Adhesive 23
5Robotis DYNAMIXEL AX-12A
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4. Automated Design of Tendon-Driven Soft
Foam Hands

The absence of joints and links as well as the infinite amount of possible tendon routings creates a
complex and unbounded design domain. For a robot hand to execute a desired task, the task can be
represented as a sequence of grasps or poses, that the hand must be able to achieve sequentially. Finding
the necessary tendon routings that are non-trivial is a challenging task, especially for non-experts. The
proposed design pipeline provides a tool that enables users to automatically design task specific soft
hands.

Overall this process is drafted to consist of the following steps:

• Specify and record desired grasps or manipulations.

• Automatically create a hand morphology and rest pose that is capable of reaching the desired
poses.

• Generate tendon routings and respective contractions that achieve the specified goals for the fixed
hand shape.

• Fabricate and build the actual soft hand.

This work is not aiming at creating a precise control and grasping strategy for soft hands but at developing
an automated design process for soft hands that can achieve as many specific grasps and manipulations
as possible. The particular optimization strategy is hereby independent of the design goal, meaning
that other more efficient optimization techniques for this problem may exist. However, the algorithmic
approach presented in this work has been particularly optimized for the problem at hand and produces
promising results. Further extensions and improvements will be discussed in Section 6.3.

4.1. Collecting Goal Poses and Motions

In order to implicitly design complementing tendon routings and contractions around a fixed hand shape
it is important to be able to easily specify an explicit functional goal for this otherwise unconstrained
problem. Desired grasp configurations are therefore directly adopted from recorded human demonstra-
tions (Figure 4.1).

Although this poses the challenge of mapping kinematics of human hands with joints and links to the
continuous nature of foam hands, users can rely on their intuition when grasping with their own hand.
Compared to creating synthesized data of grasps in simulation (or virtual reality) this process enables
users to execute grasps under full haptic feedback of the object. In this work, a readily available Cy-
berGlove1 featuring 22 resistive bend sensors was used to record the corresponding hand configurations.
However, the recently increased interest in inferring human hand poses from image sequences for vir-
tual reality applications has led to the development of computer vision algorithms [116] that can directly
derive joint configurations from single camera images. Due to time and resource constraints this has not
yet been implemented but offers great opportunities for future works to simplify the process of recording
goals.

Since the recorded joint configurations cannot directly be transfered to the foam hand mesh in simula-
tion, the goal is to focus on optimizing for tendon routings and contractions that yield poses or motions

1http://www.cyberglovesystems.com/

http://www.cyberglovesystems.com/
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Fingertip
Position
+

Orientation

a b c

Figure 4.1.: A power grasp of a cylindrical object (a) (from [100]) is recorded using a CyberGlove
(b). Fingertip positions and orientations are extracted and used to deform a hand simulation mesh into
the desired goal pose (c). These positions and orientations then serve as targets for the optimization
algorithm.

that closely reproduce the recorded fingertip trajectories. With the help of the CyberGlove SDK the 3D
positions and surface normal orientations of the human fingertips are derived for each grasp. The com-
bination of positions and normals then serve as goal trajectories for the optimization. This process is
shown in Figure 4.1. Here, as an example, a power grasp of a cylindrical object is recorded and the target
fingertip positions and orientations for the corresponding hand pose are obtained. The fingertip poses
represent the goal for the proposed optimization algorithm.

In this context, a task can be represented as a sequence of hand poses, through which the hand transi-
tions during the task. Hence, a manipulation task is obtained by recording poses sequentially.

4.2. Assisted Design of Compliant Hand Morphologies

Tendon actuated foam robot hands can produce motions that differ considerably from motions produced
by rigid links and joints, and the reachable workspace of a foam hand cannot easily be inferred from
its rest shape. While designing new soft hand models from scratch, certain types of grasps could often
times not be achieved due to short or misplaced fingers or inefficient rest poses. For example, if one
desires to build a soft hand that is able to pick up apples, the fingers of the hand should be long enough
to properly enclose the apple to firmly grasp it. Ideally the foam should be able to assume a shape which
enables similar contact points and configurations as they occur when humans grasp an apple. Based on
the GRASP taxonomy by Feix et al. [31] a typical grasp humans could use for such a task is grasp 26
(Sphere 4 Finger, Power Grasp, Pad Opposition, Abducted Thumb). In order to design a foam geometry
that is able to assume a kinematical equivalent pose when grasping an apple one needs to consider the
position of the thumb, fingers, palm and their proportions. Without a proper reference that distinctively
constraints the continuous design space of the foam it is almost impossible to produce purposeful designs.
To provide aid with the design of task specific hand rest shapes, an assisted design process is proposed,
in which a new hand mesh is obtained by "growing" along a set of 3D feature points. This way it is
ensured that the designed mesh maintains the correct proportions independently of its rest pose and the
user is able to successfully create unbiased hand meshes very quickly.

The feature points are obtained using a CyberGlove and the virtual human hand model provided by the
CyberGlove SDK. For a given pose, 3D positions of the MCP, PIP and DIP joints and the distal end of
the distal phalanges are recorded. An exemplary depiction of the resulting points is given in Figure 4.2
a).

Then a 3D grid is established in which an A* search algorithm is used to find the shortest path to
connect the base of the palm with the set of recorded joint positions. Points on the 3D grid that are located
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a) b) c) d)

Figure 4.2.: "Growing" a new hand mesh along recorded joint positions. a): 3D joint positions recorded
using a CyberGlove. b): Pointcloud obtained by path planning between the points. c): A rough surface
mesh created by surface reconstruction. d): The resulting smoothed hand mesh.

along the shortest path are added to the set of joint positions. This set then contains a representation of
points on the grid that are able to reach the desired grasp. In order to further increase the volume of
the mesh, occupied points are then iteratively dilated towards directions of unoccupied grid points (
Figure 4.2 b). The overall grid size and the amounts of dilation operations can be specified by the user.
To create the meshes shown in this thesis a grid size of 200x200x200 is used and a total of two dilation
operations were executed. Then the Delaunay tetrahedralization of the set of 3D points is calculated using
tetgen [115]. The resulting convex hull is then shaped using an alpha shaping algorithm (Figure 4.2
c)). The final step consists of a series of mesh operations that are executed in MeshLab [18]. First
the volumetric mesh is converted to a surface mesh. Finally, the overall surface is smoothed using
an laplacian smoothing operation [119]. The resulting surface mesh is depicted in Figure 4.2 d). It
is possible to refine or coarsen the mesh depending on the required accuracy of the simulation. This
naturally is a trade-off between simulation speed and accuracy. Meshes that were created for the purpose
of this thesis typically consisted of 1000 to 2000 nodes.

4.3. Optimization Algorithm

The optimization approach is built around the idea that a number of tendons is randomly placed on the
hand mesh, contracted and the resulting pose being compared to the desired goal pose. As core algorithm
a Metropolis-Hastings-Algorithm (Section 2.6.4) is used, which either accepts or rejects newly created
tendon routings and activations based on their cost. To deal with the large amount of local minimums,
additionally the concept of cooling a temperature as found in Simulated Annealing (Section 2.6.4) is
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introduced. This allows the algorithm to accept solutions in the early stages that are worse than previous
solutions and thus, escape local minima. The general process is best described by the pseudo-code found
in Algorithm 1.

Algorithm 1 Tendon routing optimization

1: ~T ,~α = initialize (M)
2: function SIMULATEDANNEALING(M,~T ,~α) . M: Mesh, ~T : Tendons, ~α: Contraction levels
3: CurrS = {M,~T ,~α}
4: while T > Tmin do
5: while i < MaxIterationPerE poch do
6: NewS = CreateNewS(CurrS)
7: Cost = CalcCost(NewS)
8: Acceptance = CalcAcceptance(CurrS, NewS, T)
9: if Acceptance = true then

10: CurrS = NewS
11: i++

12: T = αT
13: i = 0

While the temperature T is larger than a minimum temperature Tmin the algorithm iteratively modifies
the current solution, calculates its new cost and then either accepts or rejects the new solution. A solution
is hereby encoded by the anchoring nodes along which the tendons are routed as well as the respective
contraction levels in each timestep.

The individual steps are described in detail in the following.

4.3.1. Initialization

A tendon is represented by a number of waypoints along which it is routed, these points are termed
anchoring nodes in the following. For each tendon the optimization is initialized by sampling n anchoring
nodes from a discrete uniform distribution U (0,N) with N being the number of nodes in the mesh. Since
in reality tendons are routed through the glove along the surface of the foam, tendons in simulation are
restricted to run along edges on the surface of the mesh. Additionally, the first node of each tendon n1
can only be sampled from fixed nodes at the base of the mesh. This is done to guarantee that on the
physical robot, tendons begin close to the base of the hand where they can be connected to motors. After
sampling the anchoring nodes, the corresponding tendon is obtained by running an A* algorithm to find
the shortest path along the mesh that connects the sampled nodes.

4.3.2. Creating New Candidate Solutions

Creation of new solutions combines two separate sampling steps: One to create a new tendon routing
~T , the other to sample new contraction levels ~α . To create new tendon routings, one anchoring node
from each tendon is changed at each iteration. For switching out nodes, a heuristic is used which prefers
transitions to adjacent nodes over transitions to nodes that are located further away.

In detail, this is realized by creating a set of neighboring nodes which are in direct or close adjacency
to the node that is being changed. For this purpose a lookup table is constructed at initialization that
contains the node IDs of adjacent nodes for each node in the mesh. This ensures that at each sampling
step the d-adjacent nodes can be quickly determined without exhaustively searching the entire mesh.

The actual sampling step of a new anchoring node can be further divided into two individual samplings:
First, the search depth d ∼ U (0,D) is sampled from a discrete uniform distribution, with the maximum
search depth D serving as a hyper-parameter that defines the maximum depth of nodes that should be
considered for transitions. A depth of d = 1 hereby means, that only directly neighboring nodes are
contained in the set of candidate nodes, whereas in the case of d = 2 also nodes that are adjacent to the
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direct neighbors can serve as candidates for transitions. In the second step the actual node to which the
solution transitions is uniformly sampled from the constructed set of neighboring nodes.

Due to the first uniform sampling step nodes that are closer are more likely to be contained in the set
of candidate nodes and thus are more likely to be transitioned to after the second sampling step. This
ensures transitions that do not significantly change the energy of the system, which is important to avoid
random walks of the Metropolis-Hastings algorithm.

In addition to anchoring nodes, new contraction levels ~αt+1 are created by sampling variations ∆ from
a normal distribution ∆∼N (0.0, 0.05) and applying them to the current contraction levels as follows:

~αt+1 = ~αt +∆

4.3.3. Evaluating Candidate Solutions

The main goal is to find tendon routings that can achieve certain grasps and transitions, thus cost of a
tendon routing is primarily evaluated in terms of whether one or several goal poses are achieved. As
described in Section 4.2, for each goal pose a set of fingertip coordinates {~P1, ~P2, . . . , ~Pn}goal and normals
{~N1, ~N2, . . . , ~Nn}goal is recorded. Based on this goal specification, different variations of evaluating can-
didate solutions have been developed over the course of this thesis. The first approach calculates the cost
of the solution as the RMS error of the euclidean distance between desired and current fingertip positions
for a desired pose.

This measure is complemented by calculating the normals offset of each fingertip in radians using the
law of cosines. The total cost of a solution is therefore a weighted sum of distance and normals offset
and is calculated as described in Algorithm 2.

Algorithm 2 Calculate cost of tendon routing

1: function CALCCOST(Solution)
2: totalCost = 0
3: for each p ∈ GoalPoses do

4: costd(p) =

√
∑

n
i=1(~P(p)i,goal−~P(p)i,current)

2

n

5: costo(p) =
(

∑
n
i=1 cos−1

(
~N(p)i,goal · ~N(p)i,current

|~N(p)i,goal||~N(p)i,current |

))
. n: Number of fingertips

6: totalCost+= αdcostd(p)+αocosto(p)
return totalCost

Depending on the problem, the weights αd and αo can be adjusted accordingly to account for different
units or to weight one objective more important than the other. Since foam robots do not consist of rigid
links and joints, and instead deform continuously, the joint angles of the human hand cannot be used to
infer the similarity of a foam hand pose to a human hand pose. This is circumvented in the proposed cost
function by using only the fingertip poses to evaluate the cost of a candidate solution.

4.3.4. Acceptance of Candidate Solutions

New tendon routings are accepted or rejected based on Algorithm 3 which is a typical implementation of
an acceptance criterion for simulated annealing as already presented in Equation (2.5). If the new tendon
routing performs better in terms of cost than the routing from the previous iteration, the new routing is
always accepted. However, a greedy-search is avoided by also accepting uphill moves. The probability of
accepting an uphill move hereby depends on the temperature T and the magnitude of the cost difference
∆cost =Cost(NewS)−Cost(CurrS) according to

Pacc(T,∆cost) = e−
∆cost

T .
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The pseudo-code found in Algorithm 3 depicts the exact procedure for accepting and rejecting new
solutions.

Algorithm 3 Acceptance of new solutions

1: function ACCEPTANCE(NewS, CurrS,T )
2: if Cost(NewS)<Cost(CurrS) then
3: CurrS = NewS
4: if Cost(NewS)<Cost(BestS) then
5: BestS = NewS . Keep track of best solution
6: else Cost(NewS)>Cost(CurrS)
7: Pacc = e−

∆cost
T

8: if Pacc > rand ∈ [0,1] then
9: CurrS = NewS

This cooling schedule was chosen due to its simplicity and the sufficient convergence that was achieved
with it (see Section 5.1).

4.4. Meta-Structure of Algorithm

T2

T1

T3

T4

T5

...

TN−1

TN

Figure 4.3.: Threads are arranged in a closed cir-
cuit consisting of neighborhoods depicted as colored
sections in which threads can communicate and ex-
change solutions.

As the algorithm needs to scale well to the high-
dimensionality of this problem the optimization
is run in multiple threads. Depending on avail-
able CPUs, a number of N threads is created.
At startup each thread is initialized independently
of another with a random tendon routing. Fig-
ure 4.3 depicts how the threads are arranged in
a closed circuit consisting of neighborhoods (de-
picted as colored sections) in which communica-
tion between threads can take place. After a num-
ber of Nepoch iterations all threads report their best
solution achieved so far and exchange it with bet-
ter solutions from other threads that are located
within the same neighborhood. The size of the
neighborhood thereby dictates how quickly infor-
mation about the optimization domain is spread.

The amount of iterations per epoch after which
communication takes places and the size of neigh-
borhoods serves as a hyper-parameter to guide
exploration and exploitation. Larger neighbor-
hoods and shorter epochs increase exploitation
while small neighborhoods and long epochs im-
prove exploration of the solution space.

4.4.1. Cooling Schedule

Different cooling strategies such as adaptive cooling or thermodynamic cooling have been briefly tested.
While these could further improve the convergence of the algorithm they have not been sufficiently tested
and tuned to improve the performance of the optimization. However when solving for more complex
problems in the future new cooling schedules should be investigated more in detail.
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4.4.2. Parameters and Hyper-Parameters

This section quickly summarizes all hyper-parameters of the algorithm which require some sort of
problem-specific tuning.

Number of tendons: The total number of tendons that should be used needs to be predefined.

Number of anchoring nodes: Defines amount of anchoring nodes along which tendons are placed.

Number of threads: Typically 2 threads per physically available CPU were used.

Initial temperature: The higher the temperature the more likely are uphill moves.

Terminating temperature: Temperature below which the algorithm terminates.

Cooling factor: Specifies how quickly the algorithm moves from exploration to exploitation.

Iterations per epoch: More iterations per epoch benefit exploration less iterations lead to exploitation
of the solution space.

Standard deviation for sampling new activations: Larger deviations enable quicker convergence but
bear the risk of changing the overall energy too drastically.

Neighborhood size: Defines how many threads can directly communicate with each other and thus
how quickly information is propagated between threads.

Weight factors for distance and orientation: Define the amount and ratio of how much distance er-
rors and orientation errors should be penalized.

All parameters mentioned are highly affected by differences in units ([mm],[cm],[m]), problem com-
plexity and computational resources. Therefore, individual tuning of these parameters is always required.

4.4.3. Algorithm Termination

The optimization will not find the global optimum in an acceptable amount of time. To avoid excessive
runtime, the algorithm terminates if either one of the following criteria are fulfilled:

• Cost of solution is below threshold

• Temperature is below minimum temperature

• No improvement of solutions after a certain number of iterations

4.5. Code Implementation

Besides determining the overall structure of the algorithm, a significant amount of work has been dedi-
cated to improving the runtime and convergence of the optimization. Details on the actual implementa-
tion of the code are given below. The code base for simulating soft foam hands which existed prior to
this work has been implemented in Microsoft Visual Studio. For optimization purposes and to enable the
use of high-performance computing resources this code has been transferred to run platform independent
on Windows and Unix based operating systems.

4.5.1. Languages and Libraries

The entire code is written in C++14 and utilizes features of the C++ Standard Library and the Eigen3.3.4
library for linear algebra. For multi-threading purposes the OpenMP 4.5 API is used. CMAKE (v.3.5.2)
is used to support a cross platform and compiler-independent build process. The code is compiled using
the GNU Compiler Collection (GCC v.6.3.0) utilizing all available vectorization features to improve
computational speed.
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4.5.2. High-Performance Computing

All results presented in this thesis have been obtained using the Extreme Science and Engineering Dis-
covery Environment (XSEDE) which is supported by National Science Foundation grant number ACI-
1548562 [122]. Specifically this work used the Bridges Cluster infrastructure at the Pittsburgh Super-
computing Center. Jobs have been submitted using SLURM batch scripts and typical optimization runs
utilized less than 100 CPU hours.
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5. Experiments and Results

This chapter first provides a number of experiments that verify the algorithmic concept and implemen-
tation. It then presents further experiments that explore the capabilities of foam hands in terms of their
ability to achieve specific poses for a fixed morphology and an individual tendon routing. The results
found through optimization are then evaluated in terms of their accuracy compared to designs created
by humans. Finally, it is investigated whether the optimization is able to yield designs that can achieve
sequences of poses. Therefore a number of transitions between poses are solved for and the results are
presented at the end of this chapter.

5.1. Proof of Concept

Figure 5.1.: A manually created pose resulting from
one contracted tendon (top) is matched by the opti-
mization. The fingertip normal is depicted as a black
arrow. Middle: Test case 1: Cost is evaluated con-
sidering position. Bottom: Test case 2: Cost is eval-
uated considering position and orientation.

In order to proof the functionality of the approach
a number of experiments have been conducted
which focus on verification of performance, pre-
cision, effects of parallelization and varying cost
functions. For this purpose two meshes with dif-
ferent complexities are created and tested. The
first mesh constitutes one simple finger while the
other mesh depicts a full five-finger anthropomor-
phic hand created using the pipeline for assisted
design introduced in Section 4.2. Given a goal
pose or motion created by a known routing and
contraction sequence the optimization should ide-
ally yield the exact same routing as optimal so-
lution. Whether this is the case is verified in the
following.

Verification of Algorithm Performance

To verify that the optimization is able to match
simple poses, the following test is executed:
A pose is created by manual placement and con-
traction of tendons. This pose then serves as input
goal for the optimization algorithm. The result of
the optimization is then compared to the known
routing and contraction.

Multiple tests of different complexities have
been executed. For a first verification one ten-
don is placed on a single finger and actuated as
depicted in Figure 5.1 top). This pose serves as
goal for two optimization runs with different ob-
jective functions. The first run (test case 1) calcu-
lates cost only based on the euclidean distance.
As depicted in Figure 5.1 middle) the resulting
pose closely matches the goal pose, however the
orientation is not ideally matched. Adding the orientation as objective (test case 2) improves the overall
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solution and results in the algorithm reproducing the exact solution, as shown in Figure 5.1 bottom).
This verifies that the general approach produces valid solutions in terms of routing and contractions and
motivates further investigation of this problem in terms of performance. To subsequently verify different
features of the algorithm and evaluate convergence, the pose from Figure 5.1 top) again serves as goal
for the following test cases:

1. Optimization runs in single thread with one tendon and only euclidean distance as objective.

2. Optimization runs in single thread with one tendon, distance and orientation as objective.

3. Optimization runs in multiple (4) threads with one tendon, no exchange between threads, distance
and orientation as objective.

4. Optimization runs in multiple (4) threads with one tendon, exchange between threads, distance and
orientation as objective.

The different objective functions result in different absolute cost of solutions. Therefore, all conver-
gence plots show the objective normalized with respect to the initial cost. The convergence of test cases
1 and 2 is compared in Figure 5.2 left) where the normalized objective is plotted against iterations. For
this simple problem, the objective function has no significant influence on the rate of convergence. The
comparison of test cases 2-4 in Figure 5.2 right) however shows a significant improvement of conver-
gence for multi threading and exchange of solutions. Reasons for the acceleration of test case 3 (cyan)
in comparison to the single thread case (blue) are funded in the random initialization which leads to
some threads starting their search in more favorable regions than others. Test case 4 (red) converges even
faster, as threads are able to exchange their solutions and thus sampling of new solutions is guided to-
wards better regions more efficiently. Of course, the simple nature of the problem leads to extremely fast
convergence overall and all solutions falling below the set threshold in terms of cost quickly. Thus, the
results can only be considered qualitatively. Nevertheless, it captures the improvement of parallelization
and communication of threads well and highlights their effects on exploration and exploitation of the
parameter space.

Figure 5.2.: Left: Convergence considering only the distance (d) and considering distance and orientation
(o + d). The objective is normalized with respect to the initial cost. Right: Comparison of convergence
for testcases 2 - 4, running the optimization with a single thread, multi-thread and multi-thread with
exchange of solutions among threads.

The quantitative results of test case 1 - 4 are presented in Table 5.1. Since absolute cost values vary
depending on which objective function is used, absolute cost values are normalized with respect to initial
cost.
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The results obtained for a simple mesh with one tendon justify the overall approach and demonstrate
that the specific features of the algorithm fulfill their dedicated purpose. To verify whether the opti-
mization also scales well to more complex poses, more complicated geometries and routings two further
scenarios are tested.

Table 5.1.: Relative and absolute minimum cost of test cases [1-4] for a pose of a one finger simulation
mesh and one contracted tendon. Costs are normalized with respect to the initial cost.

test case normalized min. cost [%] absolute min. cost []
1 2.29 1.327
2 1.30 0.754
3 0.062 0.036
4 0.086 0.048

Sequential Posing

The first scenario again investigates the simple one finger mesh but for a motion sequence created with
two tendons routed along the side of the finger. The tendons are contracted in a sequence of three different
levels as shown in Figure 5.3 top) and the resulting fingertip trajectory serves as goal. The solution found
by the optimization is depicted in the bottom row of Figure 5.3. Although the routings are different, the
resulting motion very closely matches the goal trajectory due to different contraction levels. The average
position error of the fingertip is 0.17 cm and the average orientation error is 19.39 degrees. This verifies
that the approach is also capable of optimizing with respect to pose sequences.

Figure 5.3.: Solution for a sequence represented by three different poses. Top: Target sequence. Bottom:
Solution found by the optimization.

Anthropomorphic Hand Poses

An anthropomorphic mesh is created and tendons are placed on it in the same fashion as it is done in the
simpler case with one single finger. Two test cases are created. The first is considered with reproducing
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the pose created by one tendon while the second test case considers a more complex grasp created by
three tendons. Figure 5.4 top) depicts relaxed and contracted target poses with one and three tendons.
The respective best solutions found by the optimization is depicted in the bottom row of Figure 5.4. The
relaxed poses are depicted for visualization purposes only and do not serves as optimization targets.

Target

relaxed contracted relaxed contracted

Result

Figure 5.4.: Optimization results for two different poses of an anthropomorphic hand.
Top left: Relaxed and contracted target tendon. Bottom left: Optimization result.
Top right: Relaxed and contracted tendons for a target pose, using three tendons. Bottom right: Opti-
mization result

For the target pose created by one tendon it is clearly visible that the result is identical to the tendon
placement and contraction level of the goal pose. The only difference observed is the tendon being
anchored to one node further below than the original routing. Since the nodes on the base of the mesh
are fixed in space (pinned) this does not have any effect on the resulting deformation.

In the more complex case of three tendons the solution found by the optimization is not identical to
the target. However the pose qualitatively and quantitatively matches the goal.

Overall, in both cases the optimization is able to find a routing that is able to produce poses that closely
match the goal pose. In the case of one single tendon the solution is exactly reproduced while for three
tendons the cost of the best solution is slightly higher.

5.2. Automated Design of Hands for Specific Grasps

The following experiments demonstrate and explore the kinematic capabilities of foam hands. The goal
of this section is to quantify the variety of poses soft hands can achieve with individual tendon routings
and how well the optimization yields such routings and contractions for a given morphology and rest
shape. Investigating the ability of soft hands to execute single poses is especially interesting as this is the
basic prerequisite for soft foam hands to execute a large number of poses sequentially and to thus carry
out more delicate tasks. To verify that foam hands can indeed execute a large number of grasps, 14 grasps
from different categories of the cumulative taxonomy (shown in Figure 2.4) are selected. The selected
grasps are depicted in Figure 5.5 with the recorded grasp shown in the left images and the respective
transferred pose in simulation on the right. It is important to note that for the purpose of visualization
the simulated poses are all depicted using the same 5-finger anthropomorphic morphology with a cupped
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rest pose. However, the target pose could be transferred to any other mesh with an arbitrary morphology
and rest shape. The morphology depicted in Figure 5.6 is chosen to later compare the results to a user
study (Section 5.3), which relied on a "human-like" morphology because most people can relate to 5-
finger hands more intuitively. All following experiments have been executed using this mesh (Figure 5.6)
unless stated otherwise.

Figure 5.6.: 5-finger anthropomorphic hand morphology used in optimization.

Additionally a fixed number of 12 tendons and 3 respective ’anchors’ per tendon are chosen for each
optimization run. The three tendon anchors describe the start node, end node and one intermediate node
on the surface of the simulation mesh, and a tendon is restricted to run through these anchors. The
number of 12 tendons was chosen because it is considered to be a still realizable number in terms of
motors needed and resulting complexity of the solution. More tendons would quickly result in very
complex and difficult to manufacture routings. In case a solution is found that requires less tendons to
realize a pose, some tendons in the solution are not contracted and can be omitted when transferred to
the physical robot.

Table 5.2.: Optimization results for grasps.

Grasp Type Mean Pos. Error [cm] Pose
Power using palmar gutter 1.x

1.1a 0.895 yes
1.1b 0.934 yes
1.2 0.951 yes

Power using other parts of palm 2.x
2.1 0.989 yes
2.2 0.648 yes

Power with lateral stabilization 3.x
3.1 1.31 no
3.2 0.473 yes
3.3 0.529 yes

Precision with lateral stabilization 4.x
4.1 0.587 yes

Power with pad opposition 5.x
5.1 1.327 no
5.2 0.464 yes

Precision with pad opposition 6.x
6.1 1.399 no
6.2 0.518 yes
6.3 0.939 yes

Total 0.855 11/14
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To quantify how many grasp types can be achieved within these constraints a solution is considered
to be successful if the average position error of all fingers is < 1cm. This is motivated by the fact that
state-of-the-art control approaches for fully compliant soft robots are typically suffering from an error
of 10% (e.g. [103]) which at a typical finger length of 10− 12cm equates to ∼ 1cm. Furthermore,
Schlagenhauf [108] has shown that the gap between simulation and reality for foam hands is within
the same margins. In contrast to traditional rigid robots where this error margin would be disastrous,
it has been demonstrated that due to their compliant nature, soft foam hands do not significantly suffer
from such errors and are able to execute grasps successfully. Table 5.2 shows that a for a number of 11
grasps the pose was successfully matched while for 3 poses no tendon routing was found that sufficiently
reproduces the desired grasp type.

Target
pose

Result

Figure 5.7.: Optimized tendon routing and contraction for a tripod grasp, shown from different camera
perspectives. The result qualitatively matches the target pose closely.

Target
pose

Result

Figure 5.8.: Optimized tendon routing and contraction for a palmar pinch grasp, shown from different
camera perspectives. No appropriate solution is found by the optimization, the resulting pose deviates
significantly from the target pose.
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Whether a solution is successfully found is hereby not determined by the class but depends on the
individual type of grasp and the object size which was used to record the task. This is supported by the
following two examples, which both depict solutions for precision grasps with pad opposition (class 6).
Figure 5.7 depicts a tripod grasp (6.2) with an average position error of 0.518cm.

In contrast to this very good solution, Figure 5.8 shows a palmar pinch grasp (6.1) for which qualita-
tively no tendon routing and contraction is found. The quantitative error of 1.399cm further suggests that
for the given morphology and rest pose no feasible solution exists. Possible reasons for this are funded
in the recorded target pose itself. The size of the object used to record the grasp requires a significant
abduction and simultaneous contraction of both index finger and thumb to form a precision grasp with
pad opposition. While human hands are able to perform such a delicate task, the combination of tendons
with foam does not allow such straightening without the foam being compressed by the tendon contrac-
tion. However, this problem could be circumvented by increasing the size of the foam hand or changing
the morphology.

A complete overview of all solutions for the 14 selected grasps is visualized in Appendix A.1.

5.3. Comparison of Human Designs and Optimized Designs for
Grasping

One proposition that justifies the optimization of tendon routings is that due to the high-dimensionality
and the unintuitive deformation behavior of soft hands, it is difficult for human designers to create pur-
poseful designs and to explore the full kinematic capabilities of soft foam hands. This section is dedicated
to comparing the optimization results from Section 5.2 with human designs obtained in a user study. The
user study has been executed by Schlagenhauf [108] and benchmarks the performance of tendon rout-
ings created by randomly selected people. In total 10 participants without a soft robotics background
were asked to create tendon routings and contractions for three grasps (1.1a medium wrap a, 3.2 lateral
tripod, 6.3 prismatic 3-finger). A time limit of 10 min per pose was set and users had enough time to
familiarize themselves with the interactive design tools. Further details on the study and how the results
were obtained can be found in [108].

Figure 5.9.: Comparison of tendon routings created by two human study participants (orange, red) and
the solution found by the optimization. Left: Hand poses. Right: Distance of the five fingers from the
corresponding positions in the target pose.
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Exemplary, Figure 5.9 compares the performance of two human designs (orange and red circles) and
the optimization result (blue circle) for a lateral tripod grasp (target pose). The orange design does not
closely match the desired pose qualitatively and the quantitative error depicted in the diagram on the
right is >2cm. This is an example of a bad tendon routing designed by humans. An example of a very
well designed tendon routing is depicted in red. This design qualitatively and quantitatively matches the
desired pose very closely. In comparison to the optimization the red design is qualitatively equivalent
in terms of matched pose and quantitatively even outperforms the optimization for the thumb (1) and
index finger (2). Overall this shows that for a single grasp there are human designs that can compete with
optimized tendon routings.

optimization

Figure 5.10.: Average Fingertip distances over all
grasps tested in the study, compared to the average
errors achieved by the optimization (blue dots).

However, the average position error of the ma-
jority of human designs lies in between the red
and the orange design and thus, cannot outper-
form the automated design. Considering all hu-
man designs for all grasps and comparing the er-
rors of each finger quantitatively further supports
this presumption.

The boxplot in Figure 5.10 shows that the me-
dian error of all human designs for all grasps is
significantly larger than the error achieved by the
optimization. Looking at the average individual
error of each finger, the optimization is more pre-
cise than all human designs with a few excep-
tions in the case of index finger and middle finger.
However, only a very small number of human de-
signs was able to achieve slightly better results.
Although the number of human test subjects in
the study is relatively small and not representa-
tive of the entire population, the significant differ-
ence of average position error of the optimization
(0.769cm) and human designs (1.379cm) strongly
supports the assumption that for complex poses humans have difficulty to find precise tendon routings.
This further supports the use of automated design techniques.
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5.4. Automated Design of Hands for Grasp Sequences

In the light of a growing task complexity robot hands that can achieve a large number of grasp transi-
tions and can execute grasp sequences for in-hand manipulation are much-needed. This section presents
several experiments that investigate whether the optimization is able to produce solutions for pose se-
quences. Instead of solving for one single target pose this means that the same tendon routing needs to
be able to achieve multiple poses at different contraction levels. Therefore each target consists of several
poses for which the cumulative average fingertip position error is evaluated. Due to this extension the
intricacy of the problem is highly increased.

Task-Specific Designs

Most of the grasp sequences observed in humans can be expressed by transitions between classes of
the cumulative taxonomy. However not all transition occur directly between grasp types. Often times
transitions to intermediate grasps are required to successfully switch from one grasp to another. Therefore
not all possible transitions are solved for in this section, but only a number of 4 transitions that could also
be observed in human grasping are evaluated:

1. Lateral (3.3)→ Prismatic 3-finger (6.3)

2. Power Sphere (5.2)→ Sphere (3.1)

3. Medium Wrap a (1.1a)→ Small Diameter (2.2)

4. Tripod (6.2)→ Lateral (3.3)

The results of this experiment are depicted in Figure A.3 and the distance errors averaged over all
fingertips are listed in Table 5.3. The average distance errors are larger than 1.15cm for all 4 grasp
sequences. For each start and end pose, the error is notably higher than the average error compared to
solving for the corresponding pose individually (compare to results in Table 5.2). This suggests that
further testing and improvements are necessary to successfully create tendon routings and contractions
for multiple hand poses. Potential reasons for high error values are identified and approaches to overcome
them are suggested in the following:

• The optimization becomes stuck in local minima. Revisiting and tuning the algorithm to escape
local minima could help overcome this limitation and should be addressed in future works.

• Tendons are restricted to run only along edges of the surface of the mesh, and the mesh resolu-
tion may be too coarse to create a routing capable of achieving several desired poses. Therefore
future works should explore the use of finer meshes, this may however reduce the speed of the
optimization process significantly.

Table 5.3.: Resulting distance errors for the 4 grasp sequence test cases. Distances are averaged over all
five fingertips.

Average Distance Error [cm] 1) 2) 3) 4)
Start Pose 1.077 1.461 1.208 1.113
End Pose 2.210 1.657 1.279 1.204
Average 1.644 1.559 1.244 1.158

However, it should be noted that the error achieved by the optimization for 2 sequences is similar
to the error achieved by an average human design for one pose (1.379cm). This emphasizes that the
optimization produces promising results even for pose sequences.
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General Purpose Designs

In addition to creating task specific soft foam hands that are able to execute specific grasp transitions,
more general purpose designs are optimized for as well. For this purpose the ability of foam hands to
achieve a large number of grasps with one single tendon routing is investigated. Instead of two subsequent
poses, the optimization target consists of six poses, one pose of each class of the cumulative taxonomy.
Since achieving 6 poses is expected to require a more complex tendon routing than achieving only 2
poses as described in the previous section, the number of tendons is increased to 15 for this experiment.
The target consists of the following grasps (numbers corresponding to cumulative taxonomy):

Medium Wrap a (1.1a) Lateral Tripod (3.2) Tripod (6.2)
Small Diameter (2.2) Writing Tripod (4.1) Power Sphere (5.2)

The resulting poses achieved by the optimization are depicted in Figure A.4, the distance errors for all
poses are listed in Table 5.4. As already indicated by the results described in the previous section, the
errors are larger than when optimizing tendon routing and contractions for the corresponding poses indi-
vidually. As for the previous experiment, possible reasons could be founded in the algorithm becoming
stuck in local minimums, and a possibly low mesh resolution.

Table 5.4.: Resulting distance errors for a generalized design, with one pose of each class of the cumula-
tive taxonomy. Distances are averaged over all five fingertips.

Grasp 1.1a 2.2 3.2 4.1 5.2 6.2 Average Error
Average Distance Error [cm] 2.643 2.357 1.291 1.214 1.752 1.233 1.748

The average error of 1.748cm achieved in this experiment is hereby only∼ 27% larger than the average
human design error for one pose. This suggests that even though the optimization results for a large
number of poses of different grasp types are suboptimal, the results are most likely still outperforming
human design capabilities. Of course, this hypothesis needs to be verified by further extensive user
studies, which evaluate human abilities to design tendons that can achieve several poses.
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Power grasps using the palmar gutter

1.1a Medium Wrap a 1.1b Medium Wrap b 1.2 Ventral

Power grasps using other parts of the palm

2.1 Palmar 2.2 Small Diameter

Power grasps with lateral stabilization

3.1 Sphere 3.2 Lateral Tripod 3.3 Lateral

Precision gasps with lateral stabilization

4.1 Writing Tripod

Power grasps with pad opposition

5.1 Large Diameter 5.2 Power Sphere

Precision grasps with pad opposition

6.1 Palmar Pinch 6.2 Tripod 6.3 Prismatic 3-finger

Figure 5.5.: 14 Target grasps are recorded with a CyberGlove and transferred to simulation poses. For
each grasp, on the left, the target grasp is shown, and on the right the configuration of the deformed
simulation mesh is depicted. Surface normals of fingertips are marked as black arrows.
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6. Conclusion

This chapter concludes the work on automating the design of soft foam robot hands and summarizes the
achievements and their implications. Suggestions for future work specifically considered with the further
improvement of soft foam hands are also given.

6.1. Summary of Results and Contributions

Optimization of soft foam robot hands is a difficult multi-layered problem as designs are affected by
morphology, rest shape, tendon routing and contractions simultaneously. In order to automate the design
process of such hands a number of problems have been identified and addressed in this work. The
main focus of this hereby lies on optimizing the tendon routing and contractions for a given soft hand
morphology and rest shape.

In summary the research results and contributions that have been made are the following:

• Relevant design domains for soft foam hands that most importantly impact the ability of the design
in terms of manipulation capabilities have been identified and specified.

• A universal, shape and rest pose invariant methodology for creating design goals for different hand
poses that serve as input for optimizing tendon routings and contractions has been developed.

• Design tools were established to support the creation of multi-fingered hand geometries with dif-
ferent rest poses that are within kinematic constraints of the created goals.

• An optimization algorithm was designed that optimizes for efficient tendon routings and contrac-
tion levels for a fixed foam hand morphology (shape and rest pose).

• The algorithm was implemented to run on a high-performance computing cluster and demonstrated
to successfully scale to different task complexities.

• The tendon routing optimization was proven to be able to produce meaningful routings for different
task and shape complexities.

• A dataset of poses was created based on the cumulative taxonomy in order to evaluate the perfor-
mance of the optimized tendon routings and to benchmark their capabilities in terms of variations
between grasp types.

• Individually optimized routings for all poses from the dataset were presented. This was done for
one specific anthropomorphic mesh with a cupped rest pose.

• The results of individually optimized poses were benchmarked against designs created by humans
and quantitative results that optimized routings are more precise and efficient than manually de-
signed routings were provided.

• The optimization was extended to solve for tasks by creating goals that contain sequences of mul-
tiple poses. Examples were given that the approach is able to produce solutions for such problems
with certain limitations.

Overall, the results of this work show that in the future smart optimization techniques can indeed help
to create hand designs that are more efficient and dexterous than currently available hand designs. Espe-
cially for the very complex multi-dimensional design domain of soft foam hands it has been demonstrated
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that optimization helps to improve the performance of tendon routings and their respective contractions.
Therefore, this work should serve as basis and inspiration for others to further improve and develop auto-
mated design processes to eventually enable the widespread use of soft foam hands that are purposefully
designed for specific applications. With computational resources becoming increasingly available in the
future, the approach of automating the design of manipulators and robots in general will become even
more viable. The approach presented here should function as a starting point that can easily be extended
to evaluate additional objectives or encode even more parameters such as material properties (density,
Youngs modulus etc.), shape features or even dynamic object contact relations.

6.2. Current Limitations

While the achieved results are promising, soft foam hands are still a long way off from being deployed
in applications such as pediatric care or fruit picking. Especially regarding the fully automated design of
soft foam hands there are several shortcomings that are still inhibiting the full potential of this class of
soft robots.

One limitation of the current approach is that only tendon routings and contraction levels are simulta-
neously optimized for while the morphology and the rest shape are not considered in the optimization.
Additionally the optimization is only able to consistently yield precise routings for single poses, while for
multiple poses the results are suboptimal for many grasp transitions. Reasons for this are likely found in
the optimization goals themselves, which only contain fingertip positions and normals in discrete poses
and do not consist of densely sampled trajectories. Another limitation is that self-intersection of the mesh
is not detected which is problematic when optimizing for pose sequences because fingers can intersect
in simulation during motions. A transfer of such routings and contractions to a physical robot would
therefore likely yield motions in which fingers collide with each other. Apart from that, a transfer of
solutions obtained in simulation to real robots has not been done yet. While the gap between simulated
and real-world behavior for conventional routings was determined to be∼ 0.6cm there is no concise way
of transferring the complex and irregular routings found in optimization to the actual robot.

In terms of different hand morphologies, current limitations are implied by the creation of complex
silicone or stereolithography molds. Especially undercuts due to irregular rest poses largely limit the
manufacturing of suitable mold geometries.

With respect to the simulation the major issue is that it is not possible to simulate direct interactions
with objects. Thus, optimization goals are limited to static poses and do not consider contacts or dynamic
relations with objects.

6.3. Future Work

The current limitations of the automated design process presented here can be addressed and solved.
A large amount of ideas had to be left untouched in the course of this thesis because of limited time
available. Therefore, this section is a collection of ideas that have been developed together with Cornelia
Schlagenhauf and can serve as possible starting point for future research.

Simulation

The optimization result is largely dependent on the quality and richness of the simulation. Currently,
object interactions with hands are not simulated, which would be important in order to extract contact
point relations and forces. Moving away from the static representation of poses towards simulating
actual dynamic motions including a functioning contact simulation would enable to optimize for object-
centric grasp representations. Most of the suggested improvements are based on a functioning contact
simulation which makes this the top priority for future works. In her future works section Schlagenhauf
[108] presents the current state of the contact simulation, explains which features have been implemented
and provides an insight on the efforts taken so far.
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Goal Creation

Under the assumption of having a functioning contact simulation available, various options for creating
different optimization targets should be considered. Instead of grasping objects and recording the respec-
tive pose using a CyberGlove, optimization goals could be directly recorded in simulation similar to a
virtual reality setting. For this purpose, Schlagenhauf [108] provides an interface between CyberGlove
and simulation that maps recorded sensor positions to the simulation mesh. This would then allow to
manipulate objects in simulation with any arbitrary morphology and simultaneously record contact point
and object trajectories and contact forces. This information could then be used as goal for optimizing for
tendon routings instead.

Transfer of Routings to Real Robots

So far the transfer of routings from simulation to the real robot has been done qualitatively. The achieved
results are promising and the average position error of ∼ 0.6cm shows that the gap between simulation
and reality is within the range of expected accuracy for a system as compliant as foam. However, more
complex tendon routings resulting from the optimization will make it more difficult to qualitatively route
tendons. To circumvent this problem two ideas are presented:

• Gloves for multi-fingered non-anthropomorphic hands have already been successfully knitted us-
ing the automated knitting algorithm developed by McCann et al. [77]. In addition to being able
to automatically knit textiles directly from a 3d mesh input, their approach is also able to embed
differently colored threads precisely where specified. This opens up the chance to directly knit
differently colored markers into the glove along which tendons should be routed.

• Instead of using a glove along which tendons are routed, it would also be possible to embed small
hooks directly into the foam which then serve as anchors for the tendon. Together with rapid
prototyping techniques which could precisely place the hooks at the specified locations, this would
simplify the overall manufacturing process.

Furthermore, friction between tendons and glove is currently not considered in simulation. Transfer-
ring routed tendons to the real robot will likely cause problems with friction depending on the complexity
of the routing. To prevent this, a regularizer should be added to the optimization which penalizes tendons
that are too long and erratic.

Creation of Real Foam Hands from Complex Morphologies

The tools created in this thesis which support the design of multi-fingered non-anthropomorphic hands
enable the creation of very irregular soft foam hand morphologies. Depending on the rest pose, such
morphologies can be even more difficult to design molds for. Automated mold generation algorithms
[70] could solve this problem. However, more interesting solutions involve printing the foam hands
directly using highly porous filaments that consist of a polymer and PVA compound. After printing, the
material can be submerged in water to dissolve the PVA resulting in a highly compliant material behavior.
Future works could evaluate whether such an approach is feasible as it could simplify the manufacturing
process significantly.
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A.1. Optimization results for grasps

1.1a Medium Wrap a

1.2 Ventral

2.2 Small Diameter

1.1b Medium Wrap b

2.1 Palmar

3.1 Sphere

Figure A.1.: Optimization results for the 14 selected grasps (1). Top: Target pose. Bottom: Resulting
pose.
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4.1 Writing Tripod 5.1 Large Diameter

5.2 Power Sphere 6.1 Palmar Pinch

6.2 Tripod 6.3 Prismatic 3-finger

3.2 Lateral Tripod 3.3 Lateral

Figure A.2.: Optimization results for the 14 selected grasps (2). Top: Target pose. Bottom: Resulting
pose.
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A.2. Optimization results for grasp sequences

Target Result

2

3

4

1

Figure A.3.: Results for grasp sequences. Left: Target sequence. Right: Resulting sequence.
1: Lateral (3.3) to Prismatic 3-finger (6.3)
2: Power Sphere (5.2) to Sphere (3.1)
3: Medium Wrap a (1.1a) to Small Diameter (2.2)
4: Tripod (6.2) to Lateral (3.3).



Section A.2: Optimization results for grasp sequences 55

6.2 Tripod

5.2 Power Sphere

4.1 Writing Tripod

3.2 Lateral Tripod

2.2 Small Diameter

1.1 Medium Wrap a

Figure A.4.: Optimization result for a general purpose design, optimizing one tendon routing to achieve
6 grasps, including one grasp of every group of the cumulative taxonomy. For every grasp, the top row
shows the target pose, and the bottom row shows the achieved pose.
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