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Abstract:

Based on the previous success in the Text-to-Speech field using Deep Neural Networks (Shen et al.,
2018), this work aims at training and evaluation of an attention-based sequence-to-sequence neural voice
generation system. Chosen fully-convolutional architecture matches state-of-the-art techniques in speech
synthesis while training an order of magnitude faster than analogous recurrent architectures (Ping et al.,
2018).

This thesis also considers a great number of open-source speech datasets for both English and German
languages, determining the best one and its key characteristics for training of the Text-to-Speech system.

To achieve a high quality of synthesized speech various training techniques are used and described
in detail during this work. Such methods as concatenation of separate audio-files in a larger ones with
uniform distribution of lengths (between 0 and 20 seconds) and trimming of silences with modern tools
allow the model to produce more intelligible speech utterances of any duration as well as more natural
speech utterances without clipping in the end, which is considered to be an issue for many Text-to-
Speech systems. This work also addresses the training of Text-to-Speech models for other languages by
specifying new frontend (e.g. for German model).

Several models are evaluated through user studies by measuring three criteria: intelligibility, compre-
hensibility, and naturalness. The most successful English and German models achieve the Word Error
Rate of 23.48% and 14.21% respectively, and a higher than average degree of comprehensibility and
naturalness. In conclusion, suggestions and recommendations on training of high-performance Text-to-
Speech language models for future work are given.





Kurzzusammenfassung:

Basierend auf früheren Erfolgen im Bereich Text-to-Speech mit Deep Neural Networks (Shen et al.,
2018), stellt diese Arbeit als Ziel das Training und die Evaluierung einer Attention-basierten Sequenz-zu-
Sequenz neuronalen System zur Erzeugung der menschlichen Stimme. Die ausgewählte fully-convolutional
Architektur entspricht dem Stand der Technik in Sprachsynthese, während das System um eine Größenord-
nung schneller trainiert wird als bei analogen recurrent Architekturen (Ping et al., 2018).

Diese Thesis betrachtet auch eine große Anzahl von Open-Source-Sprachdatensätzen für englische
und deutsche Sprachen, um den besten Datensatz und seine wichtigsten Merkmale für das Training des
Text-to-Speech Systems zu ermitteln.

Um eine hohe Qualität der synthetisierten Sprache zu erreichen, werden verschiedene Trainingstech-
niken in dieser Arbeit verwendet und detailliert beschrieben. Solche Methoden wie die Konkatenation
separater Audiodateien in größere Dateien mit gleichmäßiger Verteilung der Tondauern (zwischen 0 und
20 Sekunden) und das Trimmen von Pausen mit modernen Werkzeugen ermöglichen es dem Modell, ver-
ständlichere Sprachausgaben von beliebiger Dauer beziehungsweise natürlichere Sprachausgaben ohne
Abschneiden am Ende der Aussage zu erzeugen, was für viele Text-to-Speech Systeme ein Problem
darstellt. Diese Arbeit befasst sich auch mit dem Training von Text-to-Speech Modellen für andere
Sprachen, indem ein neues Frontend (z. B. für das deutsche Modell) spezifiziert wird.

Mehrere Modelle werden durch Benutzerstudien anhand von drei Kriterien bewertet: Verständlichkeit,
Nachvollziehbarkeit und Natürlichkeit. Die erfolgreichsten englischen und deutschen Modelle erre-
ichen eine Wortfehlerrate von 23,48% bzw. 14,21% und einen überdurchschnittlichen Grad an Nachvol-
lziehbarkeit und Natürlichkeit. Im Ausblick werden abschließende Vorschläge und Empfehlungen zum
Training hochperformanter Text-to-Speech Modelle gegeben.
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1. Introduction

1.1. Motivation

Natural Language Processing (NLP) is one of the widest parts of the development of ’human-like’ ma-
chines (such as robots) among computer vision and artificial intelligence itself. One of the largest and
most sophisticated tasks of NLP is speech synthesis. Inspired by speaking machines in science fiction,
scientists and engineers have been fascinating and studying the ways of establishing speech by machines
for many years. Started with "acoustic-mechanical speech machines" (Wolfgang von Kempelen’s speak-
ing machine in 1769-1791 (von Kempelen, 1791)) and continued with the first computer-based speech
synthesis systems in the late 1950s (Bell Labs: synthesizing speech on IBM 704 mentioned in Mullennix
and Stern (2010)), the technology advanced fast with Deep Neural Networks (DNNs) in recent years.

Speaking about the speech synthesis mostly refers to the Text-to-Speech (TTS) systems: ability of the
computer to read text aloud. The conventional methods (such as concatenative, source-filter or Hidden
Markov Model (HMM)-based synthesis) achieved good quality in synthesizing comprehensible and nat-
ural human speech, but they still possess drawbacks and limitations (e.g. long development time, high
complexity of algorithms or large storage capacity). Neural networks, already extremely popular in other
artificial intelligence branches, offer a chance to escape some limitations and produce a natural ’human’
voice when a huge amount of sample data is available. With the help of DNNs many nowadays compa-
nies have made a breakthrough in the development of voice assistants products like Apple’s Siri, Google
Assistant or Amazon Alexa, which are approaching the quality of the human voice.

Speech synthesis is still one of the significant vital assistive technology tools, which allows environ-
mental barriers to be removed for people with a wide range of disabilities such as blindness or loss of
speech.

The best modern TTS systems are usually commercial (i.e. its architecture or the dataset, on which the
system is trained, are closed-source). This work will make the first steps towards training and evaluation
of the TTS system, which is based on DNNs and is completely open-source.

1.2. Goal of this work

This work aims at training and evaluating of the single end-to-end multi-modal neural network that:

• produces comprehensible and natural male voice (since most of the previous open-source TTS
systems are trained on the commonly known female voice dataset prepared by Ito (2017), which
are usually better than analogous trained on male speech datasets);

• has a low latency of synthesizing (<2 seconds);

• has a low operating power of synthesizing the speech (use of two Central Processing Unit (CPU)-
threads completely without the Graphics Processing Unit (GPU)).

The training will be conducted based on an implementation (Yamamoto et al., 2018) of the Deep Voice 3
TTS system by Baidu Research (Ping et al., 2018).

To successfully train the TTS system a large natural human speech dataset have to be found. This work
will cover a vast amount of freely available speech datasets and compare them to each other in order to
determine:

1. the most suitable one for the given problem;
2. the optimal size of the dataset needed to suffice the high quality of synthesized speech.

A Text-to-Speech system based on Deep Neural Networks
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This way, the quality of the speech must correspond to the high quality of modern TTS systems such as
Tacotron 2 by Google (Shen et al., 2018). In addition, the trained model should produce speech promptly
without considerable loss in naturalness or intelligibility.

To conclude, this thesis aims at exploring the use of neural networks in modern TTS systems and
possible future work in this field.

A Text-to-Speech system based on Deep Neural Networks
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2. Fundamentals

The following chapter describes useful basics in the field of Artificial Neural Networks (ANNs), espe-
cially the relevant techniques for this work.

2.1. Perceptron

A perceptron is the smallest unit of an Artificial Neural Network. The perceptron algorithm was invented
in 1958 by Frank Rosenblatt as a simplified model of a biological neuron (Rosenblatt, 1957). The main
function of the perceptron is to learn binary classifications.

The following description is based on Bishop (2006), Dreyfus (2005) and Kruse (2015).

A perceptron introduces a parametrized and bounded function, which can be conveniently represented
graphically as shown in Figure 2.1. The output of the perceptron is defined through a combination of the
inputs xi ∈ R, weighted by the parameters wi ∈ R, which are often called ’weights’. Therefore, the most
frequently used potential v is a weighted sum of inputs with an additional constant term w0 ∈ R called
’bias’:

v = w0 +
n

∑
i=1

wi · xi (2.1)

Finally, the potential v passed to the activation function f (e.g. binary step – see Figure 2.2 for possible
activation functions), which is typically non-linear and produces the output y of the perceptron.

Figure 2.1.: Single perceptron. Graphic taken from Sharma (2017b).

A Text-to-Speech system based on Deep Neural Networks
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Summing up together, a perceptron defines a function y : Rn→ R of:

• an input vector x̃ ∈ Rn and a constant given as a vector x =
(

1
x̃

)
,

• a weight vector w̃ ∈ Rn and a bias w0 ∈ R given as a vector w =

(
w0
w̃

)
,

• and an activation function f : R→ R, so that:
y(x) = f (wT · x) (2.2)

Classification of x in one of two classes C1 and C2 happens due to the output of y(x): If y(x) > 0,
then x ∈C1; if y(x) < 0, then x ∈C2. Therefore, the equation y(x) = 0 defines the (n− 1)-dimensional
hyperplane separating the classes C1 and C2 in Rn. By the classification algorithm, the weights represent
the strength of a particular node or parameter, the bias value allows shifting of the activation function
curve up or down.

Figure 2.2.: Perceptron activation functions. Graphic taken from Sharma (2017a).

2.2. Multi-Layer Perceptron

Perceptron algorithm has significant limitations in classification, for example, the XOR-problem. Fig-
ure 2.3 illustrates the problem: As shown in the previous chapter, perceptron defines an (n−1)-dimensional
hyperplane separating two classes, but it is impossible here to separate the classes using one line.

The solution for the problem is to connect layers of single perceptrons in a more powerful model –
Multi-Layer Perceptron (MLP).

A Text-to-Speech system based on Deep Neural Networks
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Figure 2.3.: The XOR-problem. The classes C1 and C2 (indicated as red and green circles respectively)
are inseparable, when only one 1-dimensional line is used.

2.2.1. General structure

Here the output of one layer is used as the input for the next one (Figure 2.4).
The MLPs are usually defined through weight matrices W (i) for each layer Ui, which consist of con-

nection weights between layers Ui−1 and Ui. Thus, the computation of the input of any layer Ui can be
simplified through:

−→netUi =W (i) ·−→inUi =W (i) ·−→outUi−1 , (2.3)

and the function y of an MLP is defined recursively as:

y1(x) = f1(W (1) · x)

yi(x) = fi(W (i) · yi−1(x))

y(x) = yr(x),

(2.4)

where
r number of layers
yi output of the layer Ui
fi activation function of the layer Ui

As in a simple perceptron, the values of the output layer are interpreted as classification results. MLPs are
able to classify non-linear data (such as XOR-problem), since they can define more than one hyperplane.
MLP is only one type of the ANN (also known as feedforward network) alongside with recurrent (or
feedback) networks. To sum up the description and purpose of the ANN, it computes a non-linear func-
tion of its inputs.

2.2.2. Training of an Artificial Neural Network

To fulfil the assigned task (e.g. classification) the ANN should be trained. In closer look training is
the algorithmic procedure, which estimates the parameters (weights) of the neurons in a neural network.
Training falls into three categories: supervised, unsupervised and reinforcement learning.

A Text-to-Speech system based on Deep Neural Networks
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Figure 2.4.: General structure of an r-layered Perceptron. Input layer is colored with blue, hidden layers
with green and output with red. Graphic based on Kruse (2015).

Supervised learning

Such a task could be to ’learn’ a specific non-linear function, which is known analytically or which is
unknown, but a finite number of numerical values of the function are known. In such cases, data, which
is a set of paired inputs and desired outputs (labels), is given by ’teacher’ (therefore ’supervised’) and the
task is to produce the desired output for each input. The most common example of supervised learning
is classification.

Unsupervised learning

The purpose of unsupervised learning is to find previously unknown patterns in a dataset, as a task for data
visualization or analysis. Here the data is given without any labels, thus the network should ’discover’
unknown patterns on its own, since no ’teacher’ is present. In general, tasks for unsupervised learning
are estimation problems such as clustering or self-organization.

Reinforcement learning

Reinforcement learning is usually defined through interaction with the environment, which reacts to
actions taken by actors. The aim of the ANN is to learn the best-possible sequence of actions, whereby
the long-term (expected cumulative) cost would be minimized (or reward maximized). Commonly the
sequential decision-making tasks such as games or control tasks involve reinforcement learning.

2.3. Convolutional Neural Network

One of the goals of this work was to train a TTS system that will result in fast audio synthesizing. In
order to fulfil the requirement and have a desirable model soon after start of this work it was decided
to use a fully-convolutional architecture, which enables parallel computation and therefore trains faster
than analogous models, employing recurrent networks (such as Shen et al. (2018)).

Convolutional Neural Networks (CNNs) have already shown impressive results in the image process-
ing field, and now they are proceeding to be widely used in Natural Language Processing. Similar archi-
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tecture was originally introduced under the name ’Time-Delay Neural Network (TDNN)’ for phoneme
recognition purposes by Waibel et al. (1987) and finally presented by Waibel et al. (1989).

Figure 2.5 shows the general structure of a CNN for image processing purpose, firstly presented in Le-
Cun et al. (1989) and finally perfected for digits recognition by LeCun et al. (1998).

Figure 2.5.: Architecture of LeNet-5, a CNN for digits recognition. Graphic shows the general structure
of a typical CNN, taken from LeCun et al. (1998).

Typically a CNN consists of multiple successive pairs of convolutional (Cx) and sub-sampling (Sx)
layers followed by a regular neural network. Each layer produces several artefacts called feature maps
of a certain size (k@m×m, where k is a number of feature maps and m×m – its size), which are fed to
the next layer afterwards.

Convolutional layer is the main building block of a CNN. In the process of convolution, a filter/kernel
of a specific size slides over the input with a certain stride (length of a step – usually 1), producing
feature map due to the element-wise matrix multiplication and summing of the result. The exemplary
convolutional layer is illustrated in Figure 2.6. Usually, multiple convolutions on input are performed in
each layer, each using a different filter and resulting in a distinct feature map (Dertat, 2017). In order
to preserve the non-linearity of an ANN, the result of the convolutional layer could be passed through
ReLU-function.

(a) Initial conditions for convolutional layer. (b) Process of convolution, producing a feature map.

Figure 2.6.: Example of a convolutional layer in a CNN. Graphic taken from Dertat (2017).

Sub-sampling or Pooling layer reduces the dimensionality of a problem, which lowers both training
time and risk of overfitting (Dertat, 2017). During the pooling process, a pooling window of a specific
size slides over the input with a certain stride, operating current values in the window. Typical examples
are based on the operation: max pooling returns the maximum value, average pooling returns the average
of all the values in the window. An example of max pooling is depicted in Figure 2.7. Pooling layers
downsample each feature map independently.

A Text-to-Speech system based on Deep Neural Networks
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Figure 2.7.: Example of a pooling layer in a CNN. Graphic taken from Dertat (2017).

Fully-connected layers follow the architecture of the above, allowing to train CNN as a common
ANN described in Section 2.2. The output of the final pooling layer must be flattened before feeding to
the fully-connected layers.

The main purpose of CNNs is to reduce input in a form that is easier to process and that still has orig-
inal characteristics. Convolutional layers are used to extract local elementary features, which are then
combined by the subsequent layers in order to detect higher-order distinctive features. Composition of
several feature maps allows multiple features to be extracted at each location. Pooling layers decrease
the computational power required to process the data, and a common ANN efficiently learns a non-linear
combination of high-level features in order to correctly classify the input (LeCun et al., 1998).

CNNs could be applied to all types of data. In comparison to 2-D from the above (mainly visual data
such as images and videos), it is possible to use CNNs for 1-D data (e.g. strings of characters or words).
The key difference is the dimensionality of a kernel (one-dimensional) and how it slides across the data
(only in one direction). 1-D convolutional filters are widely used in the Natural Language Processing
field, especially in the TTS system described in this work.

2.4. Encoder-Decoder Network

NLP purposes (such as multi-language machine translation) require mapping of sequences to sequences,
thus new end-to-end approaches to sequence learning are needed. Encoder-Decoder Networks, firstly
introduced by Sutskever et al. (2014), provide such possibility. The ANN architecture converts the input
sequence to a vector of a fixed dimensionality (using encoder), and then decodes the target sequence
from this vector (using decoder). The original paper proposes the use of a special type of Recurrent
Neural Network (RNN), namely, Long Short-Term Memory (LSTM), which are able to learn long-term
dependencies. Nevertheless, it is possible to reduce training time and to outperform the accuracy of
LSTMs through the application of architecture based entirely on CNNs (Gehring et al., 2017).

General function of a sequence-to-sequence model is to map a variable-length input with a variable-
length output where the lengths of the input and output may differ.

Formally, the encoder processes an input sequence X = (x1, . . . ,xm) of m elements and returns state
representations Z = (z1, . . . ,zm), called encoder vector. The decoder takes zm and generates the output
sequence Y = (y1, . . . ,yn) left to right, one element at a time (in RNN-based architecture). To generate
output yi+1, the decoder computes a new hidden state hi+1 based on the previous state hi, an embedding
of the previous target language word yi, as well as last encoder state zm (Gehring et al., 2017).

Fully convolutional architecture relies on CNNs instead of RNNs in order to compute intermediate
encoder states Z and decoder states H. In addition, since CNNs accept as input only a fixed number of
elements, padding with zero vectors at each layer is applied. CNN blocks operate with 1-D convolutional
kernels.

A Text-to-Speech system based on Deep Neural Networks
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Training involves both encoder and decoder networks. Target output could be used, while the proba-
bility P(yn | yn−1, . . . ,y1,X) should be maximized.

Attention Mechanism was introduced to encoder-decoder networks by Bahdanau et al. (2014) (for
neural machine translation) and Chorowski et al. (2015) (for speech recognition), allowing them to
achieve higher performance than traditional sequence to sequence models. Use of a fixed-length en-
coder vector is seen as a bottleneck in modern encoder-decoder networks, thus the attention mechanism
provides a possibility to a decoder to automatically search parts of the source sequence that are relevant
in predicting a target sequence in each step of the output generation (Bahdanau et al., 2014).

Formally, models without attention consider only the final encoder state zm, with which the first en-
coder state is initialized (see Section 2.4). Architectures with attention keep the whole sequence of
encoder hidden states Z, computing a conditional input (or context vector) ci at each decoder time
step (Gehring et al., 2017):

ci =
m

∑
j=1

αi j · z j, (2.5)

where the αi j (weights or attention scores) can be interpreted as a measure of how much the output at time
i aligns with the input at time j. Attention scores are usually computed based on the alignment model a,
which is parametrized as a simple feedforward neural network and trained with all other components of
an encoder-decoder network, and normalized to be a distribution over input elements (Sutskever et al.,
2014).

Attention provides an intuitive way to interpret and represent what the model is doing. This is done by
visualizing the weights αi j or more generally the alignment model a, as shown in Figure 2.8.

(a) Attention alignment plot for machine transla-
tion. Graphic taken from Bahdanau et al. (2014).

(b) Attention alignment plot for speech (phoneme) recognition. Graphic taken from Chorowski
et al. (2015).

Figure 2.8.: Examples of attention visualization.
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The x-axis and y-axis in Figure 2.8(a) correspond to the words in the source sentence (English) and
the generated translation (French), respectively. Each pixel shows the weight αi j of the annotation of the
j-th source word for the i-th target word, in grayscale (from 0: black to 1: white). It can be seen that
the alignment of words between English and French is largely monotonic, however, there is a number of
non-trivial, non-monotonic alignments.

Figure 2.8(b) depicts the alignment of phonemes (transcription) to speech. The vertical bars indicate
ground truth phone location, each row of the upper image indicates frames selected by the attention
mechanism to emit a phone symbol. Attention in Automatic Speech Recognition (ASR), as well as
in TTS sequence-to-sequence models, should produce mainly monotonic left-to-right alignments with
strong weights along the diagonal of the matrix, which would reflect the good performance of the model.

Attention mechanism is also applicable to encoder-decoder networks based on CNNs (Vaswani et al.,
2017).

2.5. Vocoder

Vocoder is an algorithm to estimate a signal (e.g. raw audio waveforms) from its representation by
predicting vocoder parameters. Usually, mel-spectrograms or spectrograms derived from modified Short-
Time Fourier Transform (STFT) are used as representations. Other parameters such as fundamental
frequency, spectral envelope or aperiodic parameters could serve as well.

Algorithms could be as well hand-engineered (Griffin-Lim or WORLD vocoder) as in the form of a
deep neural network (WaveNet vocoder).

Griffin-Lim algorithm converts spectrograms to time-domain audio waveforms by iteratively estimat-
ing the unknown phases (Griffin and Lim, 1984).

As WORLD vocoder parameters a boolean value (whether the current frame is voiced or unvoiced), a
fundamental frequency value (if the frame is voiced), the spectral envelope, and the aperiodic parameters
are predicted (Morise et al., 2016).

WaveNet vocoder treats linear- or mel-scale log-magnitude spectrograms as vocoder parameters. The
WaveNet is trained using ground-truth mel-spectrograms and audio waveforms (van den Oord et al.,
2016).

There are also numerous alternatives for high-quality vocoders in the literature (Ping et al., 2018).
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3. Methods and algorithms of speech
synthesis

Generally, all of the speech synthesis systems are divided into two parts: frontend and backend. Frontend
considers itself with parameters and resources that are language-specific, and the methods and models
used in backend are language independent. Mostly the backend influences the quality of synthesized
speech and its characteristics. Therefore, TTS systems are classified based on the type of synthesis
methods used in the backend.

The following chapter describes the most common technologies in the speech synthesis field.

3.1. Traditional TTS technologies

The two primary technologies in synthetic speech generation are concatenative synthesis and formant/ar-
ticulatory synthesis.

3.1.1. Concatenative systems

Concatenative synthesis uses high-quality audio clips of different lengths, combining them to form a
speech. These audio units must be pre-recorded from a single speaker before the synthesis occurs.

The most important aspect of concatenative synthesis is to find the correct unit length. Depending on
the type of units used for concatenation, there are mainly three types of concatenative synthesis, namely,
(1) domain-specific synthesis, (2) diphone synthesis, and (3) unit selection synthesis (Rao, 2019).

Domain-specific synthesis

The main unit in domain-specific synthesis systems is word or phrase. The limitation of the variety of
utterances to be produced is defined through a particular domain, where the system will be used (transit
schedule announcements, weather reports, etc.). This simple to implement technology is not generally-
purpose and can only produce utterances, which are preprogrammed.

Diphone synthesis

Diphones are sound-to-sound transitions occurring in the language (opposite to phones that are any dis-
tinct speech sound, whilst diphones could be described as any adjacent pair of phones). For example,
Spanish has about 800 diphones and German has about 2,500. The main advantage of the approach is
the small size of the speech database, but diphone synthesis frequently suffers from audible distortions
when two diphones that are not compatible with each other are concatenated (Rao, 2019).

Unit selection synthesis

Unit selection synthesis generates the speech by concatenating the natural speech segments selected from
a large speech database. The database contains multiple instances of each unit, which can be of different
length: half-phones, phones, diphones, triphones, demi-syllables, syllables, morphemes, words, phrases,
or even sentences (Rao, 2019). The choice of the unit depends on the nature of language and the target
application (Hunt and Black, 1996).
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Unit selection synthesis can provide highly natural and intelligible speech if a large well-optimized
corpus is available. By today many unit selection systems have achieved a high quality of the synthesized
speech: MITalk (Allen et al., 1987), CHATR (Black and Taylor, 1994) and Festival (Taylor et al., 1998).

The drawbacks of the model are low flexibility of voice characteristics and high complexity of the
unit selection algorithms itself because of the co-articulatory effects between adjacent units (in order to
provide more natural speech).

Phonemes

One of the most commonly used units in the unit selection synthesis is phoneme. A phoneme is one
of the units of sound that distinguish one word from another in a particular language. For example, the
widely known set of phonetic transcription codes ARPAbet comprises 39 phonemes (not counting lexical
stress) of General American English.

The CMU Pronouncing Dictionary contains over 134,000 words and their pronunciations based on the
ARPAbet phonemes set and was extensively used during this work (CMU, 2014).

Concatenative speech synthesis introduces a simple and effective way to produce intelligible and natural-
sounding speech (although some works consider the generated speech emotionless (Saxena, 2017)). In
addition, this method is less complex than the others from the computational point of view (Datta, 2018),
but the overhead needed to develop a robust system, which usually takes seven to eight months (Saxena,
2017), is the main weakness of this approach alongside with high memory capacity.

3.1.2. Source-filter systems

As of Fant (1960): "The speech wave is the response of the vocal tract filter system to one or more
sound sources. This simple rule, expressed in the terminology of acoustic and electrical engineering,
implies that the speech wave may be uniquely specified in terms of source and filter characteristics".
This statement is a foundation and an actual interpretation of both formant synthesizers and articulatory
synthesizers.

Formant synthesis

A formant synthesizer is a source-filter model in which the source models the glottal pulse train and
the filter models the formant resonances of the vocal tract (Smith, accessed 08/01/2019). Based on the
analysis of the speech data the human experts derive a set of rules, which specify directly the formant
frequencies and bandwidths as well as the source parameters (Birkholz, 2017).

Hereby a formant stands for the spectral shaping that results from an acoustic resonance of the human
vocal tract (Titze, 1994). The primary source of sound, the voicing produced by the vibration of the
vocal cords is imitated by vibrating reed and the turbulence noise produced due to the pressure difference
across a constriction (Datta, 2018).

Articulatory synthesis

Articulatory synthesis methods are also modelled after the human speech production mechanism, but
these synthesizers, on the other hand, determine the characteristics of the vocal tract filter by means of a
description of the vocal tract geometry (i.e. movement of articulators of speech production mechanism
with time) and place the potential sound sources within this geometry (Birkholz, 2017). The main issue
of this rule-based approach is the complexity in deriving articulatory rules for speech production.

The source-filter speech synthesizers produce mostly artificial, robotic-sounding speech, nevertheless the
intelligibility of the speech can be very high. Due to the absence of the speech samples database, forman-
t/articulatory synthesizers are usually smaller programs than concatenative systems, which makes them
easy to use as embedded systems. The other advantage is that the source-filter systems have complete
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control of the output speech, hence a wide variety of changes could be made to the output voice (such
as intonations, emotions, and tones). Nevertheless, the main disadvantage of the approach is the high
complexity of rules that determine the speech synthesis.

3.2. HMM-based synthesis

HMM-based synthesis (or in other words Statistical Parametric Speech Synthesis (SPSS)) uses the prin-
ciple similar to formant synthesis which involves parameterization of speech during the training phase
and reconstructing the speech from the parameters during the synthesis phase (Rao, 2019). The param-
eters here are the frequency spectrum (vocal tract), fundamental frequency (voice source), and duration
(prosody) of speech. In this system, the HMMs are used in an unified framework to model the parameters
and also to generate speech waveforms based on the maximum likelihood criterion (Bishop, 2006).

The HMM-based generated speech is smooth and intelligible. The SPSS has high parametric flexibility
and it can be adapted to different voice quality, speaking style, and emotion by using a small amount of
target speech data. The amount of speech data required for training the SPSS is very small (Rao, 2019).
Nevertheless, many artefacts are resulting in muffled speech or buzzing and noisy sound (Saxena, 2017).

3.3. Speech synthesis using Deep Neural Networks

The main problem of the HMM-based synthesis is that the certain features for speech synthesis are hard-
coded by humans, but they are not necessarily the best features to synthesize the speech (Saxena, 2017).
This is where deep learning could help: recently DNNs have also been extensively used for modelling
the parameters in SPSS, as they can extract computer-readable language features better than humans.

The intelligibility and naturalness of the recent TTS systems that involve DNNs are achieving very
high levels so that the produced speech is nearly human-like. Furthermore, many experiments based
on TTS systems were made, which allow further development of speech synthesizers and include mod-
ern techniques such as voice conversion and reproduction of dialects or emotions (Tits et al., 2019)
and (Zhang et al., 2019).

The next chapter will reveal state-of-the-art techniques in deep neural speech synthesis.

A Text-to-Speech system based on Deep Neural Networks



Page 16 Chapter 4. Text-to-Speech system

4. Text-to-Speech system

4.1. General structure

The following description is based on Ping et al. (2018).
The Deep Voice 3 architecture consists of three components (see Figure 4.1 for further details):
• Encoder: A fully-convolutional encoder, which converts textual features to an internal learned

representation;
• Decoder: A fully-convolutional decoder, which decodes the learned representation with a convolu-

tional attention mechanism into a low-dimensional audio representation (mel-scale spectrograms)
in an autoregressive manner;

• Converter: A fully-convolutional post-processing network, which predicts final vocoder parame-
ters (depending on the vocoder choice) from the decoder hidden states.

Figure 4.1.: Deep Voice 3 architecture. Graphic taken from Ping et al. (2018).

Text preprocessing is done in order to normalize input and eliminate mispronunciations, and therefore
improve performance. During preprocessing all characters are upper- (or lower-) cased, all intermediate
punctuation marks are removed and every sentence is ended with a punctuation mark. This model is
capable of joint representation of characters (graphemes) and phonemes, thus the pronunciation could be
modified to correct common mistakes.

Encoder network firstly converts textual inputs into trainable vector representations, he, through the
embedding layer. After projecting to target dimensionality embeddings he processed through a series
of convolution blocks to extract time-dependent text information. Attention key vectors hk of the em-
bedding dimension are created, and afterwards, attention value vectors are computed from attention key
vectors and text embeddings, hv =

√
0.5(hk +he). The key vectors hk are used by each attention block to

compute attention weights, whereas the final context vector is computed as a weighted average over the
value vectors hv.

Decoder network generates audio in an autoregressive manner by predicting a group of r future audio
frames conditioned on the past audio frames. Mel-scale log-magnitude spectrogram is chosen as the
compact low-dimensional audio frame representation.
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The decoder network starts with multiple fully-connected layers with rectified linear unit (ReLU) non-
linearities to preprocess input mel-spectrograms. The following convolution blocks generate the queries
used to attend to the encoder’s hidden states over the attention block. Lastly, a fully-connected layer
output the next group of r audio frames and also a binary "final frame" prediction (indicating whether
the last frame of the utterance has been synthesized).

Converter network takes as inputs the activations from the last hidden layer of the decoder, applies
several convolution blocks, and then predicts parameters for downstream vocoders.

Several vocoders can be used with described architecture such as Griffin-Lim (Griffin and Lim, 1984),
WORLD (Morise et al., 2016) or WaveNet (van den Oord et al., 2016) vocoders.

The overall objective function to be optimized is a linear combination of the losses from the decoder
and the converter.

More detailed information could be found in Appendix A.

4.2. Datasets comparison and training

Much of the success of the TTS system depends on the choice of the dataset used to train the system.
It must be neither too large (since greater size does not usually mean better performance) nor too small
(to avoid overfitting and to train the model properly) and be of a good quality, which means that each
utterance has no misspoken or removed or added words (in accordance with text) and no noise or buzz
could be heard in each utterance. Each dataset should contain data: Text sentences in form of strings
of characters with punctuation marks at the end (’.’ or ’?’ or ’!’), and corresponding labels: Waveform
Audio File Format (WAVE) files containing utterance. Thus, most of the datasets found during this work
should have been formatted and adapted to restrictions above. The full list of used datasets and their
properties resides in Appendix B.

For each dataset an attention alignment plot from the encoder-decoder network will be given for a test
phrase as in Section 2.4, demonstrating achieved performance of the model. Figures 4.2 to 4.8 are built
on the same principle: the x-axis shows encoder hidden states, which are attended by the decoder in each
decoder timestep (on y-axis). Attention weights are normalized between 0 and 1 (coloured legend bar
on the right). Legend also displays a number of iterations performed on the training of the model before
synthesizing of the particular utterance. Since speech corresponds to text subsequently (word by word),
clear and smooth strictly-diagonal attention alignments should indicate better speech intelligibility, thus
are expected. Nevertheless, the final decision is reached only after listening to the synthesized utterances.

4.2.1. English model

LJSpeech

The most commonly used dataset for training TTS systems is the LJSpeech dataset. This dataset contains
24 hours of good labelled female speech. After two and a half days of training, a relatively good result
was obtained. The synthesized speech was comprehensible, in addition the word flow was human-like.
However, some of the phonemes in particular words resulted in robotic pronunciation. The other prob-
lem is that the WAVE data files in this dataset have a maximal length of 10 seconds, consequently, the
synthesized utterances are good until the 10th second, and then there is only noise. Figure 4.2 illustrates
performance of the model for several test sentences.

CMU_ARCTIC

The system established itself as functioning good, thus the male speech datasets were searched next.
The first found was the CMU_ARCTIC database with seven relatively small datasets of about 1132
sentences and 51 minutes of speech in each set. These datasets are very good labelled and contain no
errors in pronunciation. Nevertheless, the main problem is that they are too small, so after training the
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(a) "Armar, please give me the hammer". Mainly clear align-
ment results in high speech intelligibility.

(b) "Once upon a time there was a dear little girl who was
loved by everyone who looked at her, but most of all by her
grandmother, and there was nothing that she would not have
given to the child". Clear and smooth alignment except for
several flat surfaces, indicating pauses or mispronunciations.
After 10 seconds of synthesized audio only noise was pro-
duced, as seen at the end of the alignment curve.

Figure 4.2.: Attention alignment plots for the LJSpeech model.

synthesized speech was not understandable because of poor quality. Conclusion: The dataset is too small
for training of the TTS systems based on ANN only using this set (see Figure 4.3(a)).

It is also possible to train the ANN as a multi-speaker model, therefore it was trained next using three
male speech sets (all from the CMU_ARCTIC database). The result was the same as by training on
the single-speaker dataset: Poor quality and almost incomprehensible speech. The reason for this result
might be the following: all the datasets contain the same pronounced sentences so that the speech does
not generalize during training (see Figure 4.3(b)).

The other possibility is to fine-tune a pre-trained model and adapt it to data from another dataset.
First, the pre-trained model on the LJSpeech dataset was adapted to the raw data from one of the
CMU_ARCTIC datasets (namely, to ’bdl’ dataset). In that way, the good male speech was obtained,
which was much better than the speech produced by the model trained on the CMU_ARCTIC dataset
from scratch. The voice was not smooth, but the comprehensibility of the synthesized speech was al-
most acceptable. Figure 4.3(c) visualizes the improvement of model performance. Since this approach
demonstrated good results, all of the following experiments were conducted as an adaptation on the best
model received – the one trained on the LJSpeech dataset.

The other problem is that all utterances from the CMU_ARCTIC database have durations shorter
than 6 seconds, which results in poor quality of the synthesized speech after 6-8 seconds. To solve
this problem the following approach was applied: Every four sentences (and corresponding audio files)
from ’bdl’ dataset were merged into one so that the mean duration of the utterances was approx. 10-12
seconds. Then the pre-trained on the LJSpeech dataset model was adapted to this merged ’bdl’ dataset.
The quality of the synthesized speech has risen a little as well as the quality of longer sentences (more
than 8 seconds). The issue of this approach is that now the shorter sentences are synthesized as 8 seconds-
audios, where the first 3 seconds refer to the actual sentence and the rest is noise. Figure 4.3(d) illustrates
the problem for a short test phrase.

The next idea to solve this problem was to merge not all of the utterances, but make a distribution of
short and long audio files: 25% was not merged at all (mean duration 3 seconds), 25% of the new audio
files consist of two files merged into one (mean duration 6 seconds), 25% consist of three audio files
(duration of 9-10 seconds) and the rest 25% are four audio files merged into one (12 seconds and above).
Then the adaptation of the pre-trained model on this new dataset was performed. The resulting quality
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was the same as in the last experiment, but now the sentences of all lengths could be synthesized without
any unnecessary information or noise (see Figure 4.3(e) for a short test phrase as well as Figure 4.3(f)
for a longer one). This model has the best quality of the synthesized speech between all of the models
trained before.

Nevertheless, other issues were remaining to be solved:
• The audio files were clipped too soon at the end (the ending of the last word was not understand-

able);
• The quality of the speech must be improved.

LibriSpeech

The problem of almost all the datasets above is that they are too small to successfully train the ANN, so
it was decided to train the TTS system with the significantly greater dataset: LibriSpeech (approx. 100
hours). This is a multi-speaker dataset, containing data from 251 speakers. Data was taken only from
126 male speakers, resulting in approx. 50 hours of transcribed speech. Since the maximal duration from
single speaker (among all speakers) does not exceed 25 minutes, the best results could be only achieved
from the training of a multi-speaker model on this set. LibriSpeech is an ASR Corpus dataset, which are
often much larger but tend to be less clean, as they typically involve background noises. ASR Corpora
could be ’reversed’ and used for TTS purposes. The training lasted for more than a week (approx. 7-8
days), but, contrary to assumptions, the results were unacceptable because of very poor quality, as the
speech was not understandable at all (see Figure 4.4).

The main reason for this result is the purpose of the dataset: ASR datasets may contain errors in
transcription, and due to the size of the dataset amount of the errors could be very high, resulting in
poor quality of speech. The other issue, associated with this dataset, refers to the training routine: multi-
speaker models tend to converge to a lesser degree than analogous single-speaker models because of the
different voice and pronunciation manners of the speakers.

Mozilla Common Voice

Common Voice by Mozilla is an open-source multi-language speech database, based on a crowd-sourcing
platform. As accessed on 04/02/2018, the database contained voice utterances from 26744 speakers,
resulting in almost 804 hours of speech, however, it is still growing.

As Common Voice is a crowd-sourcing platform, the evaluation of the recorded speech (as well as
recording itself) is done by users. Thus, all the data is divided into three parts: validated (significantly
more up-votes than down-votes), invalidated (significantly more down-votes as up-votes) or other (not
evaluated yet or the same number of up- and down-votes). For training of the TTS system only ’validated’
and ’other’ utterances from two best-sounding speakers with maximal duration (4.38 hours for male and
1.91 hours for female) were taken. Models were trained for approx. one and a half days and one day
respectively.

Both models (male and female) were equally good comprehensible, but still, some of the words could
be mispronounced in both models. As for naturalness, both models sounded robotic or even unpleasant
(the male voice). The other issue was that the male speech was produced in diverse volume: Louder
short utterances and more silent long utterances. Figure 4.5 illustrates the main problems in the attention
learning of both models.

Since this database is crowd-based, it can have errors in pronunciation or completely wrong utter-
ances even after the evaluation and disposal of the invalidated data. That is the case with male speaker
data above: Although some of the erroneous utterances were excluded (even those that were incorrectly
marked as ’validated’), it is nearly impossible to clean the whole dataset. The consistency of data was
also disrupted, that is why more stable female dataset produced better results.
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(a) "A text-to-speech synthesis system typically consists of
multiple stages, such as a text analysis frontend, an acous-
tic model and an audio synthesis module". Raw ’bdl’ dataset
only. Obscure alignment means noise instead of speech.

(b) "A text-to-speech synthesis system typically consists of
multiple stages, such as a text analysis frontend, an acoustic
model and an audio synthesis module". Training as a multi-
speaker model on three raw datasets. Unclear alignment leads
to incomprehensible speech.

(c) "A text-to-speech synthesis system typically consists of
multiple stages, such as a text analysis frontend, an acous-
tic model and an audio synthesis module". Fine-tuning of
the LJSpeech model on raw ’bdl’ dataset. Smooth and clean
alignment results in good performance.

(d) "Armar, please give me the hammer". Fine-tuning of the
LJSpeech model on concatenated sentences (a bunch of four)
from ’bdl’ dataset. Good alignment until the end of a phrase
and only noise afterwards.

(e) "Armar, please give me the hammer". Fine-tuning of
the LJSpeech model on concatenated sentences (mix bundle)
from ’bdl’ dataset. Smooth alignment without noise.

(f) "Once upon a time there was a dear little girl who was
loved by everyone who looked at her, but most of all by her
grandmother, and there was nothing that she would not have
given to the child". Same as (e). Smooth and clean alignment
without noise.

Figure 4.3.: Attention alignment plots for the CMU_ARCTIC model.
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Figure 4.4.: Attention alignment plot for the LibriSpeech model. The test sentence is: "Generative ad-
versarial network or variational auto-encoder". Unclear alignment implies that attention is
not learned properly, thus the output contains only noise.

(a) Male speech model. Mainly smooth alignment except for
several instabilities, which match mispronunciations.

(b) Female speech model. Clean and smooth alignment ex-
cept for several noisy areas and disruption in the end, which
indicates unclear mumbling.

Figure 4.5.: Attention alignment plots for the Mozilla Common Voice database. The test sentence in
alignments is: "Printing, in the only sense with which we are at present concerned, differs
from most if not from all the arts and crafts represented in the Exhibition".

A Text-to-Speech system based on Deep Neural Networks



Page 22 Chapter 4. Text-to-Speech system

VoxForge

Another open-source crowd-sourcing platform for collecting transcribed speech is VoxForge. The highest
quality and the maximal duration among all speakers were achieved by ’ralfherzog’, resulting in approx.
9 hours of transcribed speech.

The first training attempt (two days of training) did not derive any comprehensible speech, in fact, only
unclear noises were produced (see Figure 4.6(a) for attention alignment). Since the dataset consists of
multiple parts, which were recorded at different times each, it was decided to investigate reasons, causing
bad results in synthesizing. In order to do that, the generalization of the model was verified: Some of the
utterances were taken from each part of the dataset and subsequently trained together in small batches of
16 utterances. As the TTS system could ’learn by heart’ that small amount of utterances, the ’unlearned’
ones, which could not be reconstructed and properly synthesized after training, were later excluded from
the dataset.

After excluding the inconsistent parts of the dataset the overall duration decreased to 7.35 hours. The
following training increased the quality of the synthesized speech considerably, which made it the basis
for the final model of this work.

The only problem remaining was clipping at the end of the synthesized utterances. Trimming of
leading and trailing silence from an audio signal (by the librosa package (McFee et al., 2019)) is based
on a threshold (in Decibel) below reference, through that silence is detected and cut. This technique
allows a significant reduction of training time and produces more natural speech, however, more quiet
phonemes at the end of the sentence could be recognized as silence and trimmed. Figure 4.6(b) illustrates
the problem. In order to avoid that another tool (SoX (Navarrete, 2009)) was used, herewith silence at
the beginning was trimmed completely and all periods of silence longer than 0.5 seconds were trimmed
down to only 0.5 seconds long, which solved the clipping problem, as shown in Figure 4.6(c).

The main issue of the VoxForge dataset is the monotonous speaking style of the speaker: It results
in more understandable speech, meanwhile naturalness of the voice remains low, which makes it not
human-alike.

The final version of the English TTS model, trained for approx. a day on this dataset will be evaluated
in section 5.2.1.

4.2.2. German model

Finding a non-English speech dataset, even of an inappropriate quality, is a common issue for almost
every language. Still, some existing German datasets were found and the system was trained on them
during this work.

Since the Deep Voice 3 TTS system implementation was not capable of training of German model, a
new frontend should be written. First of all, Germanic umlauts (such as ’Ä’, ’Ö’, ’Ü’, ’ä’, ’ö’ and ’ü’) and
Eszett (’ß’) were added to the set of graphemes. Conversion of a string of text to a sequence of Identifiers
(IDs) corresponding to the symbols in the text and vice versa (sequence of IDs back to a string) was also
added.

All required operations of an input text (such as punctuation and lower-case) were written for German
frontend. In order to extend the usability of the system normalization of German numbers such as years,
currencies, ordinal numbers, etc. (using num2words tool (Dupras, 2019)) was added. All of the above
should act as a cleaner of German text and thus increase the quality of the trained on that text model. It is
suggested to perform the expansion of abbreviations in the frontend since this version of the TTS system
does not operate with acronyms.

After the first training attempts, it was determined that the system overfits the training data and thus
could not produce test speech correctly. One of the ideas was to complicate training data using pronunci-
ation dictionary for German language (as in English model). CMU Sphinx includes almost 32,000 Ger-
man words and their pronunciations, therefore it was decided to use this pronunciation dictionary (CMU,
2019). During preprocessing words with 50% probability were substituted with their pronunciations,
which significantly increased the quality of the synthesized speech. 66 representations of phonemes
were added to the set of valid characters.
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(a) Model before ’cleaning’. Unclear and ragged alignment
points out the poor performance of the model.

(b) Model after ’cleaning’ and use of the librosa tool. Perfor-
mance has risen considerably, although synthesized utterance
is clipped in the end, as decoder did not attend all encoder
states during the activity of attention mechanism.

(c) Model after ’cleaning’ and use of the SoX tool. Smooth
and clean strictly-diagonal alignment indicates better perfor-
mance and no clipping in the end. Nevertheless, noisiness
could be seen (at some points), which can negatively affect
naturalness of the synthesized speech.

Figure 4.6.: Attention alignment plots for the VoxForge ’ralfherzog’ dataset (English model). The test
sentence in all alignments is: "For the twentieth time that evening the two men shook hands".
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LibriVox

One of the ideas for the dataset to train the TTS system was the use of audiobooks: They usually derive
skilled and understandable pronunciation of the speech, and the amount of data available is huge. The
main problem in this approach is the need for complex preprocessing, namely, in a splitting of the whole
audiobook in small chunks (e.g. sentences).

The first German dataset found was a transcription of three free public domain audiobooks, read by a
female volunteer. The books were already split in small chunks of data (mainly sentences or small parts
of the sentence), therefore no data preprocessing was needed. The amount of data totals to 16 hours of
transcribed speech of good quality.

Six days of training of the TTS system delivered poor results in intelligibility as well as in naturalness.
Only the beginning of each sentence was pronounced right (but still in a robotic-sounding manner), all
the other words were mispronounced or even omitted, resulting in sound interferences. Encoder-decoder
network attention alignment for this dataset could be seen in Figure 4.7.

The outcome could depend on the dataset itself: Audiobooks should not correspond to 100% to the
text, as only the main sense and some of the special words of the sentence must be delivered to the
listener, thus the mispronunciations in spoken speech could occur. In addition, the audiobook itself could
be split in an unfortunate manner during preprocessing, which could interfere with the final result.

Figure 4.7.: Attention alignment plot for the LibriVox model. The test sentence is: "Das ist gar nicht
möglich". The alignment curve is ragged and noisy, although it tends to be strictly-diagonal
and smooth in certain small areas, which allows the model to produce separate understand-
able words.

Mozilla Common Voice

Common Voice speech database contains speech data for 29 languages (state of 04/07/2019), including
German. The German database contains voice utterances from 2195 speakers, resulting in approx. 140
hours of transcribed and evaluated speech.

After short revision of the utterances from speakers with the longest duration (one hour and more) the
following conclusion was made: Some of the recordings lack in quality of sounding or pronunciation,
some were recorded by several (male or female) speakers, which would negatively influence training of
the TTS system as well as the results. A group of people recorded utterances from one account so that
the database contained data from several speakers indicated as data from one.

To keep preprocessing times smaller a decision was made not to include this database in training
routine. Datasets from certain speakers remain promising, but they need to be investigated closely to
detect and extract all inconsistencies.
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VoxForge

As Common Voice, VoxForge has datasets for several languages, with German among them. From all
datasets in this database four were taken for further investigation, and finally, data from the same speaker
as for the English model (’ralfherzog’) with duration of almost 24 hours was used for training.

The first results, obtained after almost three days of training, showed that the ANN was too complex
for the data and written frontend, thus the overfitting happened, as data from training set was precise
reproduced on opposite to text data from test set, which derived only noise (see Figures 4.8(a) and 4.8(b)).
In order to fix it, a pronunciation dictionary for German language was introduced to the frontend, which
was elaborately discussed in section 4.2.2. In addition, some inconsistent utterances were excluded from
dataset, decreasing the overall duration to 23.3 hours.

The second attempt illustrated considerable progress in both intelligibility and naturalness of synthe-
sized speech. To remove clipping of the synthesized audios the same tool and approach as for the English
VoxForge dataset was used (SoX), which reduced overall duration to only 13.5 hours. Figures 4.8(c)
and 4.8(d) visualize the improvement of the model.

Final three days-long training provided best results for German TTS model: The synthesized speech
is highly intelligible and relative natural, nevertheless the absence of any intonation and long pauses
between words in several utterances make the sounding of this model unnatural for some users. The in-
telligibility is also interfered by accidental repetition of random phonemes, as illustrated in Figures 4.8(e)
and 4.8(f).

This version of the German TTS model is considered as final and will be evaluated in section 5.2.2.

4.3. Synthesis

Speech was synthesized using the Nvidia Tesla K80 GPU card. The test sentences for validating of
synthesis performance were:

1) "March was windy and dark" (5 words) for English model and "März war windig und dunkel" (5
words) for German model;

2) "Portals are used in many computer games to instantly travel from one place to another" (15 words)
for English model and "Portale werden in vielen Computerspielen verwendet, um sofort von einem
Ort zum anderen zu reisen" (16 words).

Latency (time to initialize the model) lies between 2.9 and 3.1 seconds, duration of synthesizing of the
first sentence is about 1.5 seconds; of the second sentence: about 2.0-2.1 seconds (same for both models).

It is also possible to synthesize speech using only the CPU, however, the performance of such operation
was not measured during this work.
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(a) Model, trained on a raw dataset. The sentence is: "Es
besteht ein sehr großes Problem" (from the training set).

(b) Model, trained on a raw dataset. The sentence is: "Armar,
bitte gib mir den Hammer" (from the test set). The strong
difference between (a) and (b) alignments emphasizes evident
overfitting.

(c) Model with better frontend and after ’cleaning’. The sen-
tence is the same as in (a). Alignment illustrates the same
performance for sentences from the training set.

(d) Model with better frontend and after ’cleaning’. The sen-
tence is the same as in (b). Alignment illustrates better per-
formance for sentences from the test set, thus, the overfitting
is eliminated.

(e) Final version of the model. The test sentence is: "Im Jahr
1998 lebten dort 2000 Bürger". Alignment shows that the
model is capable of dealing with written numbers.

(f) Final version of the model. The test sentence is: "Straßen?
Wo wir hingehen, brauchen wir keine Straßen". Alignment is
smooth and clean, which allows the best intelligibility of syn-
thesized speech. Nevertheless, several parts of the alignment
curve are noisy, which could lead to unobtrusive mispronun-
ciations or repetitions.

Figure 4.8.: Attention alignment plots for the VoxForge ’ralfherzog’ dataset (German model).
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5. Evaluation and results

There are several different evaluation techniques for testing synthetic speech and the TTS system itself.
All of them can be divided into two major parts: Objective/acoustic measures and user evaluation (Cryer
and Home, 2010).

The objective sense of acoustic testing reveals itself in measuring whether or not an utterance from
a synthetic voice acoustically matches the same utterance in human speech. One example of acoustic
measures are the statistical methods such as Root Mean Squared Error (RMSE), which estimates the
difference between sound contours on a time axis (Cryer and Home, 2010).

Although objective testing is more efficient than subjective, due to the complexity of measurement
and in order to match up the TTS system with listener perceptions the user evaluation was chosen in this
work.

5.1. User evaluation

User evaluation is often done by users who are ultimately going to use it. Measures, delivered by user
testing, can be divided into two main categories: performance measures (such as intelligibility) and
opinion measures (such as naturalness and comprehensibility).

5.1.1. User studies criteria for TTS systems

Many works aimed at synthetic speech testing (Grimshaw et al. (2018) or Murthy et al. (2014)) distin-
guish between three main criteria for speech evaluation: intelligibility, comprehensibility, and natural-
ness.

Intelligibility refers to the accuracy with which each word is pronounced so that a normal listener can
understand the spoken word or phrase (Murthy et al., 2014). The simplest method to analyze intelligibil-
ity of synthetic speech is to let respondents listen to an utterance and then write down all that they have
heard. According to transcription accuracy percentage, the Word Error Rate (WER) (equation (5.1)) as a
metric is used:

WER =
S+D+ I

N
, (5.1)

where
S number of substitutions
D number of deletions
I number of insertions
N number of words in a sentence

The overall score will be calculated as the average percentage of WER among all participants.
Intelligibility analysis requires special test data: Semantically Unpredictable Sentences (SUS). SUS

are syntactically normal, but semantically abnormal sentences. As first proposed in Benoît (1990) and
further discussed in Benoît et al. (1996), SUS allow evaluation of intelligibility at word level, without any
influence made by the redundancy of the language. Benoît et al. (1996) discuss the process of construct-
ing a test set of sentences, recommending to use a wide variety of sentence structures and mini-syllabic
words to further reduce contextual cues (Cryer and Home, 2010).

Comprehensibility means up to what extent the message received is understood (Murthy et al., 2014).
Hereby the understandability of the context should be measured, and not the recognition level of each
word (in contrast to intelligibility). The testing method used here is the Mean Opinion Score (MOS),
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which gives a numerical indication of speech quality. Evaluators have to rate the comprehensibility of an
utterance played on a five-point Likert scale (from 1 – very difficult to understand to 5 – very easy to un-
derstand). MOS then is the arithmetic mean of the mean scores given by each evaluator (equations (5.2)
and (5.3)):

MOS j =
∑

N
i=1 si j

N
(5.2) MOS =

∑
M
j=1 MOS j

M
, (5.3)

where
sij score of j-th evaluator for i-th sentence (from 1 to 5)
N number of sentences
M number of evaluators

Test data for comprehensibility evaluation should cover different variations and different lengths and
should originate from different areas.

Naturalness describes whether the synthetic sound is indistinguishable from human speech and how
close it is to the human voice (Murthy et al., 2014). The same test data and method (MOS – see equa-
tions (5.2) and (5.3)) as in the comprehensibility testing are used here, herewith respondents should rate
sentences in terms of naturalness of the voice (from 1 – very unnatural to 5 – very natural).

5.1.2. Conducting of user testing

TTS system evaluation of this work is divided into three stages for the English model and into two stages
for the German model. All user testing methods are gathered together in one Graphical User Interface
(GUI) (as seen in Figure 5.1), created using the PyQt framework (Riverbank Computing, 2019).

Figure 5.1.: Start of evaluation session.

First stage

The intelligibility of both models (English and German) was evaluated in the first stage through fifteen
(15) sentences, whereas for each heard utterance the corresponding transcript should be written and
submitted (see Figure 5.2).
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Figure 5.2.: First stage of evaluation session – Intelligibility.

The sentences used here are ten (10) SUS and five (5) Harvard sentences (for English model)/Marburg
(for German model) sentences.

The SUS are based on structure suggested by Gibbon et al. (1997). There are five groups of sentences
with two sentences in each group:

1. Subject – Verb – Adverbial;
2. Subject – Verb – Direct object;
3. Adverbial – Transitive verb – Direct object (imperative sentence);
4. Q-word – Transitive verb – Subject – Direct object;
5. Subject – Verb – Complex direct object.

The Harvard sentences are a collection of sample phrases used for standardized testing (IEEE, 1969). The
Marburg sentences originate from the Marburg Sentence Intelligibility Test (Brinkmann, 1974), which
has been used for hearing tests with speech for many years in Germany.

The test set contains both SUS and ’normal’ sentences in order to reduce learning effects and study
intelligibility of the system in both natural and extraordinary situations.

Second stage

In the second stage of evaluation, both opinion measures were gauged: Comprehensibility and Natural-
ness. For each of twenty (20) Harvard sentences (for English model)/Marburg or Wenker (for German
model) sentences of different lengths, the two scores were gathered and submitted (see Figure 5.3).

The Wenker sentences were designed to present key lexical and grammatical items that could be used
to differentiate the many German dialects. The 40 final sentences were firstly introduced in Wenker
(1880).

Different sentence lengths result in different utterance durations: Both models were evaluated through
nine (9) utterances with duration shorter than three seconds and eleven (11) utterances with duration
greater than three seconds in order to make a more detailed statement about people’s opinions.
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Figure 5.3.: Second stage of evaluation session – Comprehensibility and Naturalness.

Third stage (only for English model)

In the third stage, the tested model was compared to four other modern neural TTS systems, whereby the
decision on which model is overall better for people to use was made.

The complete list of sentences used through the process of evaluation could be found in appendix C.

5.2. Results

The results of the evaluation for both models are discussed in this section.

5.2.1. English model

The English TTS model was tested on seven respondents with diverse ethnicity and background knowl-
edge in Text-to-Speech systems and Natural Language Processing in general. None of the respondents is
a native English speaker, nevertheless, all of them can speak and understand English freely (B2 level on
CEFR standard and above).

Table 5.1 shows the Word Error Rate (WER) for each of the respondents. It is noticeable that the WER
for SUS is much higher than the corresponding WER for normal meaningful sentences. That means that
it is more difficult for respondents to understand the sentence that makes no sense because of the absence
of redundancy in such a sentence.

The English model produces almost 23.5% of WER overall, what can be seen as a high rate for a
TTS system, nevertheless the WER for normal sentences reaches only 12% overall, which is an average
rate for synthetic speech synthesizers. Besides that, some speakers (respondents 1 and 3) could achieve
nearly zero WER, which is already a good result for intelligibility of synthetic speech.

Table 5.2 illustrates the MOS and its variations (MOS for utterances shorter or longer than three
seconds) for comprehensibility of the English model. The overall score of 3.79 is more than average and
it describes the pronunciation of the model as nearly easy to understand.
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Figure 5.4.: Third stage of evaluation session – Comparison (only for English model).

Respondent Mean WER (%) WER for SUS (%) WER for normal sentences (%)
1 12.45 18.67 0
2 39.63 46.94 25.00
3 18.62 26.69 2.50
4 19.06 21.92 13.33
5 23.97 30.41 11.11
6 18.27 21.39 12.02
7 32.37 38.00 21.11

Overall 23.48 29.15 12.15

Table 5.1.: WER for English model.
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It is worth seeing again that the MOS depends on the length of the utterance: Utterances with length
shorter than three seconds are more understandable than ones with greater lengths.

Respondent All utterances Utterances shorter than 3s Utterances longer than 3s
1 3.00 3.11 2.91
2 2.25 2.67 1.91
3 4.40 4.56 4.27
4 4.30 4.22 4.36
5 3.40 3.22 3.55
6 4.45 4.67 4.27
7 4.70 4.89 4.55

Overall 3.79 3.90 3.69

Table 5.2.: MOS for comprehensibility of English model.

Table 5.3 demonstrates the MOS for naturalness and its variations (MOS for utterances shorter or
longer than three seconds) of the English model. Naturalness of synthetic speech is seen worse than
comprehensibility, achieving only 3.1 points overall.

Utterances shorter than three seconds are still being described more natural than utterances with longer
length (3.33 vs. 2.91 points), which makes the system usable for short English sentences.

Respondent All utterances Utterances shorter than 3s Utterances longer than 3s
1 1.05 1.11 1.00
2 1.00 1.00 1.00
3 3.80 4.33 3.36
4 4.50 4.56 4.46
5 3.30 3.56 3.09
6 4.00 4.33 3.73
7 4.05 4.44 3.73

Overall 3.10 3.33 2.91

Table 5.3.: MOS for naturalness of English model.

Table 5.4 shows number of achieved by each model votes in the third stage of evaluation. The model
trained during this work features good performance against other open-source TTS models (such as DC-
TTS (Tachibana et al., 2017) and Deep Voice 3 (Yamamoto et al., 2018)), which means that the model
was preferred over others in more than a half of comparison steps. The Tacotron 2 (Shen et al., 2018)
and Sample Efficient Adaptive Text-to-Speech (Chen et al., 2018) demonstrated best results in this stage
of evaluation, however, both models use internal speech datasets, which must maintain higher quality
standards than the other open-source speech datasets.

The evaluation of the English model indicates that all of the criteria (Intelligibility, Comprehensibility,
and Naturalness) could be further improved in future work. Usually, TTS systems are analysed by native
speakers, which was impossible in this work. Evaluation done by native speakers could significantly
decrease mean WER and increase MOS for comprehensibility. Naturalness of the synthesized English
speech should be further advanced. Nevertheless, the third stage of evaluation demonstrated a relative
high competitiveness of the trained model with modern TTS systems.
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(a) Comparison to Tacotron 2 (max. 8 votes).

Respondent Current model Tacotron 2
1 0 8
2 0 8
3 1 7
4 3 5
5 0 8
6 1 7
7 0 8

(b) Comparison to DC-TTS (max. 12 votes).

Respondent Current model DC-TTS
1 6 6
2 0 12
3 6 6
4 8 4
5 3 9
6 8 4
7 3 9

(c) Comparison to Sample Efficient Adaptive Text-to-Speech (max.
4 votes).

Respondent Current model Sample Efficient
Adaptive Text-to-
Speech

1 0 4
2 0 4
3 0 4
4 1 3
5 0 4
6 0 4
7 0 4

(d) Comparison to Deep Voice 3 (max. 6 votes).

Respondent Current model Deep Voice 3
1 6 0
2 0 6
3 6 0
4 6 0
5 5 1
6 6 0
7 6 0

Table 5.4.: Number of votes, achieved by each of the English models during the comparison routine.
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5.2.2. German model

The German TTS model was tested on eight respondents with diverse ethnicity and background knowl-
edge in Text-to-Speech systems and Natural Language Processing in general. Some of the respondents
are native German speakers (respondents 2 and 3), the others can speak and understand German freely
(C1 level on Common European Framework of Reference for Languages (CEFR) standard and above).

Table 5.5 shows the WER for each respondent with a statement of whether the respondent is a native
speaker or not. As seen on the table, the overall WER is much lower for the German model than the
WER for the English model (14.21% vs. 23.48%). This follows from the fact that the German dataset
was larger as well as there were native speakers as respondents by evaluation. Thus the WER is much
lower by native speakers (less than 10% or could even reach nearly-zero values) as by other respondents.

Table 5.5 also illustrates the fact that the WER for meaningful sentences is more than twice lower than
the same rate for SUS (7.29% vs. 17.67%), which could be also interpreted through redundancy. The
WER for normal sentences of the German model could be easily compared to the other modern TTS
systems.

Respondent Native speaker Mean WER (%) WER for SUS (%) WER for normal sentences (%)
1 no 14.60 17.40 9.00
2 yes 3.72 3.92 3.33
3 yes 8.13 8.20 8.00
4 no 20.35 23.02 15.00
5 no 16.57 22.36 5.00
6 no 22.13 29.20 8.00
7 no 15.80 21.20 5.00
8 no 12.37 16.05 5.00

Overall 14.21 17.67 7.29

Table 5.5.: WER for German model.

Table 5.6 further proves the high comprehensibility of the German model. The overall score of 4.00 is
good, that means it was stated by many of the respondents that synthesized German sentences are easy
to understand.

Also here the utterances with length shorter than three seconds are simpler and perceivable than the
others with greater length.

Respondent All utterances Utterances shorter than 3s Utterances longer than 3s
1 4.30 4.44 4.18
2 4.25 4.78 3.82
3 3.60 4.11 3.18
4 4.50 4.33 4.64
5 4.10 4.00 4.18
6 2.90 3.00 2.82
7 3.80 3.89 3.73
8 4.55 4.56 4.55

Overall 4.00 4.14 3.89

Table 5.6.: MOS for comprehensibility of German model.

In Table 5.7 the scores for naturalness could be seen. Unfortunately, the naturalness of the model with
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a mean overall score by 3.00 was rated worse than the English model, but still, the score is in the middle
of scale.

Naturalness of the speech is decreasing with the rising duration of the utterance and length of the sen-
tence.

Respondent All utterances Utterances shorter than 3s Utterances longer than 3s
1 3.65 4.00 3.36
2 3.10 3.44 2.82
3 1.35 1.67 1.09
4 3.20 3.78 2.73
5 3.20 3.67 2.82
6 2.65 2.78 2.55
7 2.70 2.89 2.55
8 3.95 4.11 3.82

Overall 2.98 3.29 2.72

Table 5.7.: MOS for naturalness of German model.

The training datasets for the German model were larger, therefore the error rate by pronunciation is
lower as well as pronunciation itself is more comprehensible. Thus the naturalness of the voice should
be further improved. Evaluation done only by native speakers would lower the error rate, which asserts
the possibility of use of the German model for its purposes.

After evaluation of both models the following conclusions could be made:
• The synthetic speech of the system is quite intelligible and comprehensible for both models, al-

though the German model copes better with its goals and is overall better understandable by lis-
teners;
• Robotic-style voice of both models was rated as unnatural by human listeners, therefore naturalness

of the TTS system should be further improved;
• Intelligibility depends on the meaning of the sentence: absurd sentences are less intelligible than

normal everyday sentences (because of redundancy);
• Comprehensibility and naturalness of the speech are much higher for small short sentences rather

than for long ones (three seconds borderline);
• Native speakers are more suitable for listening tests and provide better results.
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6. Conclusion and future work

6.1. Conclusion

During this work, various sequence-to-sequence TTS systems (for English as well as for German lan-
guages), based on ANNs, were trained in order to synthesize comprehensible and natural male speech.
Thus, different state-of-the-art architectures of modern TTS systems were reviewed and afterwards, an
encoder-decoder architecture, built on CNNs, was chosen for this specific task. This work also reviews
alternative traditional and recent TTS techniques, which are not associated with neural networks.

For the purpose of this work multiple open-source natural human speech datasets were found and
explored on applicability for training of the TTS system. Between all models, trained on the found
speech datasets, two were chosen (one of English and one of German language) for the next evaluation
stage. Both datasets belong to the same database: VoxForge, and are recorded by the same speaker
(’ralfherzog’). The English model involves training on almost four hours of transcribed speech, which
leads to convergence of the model after one day of training. The German model is trained on 13.5
hours speech dataset and converges after three days of training. Since modern DNNs-based TTS systems
converge mainly after a week of training, the achieved by this work result is more than acceptable.

The final model evaluation was done by users. Hereby three user studies criteria were measured:
intelligibility, comprehensibility and naturalness. Overall WER for the English model reaches 23.5%,
meanwhile, respondents have rated comprehensibility for 3.8 (out of 5.0) points and naturalness for
3.1 points on average. The same values are 14.2% of WER for the German model, and 4.0 points
were given for comprehensibility and almost 3.0 points for naturalness of the model. Evaluation proves
that the greater overall duration of the German speech dataset positively affects the performance of the
model since WER and MOS for comprehensibility are higher at the average as those for the English
model. In their turn, both models achieve WER of approx. 10% for normal sentences, therefore the
synthesized male speech is suitable for any TTS-required purpose and is competitive with high-quality
speech produced by other modern TTS systems. Discovered male speech datasets could be also applied
as a standard for Text-to-Speech goals alongside with well-known LJSpeech dataset. The only weak
point of the trained models is naturalness of the speech, which should be further improved.

Speech synthesis proceeds relatively fast, although it could be accelerated a bit. Model is loaded
quicker than in three seconds, a medium length phrase (of about 10 words) is produced in less than two
seconds afterwards. Synthesizing on low resource computers (without the use of GPU) was not tested,
nevertheless, it is possible to produce speech on such systems. However, performance may decrease a
little. In that way, the majority of this work’s goals were reached.

6.2. Future work

A number of suggestions could be derived from this work, related to the trained model itself, discovered
datasets and development of a new speech dataset. All suggestions and assumptions will be made below.

Model

Several improvements of the TTS system for better model training could be undertaken in future work.
Firstly, the weak point that still remains in both models is the potential in producing speech utterances

of different lengths. The model is unable to produce clean and understandable utterances with duration
more than 10 seconds, which was closely discussed in Sections 4.2.1 and 4.2.1. This work suggests an
approach to solve this issue, discussed and successfully tested in Section 4.2.1, namely, the concatenation
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of short audio files to generate new datasets with longer utterances. Thus, phrases of every length could
be effectively synthesized. However, this technique was not used in the final version of the model.

English model is challenged by repeating words in phrases (e.g. "eleven eleven o’clock" cannot be
produced correctly), thus more training data of this type could fix the problem.

Modern spoken German language contains a variety of Anglicisms, which usually are not included in a
training dataset, thus the German model mispronounced every English word in a sentence (or pronounced
it in a German manner). A possible solution could be to involve an English pronunciation dictionary in
a preprocessing routine for the German model since the substitution of English words to their pronun-
ciations corrects the model. It is also possible to establish a whole new pronunciation dictionary for
most common Anglicisms spoken in a German manner, what would fix the problem, however, it is too
complex.

Naturalness of synthesized speech of both models could be considerably increased by training on a
perfectly aligned speech dataset. In addition, fine-tuning of pre-trained model and subsequent training
on another dataset showed promising results in speech performance.

Speech synthesis performance can be also increased by producing WAVE files on-the-go: While future
audio frames are still being predicted, previous frames can be already played.

Discovered datasets

Most of the success of a TTS system relies on the dataset chosen for training. Multiple datasets were
found and validated through training and subsequent evaluation of the models during this work, never-
theless, several further datasets could be inspected for TTS purposes.

Mozilla Common Voice database is further developing. As accessed on 08/30/2019, the database has
significantly grown, which resulted in over 1000 hours of speech for English and over 300 hours of
speech for the German language. Appendix B mentions several promising datasets for TTS system
training, moreover, the amount of data in each set could have risen considerably. In addition, data from
new speakers could have been added.

This work provides several bits of advice on preparing of the Mozilla Common Voice datasets for
training:
• Firstly, data should be organized by speakers in order to train an optimal single-speaker model;
• It is suggested to train only on data marked as ’validated’, as ’invalidated’ and ’other’ sets could

contain mispronunciations or even erroneous utterances;
• Even though the ’validated’ set is verified by users, it is recommended to inspect the whole dataset

for inconsistencies such as acoustic differences between utterances, mispronunciations or noisi-
ness, and multiple speakers.

VoxForge ’ralfherzog’ dataset provided the best results for both English and German models in this
work, however, it could be further improved. During this work, several acoustic inconsistencies were
detected (such as the different volume of recorded speech), which could negatively affect the quality of
synthesized speech. It is suggested to inspect the dataset on further drawbacks. In addition, recorded
speech in ’ralfherzog’ dataset is monotonous, which could be seen as unnatural by some users.

German VoxForge database contains additional promising major speech datasets (such as ’guenter’
and ’manu’), on which the TTS system can be trained and thus deliver better results.

Other datasets can be found since this work does not cover all existing open-source speech datasets.

It is recommended to use SoX instead of librosa tool for removing silences before each training. Thus,
training time is reduced considerably and clipping at the end of the synthesized utterances is eliminated.
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Development of a new dataset

Since every dataset listed above has its negative sides, this work suggests to develop new speech datasets
for both English and German languages with following characteristics:
• All data should proceed exclusively from one speaker (female or male);
• The size of the dataset should not exceed 24 hours and not be less than 10 hours (after silence

elimination). Since training time of three-four days is considered as short by this work, 15 hours
is believed as an optimal overall duration for the dataset and can be freely raised to 20 hours;

• Additionally, the dataset should consist of all possible utterance durations in order to produce
speech from text of any length. This work suggests to record utterances with a maximal duration
of 20 seconds;

• All utterances must be perfectly aligned. Every misalignment or mispronunciation leads to an
insufficient performance;

• All utterances should involve good intonation, common for a normal speech. Lack of intonation is
seen as unnaturalness of voice;

• Training set phrases should be phonetically balanced and contain all language variations (such as
numbers, abbreviations, sentence structures, names and borrowed from other languages words);

• Clear pronunciation and no acoustic interference (such as noise) should be maintained.
Such a dataset could significantly increase model performance and become a new standard in the TTS
field.
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A. Deep Voice 3 architecture

Detailed architecture of the Deep Voice 3 model is shown in Figure A.1.

Figure A.1.: Detailed architecture of the Deep Voice 3 model. Graphic taken from Ping et al. (2018).

Every Convolutional Block for sequential processing in Figure A.1 consists of a 1-D convolution with
a gated linear unit and a residual connection. Stacked convolutional layers can develop long-term context
information in sequences without the use of RNNs, thus, allowing parallelism of computation.

Figure A.2.: Convolutional block for sequential processing. Here c denotes the dimensionality of the
input. Graphic taken from Ping et al. (2018).
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B. Speech datasets

Datasets, used for training of the TTS system, and their properties are found in Tables B.1 (for English
model) and B.6 (for German model).

Training was conducted with 16 GB Random-Access Memory (RAM) and on one of the following
GPU cards:

1. Nvidia GeForce GTX Titan X or Nvidia GeForce GTX 1080 Ti (nearly similar performance);
2. Nvidia Tesla K80.

All the following tables mention explicitly the utilized GPU card for each dataset (and thus for each
training routine).

Silence was removed before each training with tools such as librosa (always unless otherwise indi-
cated) or SoX (explicitly indicated).

Quality refers to usability for the stated purpose, namely, training of the TTS system:
• 0 means impracticality of considering and using of the dataset (mostly because of multiple speakers

or erroneous labels);
• 1 means partly possibility of using of the dataset, although it must be ’cleaned’ (all inconsistencies

must be removed) before training;
• 1−2 are best datasets between all of quality 1, however, their applicability must be proven through

training;
• 2 most useful datasets, since no inconsistencies were found.

Nevertheless, it is recommended to examine all datasets before training.

Databases with multiple datasets (such as CMU_ARCTIC, Mozilla Common Voice and VoxForge) are
gathered together in separate tables. Tables for Mozilla Common Voice database contain only datasets
with an overall duration of more than one hour.
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B
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speech

datasets.
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D
ataset

Sex
D

uration
(hours)

D
uration

after
rem

oving
si-

lence
(hours)

Sam
ple

rate
(H

z)

Training
tim

e
(hours)

G
PU

card
R

eference
Further

infor-
m

ation

L
ibriVox

one
fem

ale
speaker

16.13
14.95

22050
145.3

2.
Park

and
M

ulc
(2018)

-

M
ozilla

C
om

m
on

Voice
2195

m
ale

and
fem

ale
speakers

139.84
-

48000
-

-
M

ozilla
(2017)

see
TablesB

.8
and

B
.9

VoxForge
fourm

ale
speakers

-
-

16000
-

-
VoxForge
(2006)

see
Table

B
.7

Table
B

.6.:G
erm

an
speech

datasets.

D
ataset

D
uration

(hours)
D

uration
after

re-
m

oving
silence

(hours)

Training
tim

e
(hours)

G
PU

card
Q

uality
N

ote
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-
-

-
2

-
m

anu
9.45

-
-

-
2

-
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2.03
-

-
-

0
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labels
ralfherzog

(before
’cleaning’)

23.52
12.67

66.5
1.

2
-

ralfherzog
(after’cleaning’+

SoX
)

23.33
13.52

73.2
1.

2
-

Table
B

.7.:VoxForge
speech

datasets.
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C. Evaluation sentences

Text sentences, used for evaluation of a system, are found here.

C.1. English model

Test sentences for evaluation are divided into three groups (one group for each stage of evaluation):
• SUS (based on structure given in Gibbon et al. (1997) and NIT (2005)) and Harvard sentences

(taken from IEEE (1969));
• Harvard sentences of different length;
• Text from open-source utterances of different TTS systems.

C.1.1. Stage 1

The SUS are:
1. The table walked through the blue truth.
2. The robust visitors grew in the flowering pool.
3. The strong way drank the day.
4. The mysterious bullets began the mythological browser.
5. Never draw the house and the fact.
6. Kindly bring the hope to the library.
7. How does the day love the bright word?
8. Why does the jazz hit the brown bar?
9. The place closed the fish that lived.

10. The dishonest audiences began the rosemary that flew away.

The Harvard sentences are:
1. Use a pencil to write the first draft.
2. The train brought our hero to the big town.
3. She did her best to help him.
4. The beauty of the view stunned the young boy.
5. Please wait outside of the house.

C.1.2. Stage 2

The Harvard sentences for stage 2 are:
1. One.
2. Hurry up!
3. Is it free?
4. A person thinking.
5. Christmas is coming.
6. A compromise disappears.
7. Fasten two pins on each side.
8. He ran half way to the hardware store.
9. Let it burn, it gives us warmth and comfort.

10. She wrote him a long letter, but he didn’t read it.
11. The square wooden crate was packed to be shipped.
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12. The weight of the package was seen on the high scale.
13. It was hidden from sight by a mass of leaves and shrubs.
14. The bills were mailed promptly on the tenth of the month.
15. I currently have four windows open up and I don’t know why.
16. A generous continuum of Amazon dot com is the conflicting worker.
17. If purple people eaters are real where do they find purple people to eat?
18. Italy is my favorite country, in fact, I plan to spend two weeks there next year.
19. She works two jobs to make ends meet, at least, that was her reason for not having time to join us.
20. If the easter bunny and the tooth fairy had babies, would they take your teeth and leave chocolate

for you?

C.1.3. Stage 3

The sentences from Tacotron 2 (Shen et al., 2018) are:
1. Take a look at these pages for crooked creek drive.
2. There are several listings for gas station.
3. Here’s the forecast for the next four days.
4. Here is some information about the Gospel of John.
5. His motives were more pragmatic and political.
6. She had three brothers and two sisters.
7. This work reflects a quest for lost identity, a recuperation of an unknown past.
8. He was being fitted for ruling the state, in the words of his biographer.

The sentences from DC-TTS (Tachibana et al., 2017) are:
1. The birch canoe slid on the smooth planks.
2. It’s easy to tell the depth of a well.
3. The box was thrown beside the parked truck.
4. Four hours of steady work faced us.
5. Large size in stockings is hard to sell.
6. The boy was there when the sun rose.
7. A rod is used to catch pink salmon.
8. Kick the ball straight and follow through.
9. Help the woman get back to her feet.

10. A pot of tea helps to pass the evening.
11. The soft cushion broke the man’s fall.
12. The salt breeze came across from the sea.

The sentences from Sample Efficient Adaptive Text-to-Speech (Chen et al., 2018) are:
1. Here are some pages for who sells Toms shoes.
2. Modern birds are classified as coelurosaurs by nearly all palaeontologists.
3. There were many editions of these works still being used in the 19th century.
4. The town is further intersected by numerous small canals with tree-bordered quays.

The sentences from Deep Voice 3 (Yamamoto et al., 2018) are:
1. Scientists at the CERN laboratory say they have discovered a new particle.
2. There’s a way to measure the acute emotional intelligence that has never gone out of style.
3. President Trump met with other leaders at the Group of 20 conference.
4. The Senate’s bill to repeal and replace the Affordable Care Act is now imperiled.
5. Generative adversarial network or variational auto-encoder.
6. The buses aren’t the problem, they actually provide a solution.
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C.2. German model

Test sentences for evaluation are divided into two groups (one group for each stage of evaluation):
• SUS (based on structure given in Gibbon et al. (1997)) and Marburg (taken from Brinkmann

(1974)) sentences;
• Wenker (taken from Wenker (1880)) and Marburg sentences of different lengths.

C.2.1. Stage 1

The SUS are:
1. Böse Menschen fallen auf die Sonne.
2. Die katholischen Musicals schlafen im Gras.
3. Der treue Hund tadelt die nasse Ente.
4. Die unsichtbaren Würste haben das Präsidentenprojekt neu geschrieben.
5. Nehmt doch Leben zum Hafen!
6. Schaue immer mit einem Baum am Hinterkopf.
7. Wo erlaubt die Stärke die feine Wahl?
8. Wieso angelt der Sinn unter dem Fahrzeug?
9. Der Bauer grüßt die Ärztinnen, die lächeln.

10. Die naturalistischen Konzepte retten den Zombie, der ein Auto fährt.

The Marburg sentences are:
1. Wer weiß dort genau Bescheid?
2. Du darfst Dich wieder setzen.
3. Unser Haar braucht Pflege.
4. Es geht hier ums Prinzip.
5. Bitte öffnet doch gleich beide Türen!

C.2.2. Stage 2

The Wenker and Marburg sentences for stage 2 are:
1. Zwei.
2. Abendbrot.
3. Deine Uhr geht vor.
4. Wir spielen alle Tage.
5. Leider ist dies Haus teuer.
6. Gut Ding will Weile haben.
7. Dort muss jedes Auto bremsen.
8. Nicht jeder verträgt kaltes Bier.
9. Wir sind müde und haben Durst.

10. Ich habe das akustisch nicht verstanden.
11. Motoren brauchen Benzin, Öl und Wasser.
12. Verkehrsampeln leuchten grün, gelb und rot.
13. Schulkinder müssen Rechnen und Schreiben lernen.
14. Die Leute sind heute alle draußen auf dem Feld und mähen.
15. Ich verstehe euch nicht, ihr müsst ein bisschen lauter sprechen.
16. Es hört gleich auf zu schneien, dann wird das Wetter wieder besser.
17. Der Schnee ist diese Nacht liegen geblieben, aber heute morgen ist er geschmolzen.
18. Der gute alte Mann ist mit dem Pferd auf dem Eis eingebrochen und in das kalte Wasser gefallen.
19. Als wir gestern abend zurück kamen, da lagen die anderen schon im Bett und waren fest eingeschlafen.
20. Du bist noch nicht groß genug, um eine Flasche Wein allein auszutrinken, du musst erst noch

größer werden.
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Acronyms

ANN Artificial Neural Network. 5, 7–10, 18, 19, 25, 36
ARPA Advanced Research Projects Agency. 50
ASCII American Standard Code for Information Interchange. 50
ASR Automatic Speech Recognition. 12, 19

CEFR Common European Framework of Reference for Languages. 30, 34
CNN Convolutional Neural Network. 8–10, 12, 36
CPU Central Processing Unit. 3, 25

dB Decibel. 22, 50
DNN Deep Neural Network. 3, 5, 7, 15, 36

FFT Fast Fourier Transform. 51

GPU Graphics Processing Unit. 3, 25, 36, 41–44
GUI Graphical User Interface. 28

HMM Hidden Markov Model. 3, 15

ID Identifier. 22, 43, 45

LSTM Long Short-Term Memory. 10

MLP Multi-Layer Perceptron. 6, 7
MOS Mean Opinion Score. 27, 28, 30, 32, 34–36

NLP Natural Language Processing. 3, 8, 10, 30, 34

RAM Random-Access Memory. 41
RMSE Root Mean Squared Error. 27
RNN Recurrent Neural Network. 10, 40

SPSS Statistical Parametric Speech Synthesis. 15
STFT Short-Time Fourier Transform. 12
SUS Semantically Unpredictable Sentences. 27, 29–31, 34, 46, 48

TDNN Time-Delay Neural Network. 9
TTS Text-to-Speech. 3–5, 7, 8, 10, 12, 13, 15, 17–19, 22, 24, 25, 27, 28, 30, 32, 34–38, 41, 46

WAVE Waveform Audio File Format. 17, 37
WER Word Error Rate. 5, 27, 30–32, 34, 36
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Glossary

Anglicism a word or phrase borrowed from English into a foreign language. 37
ARPAbet a set of phonetic transcription codes developed by the Advanced Research Projects Agency

(ARPA). It represents phonemes and allophones of General American English with distinct se-
quences of ASCII characters. 14

autoregressive denoted to autoregression: a time series model that uses observations from previous
time steps as input to a regression equation to predict the value at the next time step. 16

backend the part of a computer system or application that is not directly accessed by the user, typically
responsible for storing and manipulating data. 13

envelope referring to an oscillating signal: a smooth curve outlining its extremes. 51

frontend the part of a computer system or application with which the user interacts directly. 5, 13, 22,
25, 26

fundamental frequency the lowest (thus the loudest) frequency of a periodic waveform. 12, 15

glottal pulse a short burst of air, emerging from the lungs through the glottis, resulting in a periodic
pulse train with an audible pitch, which is then passed through multiple filters (tongue, lips, etc.)
to produce speech. 14

glottis the opening between the vocal folds (folds of tissue in the throat), which create sounds through
opening and clothing as well as vibrating. 50

grapheme the smallest meaningful contrastive unit in a writing system. 16, 22

Harvard sentences a collection of sample phrases that are used for standardized testing of telecom-
munications, speech, and acoustics systems. They are phonetically balanced sentences that use
specific phonemes at the same frequency they appear in English. 29, 46

Likert scale a scale used to represent people’s attitudes to a topic, in which the individual is allowed to
express how much they agree or disagree with a particular statement. 28

mel scale a perceptual scale of pitches judged by listeners to be equal in distance from one another, as
it is heard by the human ear. The reference point between this scale and normal frequency mea-
surement is defined by assigning a perceptual pitch of 1000 mels to a 1000 Hz tone, 40 dB above
the listener’s threshold. As frequency rises, increasingly large intervals are judged by listeners to
produce equal pitch increments. 50

mel-scale log-magnitude spectrogram usually the same as mel-spectrogram, but with an explicit in-
dication that the magnitude of the signal is transformed to log scale (usually to dB). 12, 16

mel-scale spectrogram the same as mel-spectrogram. 16
mel-spectrogram a spectrogram with the mel scale as its y-axis (see Figure 6.2). Generated as decom-

position of the magnitude of the signal into its components, corresponding to the frequencies in
the mel scale. 12, 17, 50

mini-syllabic words the shortest available words in their class. 27

overfitting the production of an analysis that corresponds too closely or exactly to a particular set of
data, and may, therefore, fail to fit additional data or predict future observations reliably. 9, 17, 25,
26
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Figure 6.1.: Spectrogram for phrase: "This is my thesis".

Figure 6.2.: Mel-spectrogram for phrase: "This is my thesis".

phoneme any of the perceptually distinct units of sound in a specified language that distinguish one
word from another. 9, 11, 12, 14, 16, 17, 22, 25

Q-word a function word used to ask a question, such as what, when, where, who, which, whom, whose,
why, and how. The other names are interrogative word or question word. 29

redundancy in linguistics, refers to information that is expressed more than once. 27, 30, 34, 35

sample rate rate, with which sampling happens, herewith sampling is the reduction of a continuous-
time signal to a discrete-time signal. 42, 44

spectral envelope the envelope curve of the amplitude spectrum (or audio power spectrum). 12
spectrogram a visual representation of the spectrum of frequencies of a signal as it varies with time

(see Figure 6.1). Transformation of signal from time domain to frequency domain originates from
FFT for each window. 12

A Text-to-Speech system based on Deep Neural Networks



Page 52 Bibliography

Bibliography

Nagoya Institute of Technology (NIT) English sentences. http://research.nii.ac.jp/src/
en/NITECH-EN.html, 2005. 46

CMU Pronouncing Dictionary. http://www.speech.cs.cmu.edu/cgi-bin/cmudict,
2014. 14

CMU Sphinx – Speech Recognition Toolkit. https://sourceforge.net/projects/
cmusphinx/, 2019. 22

J. Allen, M. S. Hunnicutt, D. H. Klatt, R. C. Armstrong, and D. B. Pisoni. From Text to Speech: The
MITalk System. Cambridge University Press, New York, NY, USA, 1987. ISBN 0-521-30641-8. 14

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to Align and
Translate. arXiv e-prints, art. arXiv:1409.0473, Sep 2014. 11

C. Benoît. An intelligibility test using semantically unpredictable sentences: towards the quantifica-
tion of linguistic complexity. Speech Communication, 9(4):293 – 304, 1990. ISSN 0167-6393.
doi: https://doi.org/10.1016/0167-6393(90)90005-T. URL http://www.sciencedirect.
com/science/article/pii/016763939090005T. 27

C. Benoît, M. Grice, and V. Hazan. The SUS test: A method for the assessment of text-to-speech
synthesis intelligibility using Semantically Unpredictable Sentences. Speech Communication, 18(4):
381 – 392, 1996. ISSN 0167-6393. doi: https://doi.org/10.1016/0167-6393(96)00026-X. URL http:
//www.sciencedirect.com/science/article/pii/016763939600026X. 27

P. Birkholz. VocalTractLab: Towards high-quality articulatory speech synthesis. http://www.
vocaltractlab.de/index.php?page=background-articulatory-synthesis,
2017. 14

C. M. Bishop. Pattern recognition and machine learning. Information science and statistics. Springer,
New York, NY, 2006. ISBN 0-387-31073-8; 978-0-387-31073-2. 5, 15

A. Black and P. Taylor. CHATR: a generic speech synthesis system. In COLING94, pages 983–986,
Kyoto, Japan, 1994. 14

K. Brinkmann. Die Neuaufnahme des Marburger Satzverständnistestes/The New Recording of
the Marburg Sentence Intelligibility Test. Zeitschrift für Hörgeräte-Akustik: Internationale
Beiträge über Audiologie und deren Grenzgebiete/Journal of Audiological Technique: In-
ternational Studies of Audiology and Related Fields, 13(6):190–206, Nov. 1974. URL
https://www.uzh.ch/orl/dga-ev/publikationen/zfaudiologie/archiv/
HGAk_1974_13-6_190-206_Original.pdf. 29, 48

Y. Chen, Y. Assael, B. Shillingford, D. Budden, S. Reed, H. Zen, Q. Wang, L. C. Cobo, A. Trask,
B. Laurie, C. Gulcehre, A. van den Oord, O. Vinyals, and N. de Freitas. Sample Efficient Adaptive
Text-to-Speech. arXiv e-prints, art. arXiv:1809.10460, Sep 2018. 32, 47

J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio. Attention-Based Models for Speech
Recognition. arXiv e-prints, art. arXiv:1506.07503, Jun 2015. 11

H. Cryer and S. Home. Review of methods for evaluating synthetic speech. Technical Report 8, RNIB
Centre for Accessible Information, 58-72 John Bright Street, Birmingham, UK, Feb. 2010. 27

A Text-to-Speech system based on Deep Neural Networks

http://research.nii.ac.jp/src/en/NITECH-EN.html
http://research.nii.ac.jp/src/en/NITECH-EN.html
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://sourceforge.net/projects/cmusphinx/
https://sourceforge.net/projects/cmusphinx/
http://www.sciencedirect.com/science/article/pii/016763939090005T
http://www.sciencedirect.com/science/article/pii/016763939090005T
http://www.sciencedirect.com/science/article/pii/016763939600026X
http://www.sciencedirect.com/science/article/pii/016763939600026X
http://www.vocaltractlab.de/index.php?page=background-articulatory-synthesis
http://www.vocaltractlab.de/index.php?page=background-articulatory-synthesis
https://www.uzh.ch/orl/dga-ev/publikationen/zfaudiologie/archiv/HGAk_1974_13-6_190-206_Original.pdf
https://www.uzh.ch/orl/dga-ev/publikationen/zfaudiologie/archiv/HGAk_1974_13-6_190-206_Original.pdf


Bibliography Page 53

A. K. Datta. Epoch Synchronous Overlap Add (ESOLA) : A Concatenative Synthesis Procedure for
Speech. Signals and Communication Technology. Springer, Singapore, 2018. ISBN 9789811070167.
URL https://doi.org/10.1007/978-981-10-7016-7. 14

A. Dertat. Applied Deep Learning - Part 4: Convolutional
Neural Networks. https://towardsdatascience.com/
applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2,
Nov. 2017. 9, 10

G. Dreyfus, editor. Neural networks: methodology and applications. Springer, Berlin, 2005. ISBN
3-540-22980-9; 978-3-540-22980-3. 5

V. Dupras. num2words – Convert numbers to words in multiple languages. https://github.com/
savoirfairelinux/num2words, 2019. 22

G. Fant. Acoustic theory of speech production. Mouton, Hague, The Netherlands, 1960. 14

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional Sequence to Sequence
Learning. arXiv e-prints, art. arXiv:1705.03122, May 2017. 10, 11

D. Gibbon, R. Moore, and R. Winski, editors. Handbook of Standards and Resources for Spoken Lan-
guage Systems, chapter Conclusion: summary of test. Mouton de Gruyter, Berlin and New York, May
1997. 29, 46, 48

D. W. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 32:236–243, Apr. 1984. doi: 10.1109/TASSP.
1984.1164317. 12, 17

J. Grimshaw, T. Bione, and W. Cardoso. Who’s got talent? Comparing TTS systems for comprehensi-
bility, naturalness, and intelligibility, pages 83–88. EuroCALL Conference short papers. Research-
publishing.net, 2018. ISBN 978-2-490057-22-1. URL https://doi.org/10.14705/rpnet.
2018.26.817. 27

A. Hunt and A. Black. Unit selection in a concatenative speech synthesis system using a large speech
database. In ICASSP 96, pages 373–376, Atlanta, Georgia, 1996. 13

IEEE. IEEE Recommended Practice for Speech Quality Measurements. IEEE Transactions on Audio
and Electroacoustics, 17(3):225–246, Sep. 1969. ISSN 0018-9278. doi: 10.1109/TAU.1969.1162058.
URL https://www.cs.columbia.edu/~hgs/audio/harvard.html. 29, 46

K. Ito. The LJ Speech Dataset. https://keithito.com/LJ-Speech-Dataset/, 2017. 3, 42

J. Kominek and A. W. Black. CMU_ARCTIC databases for speech synthesis. http://www.
festvox.org/cmu_arctic/, 2003. 42

R. Kruse. Computational Intelligence: Eine methodische Einführung in Künstliche Neuronale Netze,
Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze. Computational IntelligenceSpringerLink.
Springer Vieweg, Wiesbaden, 2. aufl. 2015 edition, 2015. ISBN 9783658109042. URL https:
//doi.org/10.1007/978-3-658-10904-2. 5, 8

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backprop-
agation applied to handwritten zip code recognition. Neural Comput., 1(4):541–551, Dec. 1989. ISSN
0899-7667. doi: 10.1162/neco.1989.1.4.541. URL http://dx.doi.org/10.1162/neco.
1989.1.4.541. 9

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
tion. In Proceedings of the IEEE, pages 2278–2324, 1998. 9, 10

A Text-to-Speech system based on Deep Neural Networks

https://doi.org/10.1007/978-981-10-7016-7
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
https://github.com/savoirfairelinux/num2words
https://github.com/savoirfairelinux/num2words
https://doi.org/10.14705/rpnet.2018.26.817
https://doi.org/10.14705/rpnet.2018.26.817
https://www.cs.columbia.edu/~hgs/audio/harvard.html
https://keithito.com/LJ-Speech-Dataset/
http://www.festvox.org/cmu_arctic/
http://www.festvox.org/cmu_arctic/
https://doi.org/10.1007/978-3-658-10904-2
https://doi.org/10.1007/978-3-658-10904-2
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541


Page 54 Bibliography

B. McFee, V. Lostanlen, M. McVicar, A. Metsai, S. Balke, C. Thomé, C. Raffel, D. Lee, K. Lee, O. Nieto,
J. Mason, F. Zalkow, D. Ellis, E. Battenberg, V. Morozov, R. Yamamoto, R. Bittner, K. Choi, J. Moore,
Z. Wei, nullmightybofo, P. Friesch, F.-R. Stöter, D. Hereñú, Thassilo, T. Kim, M. Vollrath, A. Weiss,
C. Carr, and ajweiss dd. librosa/librosa: 0.7.0, July 2019. URL https://doi.org/10.5281/
zenodo.3270922. 22

M. Morise, F. Yokomori, and K. Ozawa. WORLD: A Vocoder-Based High-Quality Speech Synthesis
System for Real-Time Applications. IEICE Transactions on Information and Systems, 99:1877–1884,
2016. doi: 10.1587/transinf.2015EDP7457. 12, 17

Mozilla. Mozilla Common Voice. https://voice.mozilla.org/en/datasets, 2017. 42, 44

J. Mullennix and S. Stern. Computer Synthesized Speech Technologies: Tools for Aiding Impairment,
page 11. IGI Global, 1 edition, Jan. 2010. 3

H. Murthy, R. Sinha, A.G.Ramakrishanan, S. Agrawal, M. D. Kulkarni, S. Chandra, R. Doc-
tor, S. Lata, T. Patil, A. Prakash, A. Kesarwani, R. Raheja, and N. Yadav. Text to Speech
Testing Strategy. http://tdil-dc.in/undertaking/article/449854TTS_Testing_
Strategy_ver_2.1.pdf, July 2014. 27, 28

J. Navarrete. The SoX of Silence. https://digitalcardboard.com/blog/2009/08/25/
the-sox-of-silence/, Aug. 2009. URL http://sox.sourceforge.net/. 22

V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. LibriSpeech: An ASR corpus based on public
domain audio books. http://www.openslr.org/12/, 2015. 42

K. Park and T. Mulc. German Single speaker Speech Dataset. https://www.kaggle.com/
bryanpark/german-single-speaker-speech-dataset, 2018. 44

W. Ping, K. Peng, A. Gibiansky, S. O. Arik, A. Kannan, S. Narang, J. Raiman, and J. Miller.
Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning. arXiv e-prints, art.
arXiv:1710.07654v3, Feb 2018. 5, 7, 3, 12, 16, 40

K. S. Rao. Source Modeling Techniques for Quality Enhancement in Statistical Parametric Speech Syn-
thesis. SpringerBriefs in Speech Technology: Studies in Speech Signal Processing, Natural Language
Understanding, and Machine LearningSpringerLink. Springer International Publishing, Cham, 2019.
ISBN 9783030027599. URL https://doi.org/10.1007/978-3-030-02759-9. 13, 15

Riverbank Computing. PyQt. https://riverbankcomputing.com/software/pyqt/
intro, 2019. 28

F. Rosenblatt. The Perceptron, a Perceiving and Recognizing Automaton Project Para. 1957. 5

U. Saxena. Speech synthesis techniques using deep neural networks. https://medium.com/
@saxenauts/speech-synthesis-techniques-using-deep-neural-networks-38699e943861,
Oct. 2017. 14, 15

S. Sharma. Activation functions in neural networks. https://towardsdatascience.com/
activation-functions-neural-networks-1cbd9f8d91d6, Sept. 2017a. 6

S. Sharma. What the hell is perceptron? https://towardsdatascience.com/
what-the-hell-is-perceptron-626217814f53, Sept. 2017b. 5

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. Skerry-
Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu. Natural TTS Synthesis by Conditioning
WaveNet on Mel Spectrogram Predictions. arXiv e-prints, art. arXiv:1712.05884v2, Feb 2018. 5, 7,
4, 8, 32, 47

A Text-to-Speech system based on Deep Neural Networks

https://doi.org/10.5281/zenodo.3270922
https://doi.org/10.5281/zenodo.3270922
https://voice.mozilla.org/en/datasets
http://tdil-dc.in/undertaking/article/449854TTS_Testing_Strategy_ver_2.1.pdf
http://tdil-dc.in/undertaking/article/449854TTS_Testing_Strategy_ver_2.1.pdf
https://digitalcardboard.com/blog/2009/08/25/the-sox-of-silence/
https://digitalcardboard.com/blog/2009/08/25/the-sox-of-silence/
http://sox.sourceforge.net/
http://www.openslr.org/12/
https://www.kaggle.com/bryanpark/german-single-speaker-speech-dataset
https://www.kaggle.com/bryanpark/german-single-speaker-speech-dataset
https://doi.org/10.1007/978-3-030-02759-9
https://riverbankcomputing.com/software/pyqt/intro
https://riverbankcomputing.com/software/pyqt/intro
https://medium.com/@saxenauts/speech-synthesis-techniques-using-deep-neural-networks-38699e943861
https://medium.com/@saxenauts/speech-synthesis-techniques-using-deep-neural-networks-38699e943861
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53


Bibliography Page 55

J. O. Smith. Physical Audio Signal Processing. http://ccrma.stanford.edu/˜jos/pasp/,
accessed 08/01/2019. online book, 2010 edition. 14

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neural Networks. arXiv
e-prints, art. arXiv:1409.3215, Sep 2014. 10, 11

H. Tachibana, K. Uenoyama, and S. Aihara. Efficiently Trainable Text-to-Speech System Based on Deep
Convolutional Networks with Guided Attention. arXiv e-prints, art. arXiv:1710.08969, Oct 2017. 32,
47

P. Taylor, A. Black, and R. Caley. The architecture of the Festival Speech Synthesis System. In 3rd
ESCA Workshop on Speech Synthesis, pages 147–151, Jenolan Caves, Australia, 1998. 14

N. Tits, K. El Haddad, and T. Dutoit. Exploring Transfer Learning for Low Resource Emotional TTS.
arXiv e-prints, art. arXiv:1901.04276, Jan 2019. 15

I. Titze. Principles of Voice Production. Prentice Hall, 1994. ISBN 978-0-13-717893-3. 14

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Se-
nior, and K. Kavukcuoglu. WaveNet: A Generative Model for Raw Audio. arXiv e-prints, art.
arXiv:1609.03499, Sep 2016. 12, 17

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention Is All You Need. arXiv e-prints, art. arXiv:1706.03762, Jun 2017. 12

W. von Kempelen. Mechanismus der menschlichen Sprache nebst der Beschreibung seiner sprechenden
Maschine. Degen, 1 edition, 1791. 3

VoxForge. VoxForge Speech Corpora. http://www.voxforge.org/home/Downloads, 2006.
42, 44

A. Waibel, T. Hanazawa, G. E. Hinton, K. Shikano, and K. Lang. Phoneme Recognition Using Time-
Delay Neural Networks. Technical Report TR-I-0006, Advanced Telecommunications Research Insti-
tute, International Interpreting Telephony Research Laboratories, Japan, Oct. 1987. 9

A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang. Phoneme recognition using time-delay
neural networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(3):328–339,
March 1989. doi: 10.1109/29.21701. 9

G. Wenker. Deutscher Sprachatlas (DSA). https://wolfgang-naeser-marburg.
lima-city.de/htm/wenker.htm, 1880. 29, 48

R. Yamamoto, H. Kim, cclauss, homink, amilamad, T. Sereda, S. Fischer, Raúl, lzala, and K. Mametani.
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models, Oct.
2018. URL https://doi.org/10.5281/zenodo.1472613. 3, 32, 47

Y. Zhang, R. J. Weiss, H. Zen, Y. Wu, Z. Chen, R. Skerry-Ryan, Y. Jia, A. Rosenberg, and B. Ram-
abhadran. Learning to Speak Fluently in a Foreign Language: Multilingual Speech Synthesis and
Cross-Language Voice Cloning. arXiv e-prints, art. arXiv:1907.04448, Jul 2019. 15

A Text-to-Speech system based on Deep Neural Networks

http://ccrma.stanford.edu/~jos/pasp/
http://www.voxforge.org/home/Downloads
https://wolfgang-naeser-marburg.lima-city.de/htm/wenker.htm
https://wolfgang-naeser-marburg.lima-city.de/htm/wenker.htm
https://doi.org/10.5281/zenodo.1472613

	1 Introduction
	1.1 Motivation
	1.2 Goal of this work

	2 Fundamentals
	2.1 Perceptron
	2.2 Multi-Layer Perceptron
	2.2.1 General structure
	2.2.2 Training of an Artificial Neural Network

	2.3 Convolutional Neural Network
	2.4 Encoder-Decoder Network
	2.5 Vocoder

	3 Methods and algorithms of speech synthesis
	3.1 Traditional TTS technologies
	3.1.1 Concatenative systems
	3.1.2 Source-filter systems

	3.2 HMM-based synthesis
	3.3 Speech synthesis using Deep Neural Networks

	4 Text-to-Speech system
	4.1 General structure
	4.2 Datasets comparison and training
	4.2.1 English model
	4.2.2 German model

	4.3 Synthesis

	5 Evaluation and results
	5.1 User evaluation
	5.1.1 User studies criteria for TTS systems
	5.1.2 Conducting of user testing

	5.2 Results
	5.2.1 English model
	5.2.2 German model


	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work

	Appendices
	A Deep Voice 3 architecture
	B Speech datasets
	C Evaluation sentences
	C.1 English model
	C.1.1 Stage 1
	C.1.2 Stage 2
	C.1.3 Stage 3

	C.2 German model
	C.2.1 Stage 1
	C.2.2 Stage 2


	Acronyms
	Glossary

